图的深度优先搜索,广度优先搜索,代码
- 格式:wps
- 大小:29.50 KB
- 文档页数:5
一、实验目的1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表存储结构;2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和宽度优先遍历算法,复习栈和队列的应用;3.掌握图的各种应用的算法:图的连通性、连通分量和最小生成树、拓扑排序、关键路径。
二、实验内容实验内容1**图的遍历[问题描述]许多涉及图上操作的算法都是以图的遍历为基础的。
写一个程序,演示在连通无向图上遍历全部顶点。
[基本要求]建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。
以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。
[实现提示]设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。
通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。
[编程思路]首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意无向是对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,深度遍历算法采用递归调用,其中最主要的是NextAdjVex(Graph G, int v, int w);FirstAdjVex ()函数的书写,依次递归下去,广度遍历用队列的辅助。
[程序代码]头文件:#include<stdio.h>#include<stdlib.h>#define MAX_VERTEX_NUM 30#define MAX_QUEUE_NUMBER 30#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2#define TRUE 1#define FALSE 0typedef int Status;typedef int InfoType;typedef int Status;/* 定义弧的结构*/typedef struct ArcNode{int adjvex; /*该边所指向的顶点的位置*/ struct ArcNode *nextarc; /*指向下一条边的指针*/ InfoType info; /*该弧相关信息的指针*/}ArcNode;/*定义顶点的结构*/typedef struct VNode{char data[40]; /*顶点信息*/ArcNode *firstarc; /*指向第一条依附该顶点的弧的指针*/}VNode,AdjList[MAX_VERTEX_NUM];/*定义图的结构*/typedef struct {AdjList vertices;int vexnum,arcnum; /*图的当前顶点数和弧数*/int kind; /*图的类型标志*/}Graph;/*定义队列的结构*/typedef struct{int *elem;int front, rear;}Queue;/*功能选择*/void MenuSelect(int w);/*顶点定位*/int LocateVex(Graph G,char *name);/*创建无向图*/void CreateGraph(Graph &G);/*求第一个顶点*/int FirstAdjVex(Graph G, int v);/*求下一个顶点*/int NextAdjVex(Graph G, int v, int w);/*深度递归*/void DFS(Graph G, int v) ;/*深度遍历*/void DFSTravel(Graph G,int v);/*广度遍历*/void BFSTraverse(Graph G,char *name);/*初始化队列*/Status InitQueue(Queue &Q);/*判空*/Status EmptyQueue(Queue Q);/*进队*/Status EnQueue(Queue &Q, int e);/*出队*/Status DeQueue(Queue &Q, int &e);实现文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"bool visited[MAX_VERTEX_NUM];/************************************************************ 顶点定位************************************************************/int LocateVex(Graph G,char *name){int i;for(i=1;i<=G.vexnum;i++) //从1号位置开始存储if(strcmp(name,G.vertices[i].data)==0) //相等则找到,返回位序return i;return -1;}/************************************************************ 创建无向图************************************************************/void CreateGraph(Graph &G){ArcNode *p;char name1[10],name2[10];int i,j,k;printf(" 请输入顶点数,按回车键结束:");scanf("%d",&G.vexnum);printf(" 请输入弧数,按回车键结束:");scanf("%d",&G.arcnum);printf(" 请依次输入顶点名(用空格分开且字符小于10),按回车键结束:\n");printf(" ");for(i=1;i<=G.vexnum;i++) //从1号位置开始存储{scanf("%s",G.vertices[i].data); //从一号位置开始初始化G.vertices[i].firstarc=NULL;}printf("\n\n\n\n");printf(" ………………………………………输入小提示………………………………………\n");printf(" &&&&1 为避免输入遗漏,最好从选择任意一点,输入所有相邻边\n");printf(" &&&&2 