图的广度优先遍历C讲解
- 格式:doc
- 大小:539.00 KB
- 文档页数:9
图的深度优先遍历(DFS)c++⾮递归实现深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练。
ACM竞赛中,深搜也牢牢占据着很重要的⼀部分。
本⽂⽤显式栈(⾮递归)实现了图的深度优先遍历,希望⼤家可以相互学习。
栈实现的基本思路是将⼀个节点所有未被访问的“邻居”(即“⼀层邻居节点”)踹⼊栈中“待⽤”,然后围绕顶部节点猛攻,每个节点被访问后被踹出。
读者可以⾃⼰画图分析⼀下,难度并不⼤。
代码写的⽐较随意,仅供参考。
~#include <iostream>#include <stack>using namespace std;#define MaxNode 20#define MAX 2000#define StartNode 1int map[MaxNode+1][MaxNode+1];void dfs_stack(int start, int n){int visited[MaxNode],s_top;for(int i = 0;i <= MaxNode; i++){visited[i] = 0;}visited[start] = 1;stack <int> s;cout<<start<<"";for(int i = 1; i <= n; i++){if(map[i][start] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}while(!s.empty()){s_top = s.top();visited[s_top] = 1;cout<<s_top<<"";s.pop();for(int i = 1; i <= n; i++){if(map[i][s_top] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}}}int main(int argc, const char * argv[]) {int num_edge,num_node;int x,y;cout<<"Input number of nodes and edges >"<<endl;cin>>num_node>>num_edge;for(int i =0;i<num_node;i++){for(int j=0;j<num_node;j++){map[i][j] = 0;}}for(int i = 1; i <= num_edge; i++){cin>>x>>y;map[x][y] = map[y][x] = 1;}dfs_stack(StartNode, num_node);return0;}。
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
图的遍历技巧
图的遍历是指按照一定的规则,从图的某个顶点出发,沿着边遍历图中的所有顶点,使得每个顶点都被访问一次且仅一次的过程。
常用的图的遍历技巧有以下两种:
1. 深度优先遍历(Depth First Search, DFS):从图的某个顶点出发,先访问该顶点,然后依次访问与该顶点相邻的未被访问过的顶点,并以此递归地进行遍历。
当不存在未被访问的相邻顶点时,回溯到上一个顶点,继续遍历其他未被访问的相邻顶点,直至所有顶点都被访问完。
2. 广度优先遍历(Breadth First Search, BFS):从图的某个顶点出发,先访问该顶点,然后依次访问与该顶点相邻的未被访问过的顶点,并将这些顶点按照入队的顺序加入队列中。
接下来再从队列中取出一个顶点,重复前述操作,直至队列为空。
这两种遍历技巧可以分别应用于不同场景的图问题。
深度优先遍历一般适用于需要探索整个图中某一支路径的问题,而广度优先遍历一般适用于需要确定最短路径或者按层遍历的问题。
算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。
它们对无向图和有向图均适用。
注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。
2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。
在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。
为了避免重复访问同一个顶点,必须记住每个已访问的顶点。
为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。
--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。
若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。
广度优先搜索详解及应用场景广度优先搜索(BFS)是一种图遍历算法,用于在图或树中遍历节点。
它从根节点开始,并按照离根节点的距离逐层访问节点,直到找到目标节点或遍历完整个图。
BFS算法采用队列数据结构来实现,它按照先进先出(FIFO)的原则遍历节点。
下面我们将详细介绍BFS的执行步骤,并探讨其应用场景。
1. 步骤:a. 创建一个空队列,并将根节点入队。
b. 从队列中取出第一个节点,并访问该节点。
c. 将该节点的所有未访问过的邻居节点入队。
d. 标记当前节点为已访问。
e. 重复步骤b-d,直到队列为空或者找到目标节点。
2. 应用场景:a. 最短路径:BFS可以用于寻找两个节点之间的最短路径。
在无权图中,BFS会按照距离逐层遍历,当找到目标节点时,路径的层数即为最短路径长度。
b. 连通性检测:BFS可以判断图中两个节点是否连通。
通过遍历所有节点,如果能够访问到目标节点,则说明两个节点是连通的。
c. 图的遍历:BFS可以用于遍历整个图的节点。
通过BFS算法,可以按照节点的层次顺序进行遍历,并获取图的结构信息。
d. 二叉树的层次遍历:BFS可用于二叉树的层次遍历,从上到下逐层访问二叉树的节点。
总结:广度优先搜索是一种有效的图遍历算法,通过队列实现节点的层次遍历。
它可以在图中寻找最短路径,判断节点的连通性,以及进行图的遍历和二叉树的层次遍历。
对于涉及层次关系和连通性的问题,BFS 是一种重要的算法工具。
通过掌握BFS算法的原理和应用场景,我们可以更好地应用它来解决实际问题。
在实际开发中,我们可以将BFS应用于推荐系统、社交网络分析、路径规划等领域,进一步提升算法的效率和准确性。
总之,广度优先搜索作为一种重要的图遍历算法,具有广泛的应用前景。
在日常的学习和实践中,我们应该深入理解BFS的原理,并善于运用它解决各种实际问题。