[物理]激光的基本原理及其特性
- 格式:ppt
- 大小:2.00 MB
- 文档页数:92
激光什么原理是什么
激光的原理是基于激光放大的过程。
激光的产生是通过受激辐射过程和光学谐振器的共同作用实现的。
首先,需要有一个激活介质。
激活介质可以是固体、液体或气体,通常包含具有激发能级的原子、分子或离子。
当激活介质中的原子、分子或离子受到外界输入的能量或光子的激发时,它们会升级到一个高能级。
这个激发态是不稳定的,原子、分子或离子倾向于回到低能级并释放出多余的能量。
在光学谐振器中,通常由两个反射镜构成,一个是半透镜,另一个是完全反射镜。
当处于高能级的原子、分子或离子回到低能级时,它们会通过受激辐射的过程释放出能量。
这些能量被反射镜反射并传输回受激介质中,进一步激发更多的原子、分子或离子到高能级。
这样的连锁反应导致了大量的原子、分子或离子从高能级跃迁到低能级,释放出更多的能量。
这个能量以高度一致的频率和相位在光学谐振器中反复传播,形成了一束非常集中而且相干性极高的光,即激光。
总结一下,激光的原理是通过受激辐射过程和光学谐振器的作用,将激活介质中的原子、分子或离子从高能级回到低能级释放能量,形成高度一致的频率和相位的光束。
激光的特性:方向性好、单色好、相干性好、亮度高。
由于谐振腔对光振荡方向的限制,激光只有沿腔轴方向受激辐射才能振荡放大,所以激光具有很高的方向性。
半导体激光器的方向性最差。
衍射极限θm≈1.22λD(λ为波长,D为光束直径);激光是由原子受激辐射而产生,因而谱线极窄,所以单色性极好。
单模稳频气体激光器的单色性最好,半导体激光器的单色性最差;激光是通过受激辐射过程形成的,其中每个光子的运动状态(频率、相位、偏振态、传播方向)都相同,因而是最好的相干光源。
激光是一种相干光这是激光与普通光源最重要的区别;激光的高方向性、单色性等特点,决定了它具有极高的单色定向亮度。
相干性包括时间相干和空间相干,有时用相干长度L C=C∆V 来表示相干时间。
自发辐射:处于高能级E2的原子自发地向低能级跃迁,并发射出一个能量为hv=E2−E1的光子,这个过程称为自发跃迁。
自发辐射跃迁概率(自发跃迁爱因斯坦系数)A21=(dn21dt )sp1n2=−1n2dn2dt(n2为E2能级总粒子数密度;dn21为dt时间内自发辐射跃迁粒子数密度);受激辐射:在频率为v=(E2−E1)/h的光照激励下,或在能量为hv=E2−E1的光子诱发下,处于高能级E2上的原子可能跃迁到低能级E1,同时辐射出一个与诱发光子的状态完全相同的光子,这个过程称为受激辐射跃迁W21=(dn21dt )st1n2=−1n2dn2dt。
受激辐射跃迁与自发辐射跃迁的区别在于,它是在辐射场(光场)的激励下产生的,因此,其月前概率不仅与原子本身的性质有关,还与外来光场的单色能量密度ρv成正比,W21=B21ρv,B21称为爱因斯坦系数;受激吸收:处于低能级E1的原子,在频率为v的光场作用(照射)下,吸收一个能量为h v21的光子后跃迁到高能级E2的过程称为受激吸收跃迁,受激吸收恰好是受激辐射的反过程。
受激吸收跃迁概率W12=(dn12dt )st1n1=1n1dn2dt,与上个概念类似,W12=B12ρv,B12称为爱因斯坦系数。
高中物理激光教案一、激光的定义激光是一种特殊的光,具有高度的一致性、单色性和聚焦性。
二、激光的产生原理激光的产生是在激发态粒子受到光量子激发后,由于受到外界的使能而进行能级跃迁,从而产生相干辐射。
三、激光的特点1. 单色性:激光是纯净的光,只有一个波长。
2. 高度一致性:激光是高度一致的相干光。
3. 聚焦性:激光由于能量高度集中,可以实现非常精确的聚焦。
第二部分:激光的应用一、激光在医学中的应用1. 治疗近视:激光可以通过改变眼睛的角膜弯曲度,从而纠正视力问题。
2. 医学影像:激光可以用于拍摄医学影像,如CT、MRI等。
3. 外科手术:激光可以代替传统的手术刀进行外科手术。
二、激光在通信中的应用1. 光纤通信:激光在光纤通信中起到了关键作用,可以实现高速传输。
2. 激光雷达:激光雷达使用激光来探测目标的位置和速度。
三、激光在工业中的应用1. 激光切割:激光可以用于对金属、塑料等材料进行精确的切割。
2. 激光打印:激光打印机可以实现高分辨率的打印。
第三部分:实验教学一、实验名称:激光的产生和特性测量实验原理:通过氦氖激光器产生的激光,利用准直透镜和凹透镜测量激光的横截面和光斑大小。
实验目的:了解激光的产生原理和特性。
二、实验步骤:1. 搭建氦氖激光器实验装置。
2. 使用准直透镜将激光聚焦到一点。
3. 使用凹透镜测量激光的光斑大小。
4. 记录实验数据并进行分析。
三、实验结果与结论:通过实验测量,得出激光的横截面和光斑大小,验证激光的聚焦性和一致性。
第四部分:课堂讨论与总结一、激光的应用领域和发展趋势激光在医学、通信、工业等领域有着广泛的应用,未来随着技术的发展,激光的应用将会更加广泛。
二、激光的优势和不足激光具有高度的一致性和聚焦性,但是激光也存在一定的安全隐患,需要谨慎使用。
三、如何正确使用激光使用激光时需要遵守相关规定,不可直接照射眼睛和皮肤,确保安全使用。
以上就是本次激光物理教案的内容,希望能帮助学生更好地了解激光的基本概念和应用。