输入边时格式(用空格分开,即格式为顶点(空格)顶点(空格))\n");printf(" ………………………………………输入小提示………………………………………\n\n\n\n");for(k=0;k<G.arcnum;k++){printf("请输入相邻的两个顶点,按回车键结束:");scanf("%s%s",name1,name2);i=LocateVex(G,name1); //返回位序j=LocateVex(G,name2);p=(ArcNode *)malloc(sizeof(ArcNode)); //申请边节点p->adjvex=j; //插入到邻接表中,注意此处为逆向插入到单链表中p->nextarc=G.vertices[i].firstarc;G.vertices[i].firstarc=p;//无向图,注意是对称插入结点p=(ArcNode *)malloc(sizeof(ArcNode));p->adjvex=i;p->nextarc=G.vertices[j].firstarc;G.vertices[j].firstarc=p;}}/************************************************************ 求第一个顶点************************************************************/int FirstAdjVex(Graph G, int v){ArcNode *p;if(v>=1 && v<=G.vexnum){p=G.vertices[v].firstarc;if(p->nextarc==NULL)return 0;elsereturn (p->nextarc->adjvex); //返回第一个顶点字符}return -1;}/************************************************************ 求下一个顶点************************************************************/int NextAdjVex(Graph G, int v, int w){ //在图G中寻找第v个顶点的相对于w的下一个邻接顶点ArcNode *p;if(v>=1 && v<=G.vexnum && w>=1 && w<=G.vexnum){p=G.vertices[v].firstarc;while(p->adjvex!=w)p=p->nextarc; //在顶点v的弧链中找到顶点wif(p->nextarc!=NULL)return 0; //若已是最后一个顶点,返回0 elsereturn(p->nextarc->adjvex); //返回下一个邻接顶点的序号}return -1;}/************************************************************ 深度递归************************************************************/void DFS(Graph G, int v){int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc; //p为依附顶点的第一条边while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc; //下移指针}}/************************************************************ 深度遍历************************************************************/void DFSTravel(Graph G,int v){for(int i=1;i<=G.vexnum;i++)visited[i]=0;int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc;while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc;}}/************************************************************ 初始化队列************************************************************/Status InitQueue(Queue &Q){Q.elem = new int[MAX_QUEUE_NUMBER];Q.front = Q.rear = 0;return OK;}Status EmptyQueue(Queue Q){if(Q.front==Q.rear)return 0;elsereturn 1;}/*********************************************************** * 进队列* ***********************************************************/ Status EnQueue(Queue &Q, int e){if((Q.rear + 1)%MAX_QUEUE_NUMBER != Q.front)Q.elem[Q.rear ] = e;else ;Q.rear = (Q.rear + 1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 出队列* ***********************************************************/ Status DeQueue(Queue &Q, int &e){if(Q.rear != Q.front)e = Q.elem[Q.front];else ;Q.front = (Q.front+1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 广度遍历************************************************************/void BFSTraverse(Graph G,char *name){ArcNode *p;int v,w,u,k=0;Queue Q;int visited[20];for(v=1;v<=G.vexnum;v++) //初始化visited[v]=0;InitQueue(Q);for(v=LocateVex(G,name);k!=2;v=(v+1)%(G.vexnum-1)) //v为输入的字符转化的位序{if(v+1==LocateVex(G,name)) //从v开始走完图的所有顶点k++;if(visited[v]==0){visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点EnQueue(Q,v); // 进队while(EmptyQueue(Q)!=0){DeQueue(Q,u); //出队p=G.vertices[u].firstarc;while(p!=NULL){w=p->adjvex; //p边的下一个顶点if(visited[w]==0){printf("%s ",G.vertices[w].data);visited[w]=1;EnQueue(Q,w);}p=p->nextarc; //下移指针}}}}}主文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"/************************************************************ 界面控制************************************************************/void main(){printf("\n################################# 图的遍历#################################\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf(" 1 ------- 图的创建\n");printf(" 2 ------- 图的深度优先遍历\n");printf(" 3 ------- 图的广度优先遍历\n");printf(" 0 ------- 退出\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf("请输入选择的操作代码(0-3)按回车键结束\n");MenuSelect(1);}/************************************************************ 功能选择************************************************************/void MenuSelect(int w){int select,done;int v;Graph G; char name[10];while (done) {printf("input the operating code : ");scanf("%d",&select);switch(select){case 1: printf("根据要求创建图:\n ");CreateGraph(G);break;case 2: printf("请输入深度优先遍历开始点的名:");scanf("%s",name);v=LocateVex(G,name); //将输入字符找到在顶点数组name对应的序号Vprintf("深度优先遍历:");DFSTravel(G,v);printf("\n");break;case 3: printf("请输入广度优先遍历开始点的名:");scanf("%s",name);printf("广度优先遍历:");BFSTraverse(G,name);printf("\n");break;case 0: done=0; break;default: printf(" ERROR\n");}printf("\n");}}[实验数据与结果]测试数据:实验结果。
深度优先搜索示例代码深度优先搜索(Depth First Search,DFS)是一种用于遍历或搜索树或图的算法。
它通过从根节点或某个指定节点开始,尽可能深地探索每个分支,直到找到目标节点或到达叶子节点为止。
本文将给出一个深度优先搜索的示例代码,帮助读者理解算法的实现过程。
示例代码如下:```class Graph:def __init__(self):self.graph = {}def add_edge(self, vertex, edge):if vertex in self.graph:self.graph[vertex].append(edge)else:self.graph[vertex] = [edge]def dfs(self, start):visited = set()self.dfs_helper(start, visited)def dfs_helper(self, vertex, visited):visited.add(vertex)print(vertex)if vertex in self.graph:for neighbor in self.graph[vertex]:if neighbor not in visited:self.dfs_helper(neighbor, visited)```在示例代码中,首先定义了一个`Graph`类,用于表示图结构。
`Graph`类包含了两个方法:`add_edge`用于添加边,`dfs`用于执行深度优先搜索。
`add_edge`方法用于向图中添加边,其中`vertex`表示起始节点,`edge`表示目标节点。
`dfs`方法用于执行深度优先搜索,其中`start`表示搜索的起始节点。
在深度优先搜索的实现中,我们使用了一个`visited`集合来记录已经访问过的节点,避免重复访问。
`dfs_helper`方法用于递归地进行深度优先搜索,其中`vertex`表示当前访问的节点,`visited`表示已访问节点的集合。
dfs和bfs算法代码深度优先搜索(DFS)和广度优先搜索(BFS)是常用的图遍历算法,它们可以帮助我们解决很多实际问题。
本文将详细介绍这两种算法的实现原理和应用场景。
一、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它从图的某个顶点开始,沿着一条路径尽可能深地搜索,直到无法继续为止,然后回溯到上一级节点,继续搜索其他路径。
DFS一般使用栈来实现。
DFS的代码实现如下:```def dfs(graph, start):visited = set() # 用一个集合来记录已访问的节点stack = [start] # 使用栈来实现DFSwhile stack:node = stack.pop() # 取出栈顶元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点stack.extend(neighbors) # 将邻居节点入栈return visited```DFS的应用场景很多,比如迷宫问题、拓扑排序、连通分量的计算等。
在迷宫问题中,我们可以使用DFS来寻找从起点到终点的路径;在拓扑排序中,DFS可以用来确定任务的执行顺序;在连通分量的计算中,DFS可以用来判断图是否连通,并将图分割成不同的连通分量。
二、广度优先搜索(BFS)广度优先搜索是一种逐层遍历的搜索算法,它从图的某个顶点开始,先访问该顶点的所有邻居节点,然后再访问邻居节点的邻居节点,依次进行,直到遍历完所有节点。
BFS一般使用队列来实现。
BFS的代码实现如下:```from collections import dequedef bfs(graph, start):visited = set() # 用一个集合来记录已访问的节点queue = deque([start]) # 使用队列来实现BFSwhile queue:node = queue.popleft() # 取出队首元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点queue.extend(neighbors) # 将邻居节点入队return visited```BFS的应用场景也很广泛,比如寻找最短路径、社交网络中的人际关系分析等。
2024年6月GESP编程能力认证C++等级考试七级真题(含答案)一、单选题(每题2分,共30分)。
1. 下列C++代码的输出结果是()。
2. 对于如下图的二叉树,说法正确的是()。
A. 先序遍历是132。
B. 中序遍历是123。
C. 后序遍历是312。
D. 先序遍历和后序遍历正好是相反的。
3. 已知两个序列s1={1,3,4,5,6,7,7,8,1}、s2={3,5,7,4,8,2,9,5,1},则它们的最长公共子序列是()。
4. 关于序列{2,7,1,5,6,4,3,8,9},以下说法错误的是()。
A. {2,5,6,8,9}是它的最长上升子序列。
B. {1,5,6,8,9}是它的最长上升子序列。
C. {7,5,4,3}是它的最长下降子序列。
D. {1,5,6,8,9}是它的唯一最长上升子序列。
5. 关于图的深度优先搜索和广度优先搜索,下列说法错误的是()。
A. 二叉树是也是一种图。
B. 二叉树的前序遍历和后序遍历都是深度优先搜索的一种。
C. 深度优先搜索可以从任意根节点开始。
D. 二叉树的后序遍历也是广度优先搜索的一种。
6. 对于如下二叉树,下面访问顺序说法错误的是()。
A. HDEBFIGCA不是它的后序遍历序列B. ABCDEFGHI是它的广度优先遍历序列C. ABDHECFGI是它的深度优先遍历序列D. ABDHECFGI是它的先序遍历序列7. 以下哪个方案不能合理解决或缓解哈希表冲突()。
A. 丢弃发生冲突的新元素。
B. 在每个哈希表项处,使用不同的哈希函数再建立一个哈希表,管理该表项的冲突元素。
C. 在每个哈希表项处,建立二叉排序树,管理该表项的冲突元素。
D. 使用不同的哈希函数建立额外的哈希表,用来管理所有发生冲突的元素。
8. 在C++中,关于运算符&,下面说法正确的是()。
9. 下面关于图的说法正确的是()。
A. 在无向图中,环是指至少包含三个不同顶点,并且第一个顶点和最后一个顶点是相同的路径。
深度优先搜索和⼴度优先搜索 深度优先搜索和⼴度优先搜索都是图的遍历算法。
⼀、深度优先搜索(Depth First Search) 1、介绍 深度优先搜索(DFS),顾名思义,在进⾏遍历或者说搜索的时候,选择⼀个没有被搜过的结点(⼀般选择顶点),按照深度优先,⼀直往该结点的后续路径结点进⾏访问,直到该路径的最后⼀个结点,然后再从未被访问的邻结点进⾏深度优先搜索,重复以上过程,直⾄所有点都被访问,遍历结束。
⼀般步骤:(1)访问顶点v;(2)依次从v的未被访问的邻接点出发,对图进⾏深度优先遍历;直⾄图中和v有路径相通的顶点都被访问;(3)若此时图中尚有顶点未被访问,则从⼀个未被访问的顶点出发,重新进⾏深度优先遍历,直到图中所有顶点均被访问过为⽌。
可以看出,深度优先算法使⽤递归即可实现。
2、⽆向图的深度优先搜索 下⾯以⽆向图为例,进⾏深度优先搜索遍历: 遍历过程: 所以遍历结果是:A→C→B→D→F→G→E。
3、有向图的深度优先搜索 下⾯以有向图为例,进⾏深度优先遍历: 遍历过程: 所以遍历结果为:A→B→C→E→D→F→G。
⼆、⼴度优先搜索(Breadth First Search) 1、介绍 ⼴度优先搜索(BFS)是图的另⼀种遍历⽅式,与DFS相对,是以⼴度优先进⾏搜索。
简⾔之就是先访问图的顶点,然后⼴度优先访问其邻接点,然后再依次进⾏被访问点的邻接点,⼀层⼀层访问,直⾄访问完所有点,遍历结束。
2、⽆向图的⼴度优先搜索 下⾯是⽆向图的⼴度优先搜索过程: 所以遍历结果为:A→C→D→F→B→G→E。
3、有向图的⼴度优先搜索 下⾯是有向图的⼴度优先搜索过程: 所以遍历结果为:A→B→C→E→F→D→G。
三、两者实现⽅式对⽐ 深度优先搜索⽤栈(stack)来实现,整个过程可以想象成⼀个倒⽴的树形:把根节点压⼊栈中。
每次从栈中弹出⼀个元素,搜索所有在它下⼀级的元素,把这些元素压⼊栈中。
并把这个元素记为它下⼀级元素的前驱。
广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。
它们在解决许多问题时都能提供有效的解决方案。
本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。
一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。
例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。
现在我们需要找到从起始房间到目标房间的最短路径。
可以使用广度优先搜索算法来解决这个问题。
例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。
可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。
例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。
爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。
例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。
可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。
例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。
可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。
二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。
例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。
通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。
例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。
回溯算法常用于解决组合问题、排列问题和子集问题。
例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。
哈尔滨工业大学计算机科学与技术学院实验报告课程名称:数据结构与算法课程类型:必修实验项目名称:图的搜索与应用实验题目:图的深度和广度搜索与拓扑排序设计成绩报告成绩指导老师一、实验目的1.掌握图的邻接表的存储形式。
2.熟练掌握图的搜索策略,包括深度优先搜索与广度优先搜索算法。
3.掌握有向图的拓扑排序的方法。
二、实验要求及实验环境实验要求:1.以邻接表的形式存储图。
2.给出图的深度优先搜索算法与广度优先搜索算法。
3.应用搜索算法求出有向图的拓扑排序。
实验环境:寝室+机房+编程软件(NetBeans IDE 6.9.1)。
三、设计思想(本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系)数据类型定义:template <class T>class Node {//定义边public:int adjvex;//定义顶点所对应的序号Node *next;//指向下一顶点的指针int weight;//边的权重};template <class T>class Vnode {public:T vertex;Node<T> *firstedge;};template <class T>class Algraph {public:Vnode<T> adjlist[Max];int n;int e;int mark[Max];int Indegree[Max];};template<class T>class Function {public://创建有向图邻接表void CreatNalgraph(Algraph<T>*G);//创建无向图邻接表void CreatAlgraph(Algraph<T> *G);//深度优先递归搜索void DFSM(Algraph<T>*G, int i);void DFS(Algraph<T>* G);//广度优先搜索void BFS(Algraph<T>* G);void BFSM(Algraph<T>* G, int i);//有向图的拓扑排序void Topsort(Algraph<T>*G);/得到某个顶点内容所对应的数组序号int Judge(Algraph<T>* G, T name); };主程序流程图:程序开始调用关系:主函数调用五个函数 CreatNalgraph(G)//创建有向图 DFS(G) //深度优先搜索 BFS(G) //广度优先搜索 Topsort(G) //有向图拓扑排序 CreatAlgraph(G) //创建无向图其中 CreatNalgraph(G) 调用Judge(Algraph<T>* G, T name)函数;DFS(G)调用DFSM(Algraph<T>* G , int i)函数;BFS(G) 调用BFSM(Algraph<T>* G, int k)函数;CreatAlgraph(G) 调选择图的类型无向图有向图深 度 优 先 搜 索广度优先搜索 深 度 优 先 搜 索 广度优先搜索拓 扑 排 序程序结束用Judge(Algraph<T>* G, T name)函数。
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
深度优先搜索算法详解及代码实现深度优先搜索(Depth-First Search,DFS)是一种常见的图遍历算法,用于遍历或搜索图或树的所有节点。
它的核心思想是从起始节点开始,沿着一条路径尽可能深入地访问其他节点,直到无法继续深入为止,然后回退到上一个节点,继续搜索未访问过的节点,直到所有节点都被访问为止。
一、算法原理深度优先搜索算法是通过递归或使用栈(Stack)的数据结构来实现的。
下面是深度优先搜索算法的详细步骤:1. 选择起始节点,并标记该节点为已访问。
2. 从起始节点出发,依次访问与当前节点相邻且未被访问的节点。
3. 若当前节点有未被访问的邻居节点,则选择其中一个节点,将其标记为已访问,并将当前节点入栈。
4. 重复步骤2和3,直到当前节点没有未被访问的邻居节点。
5. 若当前节点没有未被访问的邻居节点,则从栈中弹出一个节点作为当前节点。
6. 重复步骤2至5,直到栈为空。
深度优先搜索算法会不断地深入到图或树的某一分支直到底部,然后再回退到上层节点继续搜索其他分支。
因此,它的搜索路径类似于一条深入的迷宫路径,直到没有其他路径可走后,再原路返回。
二、代码实现以下是使用递归方式实现深度优先搜索算法的代码:```pythondef dfs(graph, start, visited):visited.add(start)print(start, end=" ")for neighbor in graph[start]:if neighbor not in visited:dfs(graph, neighbor, visited)# 示例数据graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']}start_node = 'A'visited = set()dfs(graph, start_node, visited)```上述代码首先定义了一个用于实现深度优先搜索的辅助函数`dfs`。
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#define MAX_VERTEX_NUM 50
typedef struct Arcnode
{
int adjvex;
struct Arcnode *nextarc;
} Arcnode;
typedef struct VNode
{
int data;
Arcnode *firstarc;
} VNode, AdjList[MAX_VERTEX_NUM];
typedef struct
{
AdjList vertice;
int vexnum, arcnum;
int kind;
} Graph;
int visit[100];//用来标记每个定点是否被访问过
void changeV_G(int v[], Graph &G, int n);//将邻接矩阵转换成邻接表int FirstAdjVex(Graph G, int v);
int NextAdjVex(Graph G, int v, int w);
void DFS(Graph G, int v);
void DFSTraverse(Graph G, int v[]);
void changeV_G(int v[], Graph &G, int n)
{
for(int i=0; i<n; i++)
{
G.vertice[i].data=i;
G.vertice[i].firstarc=NULL;
}
G.vexnum=n;//图的顶点数
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
int x=n*i+j;
if(v[x]==1)
{
if(G.vertice[i].firstarc==NULL)
{
G.vertice[i].firstarc=new Arcnode;
G.vertice[i].firstarc->adjvex=j;
G.vertice[i].firstarc->nextarc=NULL;
}
else
{
Arcnode *p=G.vertice[i].firstarc;
for(; p->nextarc!=NULL; p=p->nextarc)
{
}
p->nextarc=new Arcnode;
p=p->nextarc;
p->adjvex=j;
p->nextarc=NULL;
}
}
}
}
void DFSTraverse(Graph G, int visit[], int n)
{
for(int i=0; i<n; i++)
{
for(int v=0; v<G.vexnum; v++) visit[v] = 0;
for(int v=i; v<G.vexnum; v++)
if(!visit[v]) DFS(G,v);
printf("\n");
}
}
void DFS(Graph G, int v)
{
visit[v]=1;
printf("%d ",G.vertice[v].data );
int w;
for( w = FirstAdjVex(G, v); w>= 0; w = NextAdjVex(G, v, w)) {
if(!visit[w])
DFS(G, w);
}
}
int FirstAdjVex(Graph G, int v)//G.vertice[v].data
{
if(G.vertice[v].firstarc!=NULL)
return G.vertice[v].firstarc->adjvex;
else
return -1;
}
int NextAdjVex(Graph G, int v, int w)
{
Arcnode *p;
for(p = G.vertice[v].firstarc;;)
{
if(p->adjvex==w)
break;
p=p->nextarc;
}
if(p->nextarc==NULL) return -1;
else return p->nextarc->adjvex;
}
typedef struct QNode
{
int data;
struct QNode *next;
} QNode, *QueuePtr;
typedef struct
{
QueuePtr ffront;
QueuePtr rear;
} LinkQueue;
int InitQueue(LinkQueue &Q)
{
Q.ffront=(QueuePtr)malloc(sizeof(QNode));
Q.rear=Q.ffront;
if(!Q.ffront) exit(1);
Q.ffront->next = NULL;
return 1;
}
int EnQueue(LinkQueue &Q, int e)
{
QueuePtr p;
p=(QueuePtr)malloc(sizeof(QNode));
if(!p) exit(1);
p->data = e;
p->next = NULL;
Q.rear->next = p;
Q.rear = p;
return 1;
}
int Dequeue(LinkQueue &Q, int &e)
{
if(Q.ffront == Q.rear) return 0;
QueuePtr p;
p = Q.ffront->next;
e = p ->data;
Q.ffront->next = p->next;
if(Q.rear==p) Q.rear = Q.ffront;
free(p);
return 1;
}
int QueueEmpty(LinkQueue Q)
{
if(Q.ffront==Q.rear)
return 1;
else return 0;
}
void BFSTraverse(Graph G, int visit[], int n)
{
int v;
for(int i=0; i<n; i++)
{
for(v=0; v<G.vexnum; v++)
visit[v]=0;
LinkQueue Q;
InitQueue(Q);
int w, u;
for(v=i; v<G.vexnum; v++)
if(!visit[v])
{
visit[v] = 1;
printf("%d ", G.vertice[v].data);
EnQueue(Q, v);//v入队列
while(!QueueEmpty(Q))
{
Dequeue(Q, u);//队头元素出队并置为u
for(w=FirstAdjVex(G, u); w >= 0; w = NextAdjVex(G, u, w))
if(! visit[w])
{
visit[w] = 1;
printf("%d ", G.vertice[w].data);
EnQueue(Q, w);//w入队列
}//if
}//while
}//if
printf("\n");
}
}
int main()
{
int n;
int *v;//图的邻接矩阵
Graph G;
scanf("%d", &n);
v =(int *) malloc(sizeof(int)*n*n);
for(int i=0; i<n*n; i++)
scanf("%d", &v[i]);
changeV_G(v, G, n);//将邻接矩阵转换成邻接表
printf("DFS\n");
DFSTraverse(G, visit, n);
printf("WFS\n");
BFSTraverse(G, visit, n);
return 0;
}。