静息电位和动作电位
- 格式:doc
- 大小:43.50 KB
- 文档页数:3
静息电位和动作电位的测定1.静息电位和动作电位:静息电位:在神经未受到刺激时,神经纤维处于静息状态,这时,由于细胞膜内外特异的离子分布特点,细胞膜两侧的电位表现为内负外正,称为静息电位。
动作电位:当神经纤维某一部位受到刺激时,这个部位的膜两侧出现暂时性的电位变化,由内负外正变为外负内正,这就是动作电位。
2.基本原理:神经细胞内K+明显高于膜外,而膜外Na+明显高于膜内。
静息时,由于膜主要对K+有通透性,造成K+外流,使膜外阳离子多于膜内,所以外正内负。
受到刺激时,细胞膜对Na+的通透性增加,钠离子内流,使膜内阳离子浓度高于外侧,所以表现为内正外负。
之后,在膜上由于存在钠钾泵,在其作用下,将外流的钾离子运输进膜内,将内流的钠离子运出膜外,从而成膜电位又慢慢恢复到静息状态。
3.神经电位差测定的常见类型:(1)静息电位测定方式:静息电位常见的测定方式是将电流表的两个电极一个放在神经纤维的外侧,另一个放在神经纤维的内侧(如右上图),由于内外两侧存在电势差,因此电流表指针会发生偏转。
(2)动作电位测定方式:①在一个神经纤维上的测定:是指将电流表的两个电极放在同一个神经纤维的外侧(A处和B处),来测定两个电极处是否有电位差。
其放置方式如右下图。
对于一个神经纤维上电位的测定,如电流表指针发生了偏转,则说明A B两点存在电势差。
一般的做法是在该神经纤维上C点给一个足够强度的刺激,从而观察电流表发生几次偏转,方向是否一致?当刺激点C到达A、B两点距离相等时,神经冲动同时到达A、B两点,两点虽然均产生了动作电位,但是仍然不存在电势差,因此电流表不会发生偏转。
只要刺激点C与A、B点在同一神经元上,且CA与CB不相等,电流表就会发生两次方向相反的偏转。
②在两个神经纤维上的测定:是指将电流表的两个电极放在两个相邻神经元的外侧,来测定两个电极处是否有电位差。
其放置方式如右图。
在A点给一个足够强度的刺激,观察电流表发生几次偏转,方向是否一致?若这个刺激发生在上游神经元上,则电流表会发生两次方向相反的偏转;若这个刺激发生在下游神经元上,则电流表只能发生一次偏转。
静息电位和动作电位静息电位和动作电位一、静息电位1、概念表述静息电位是指组织细胞静止状态下存在于膜内外两侧的电位差,呈外正内负的极化状态。
2、产生条件(1)细胞膜内外离子分布不平衡。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。
膜外Na+浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
(2)膜对离子通透性的选择。
在静息状态下,膜对K+的通透性大,对Na+的通透性则很小(Na+通道关闭),对膜内大分子A-则无通透性。
3、产生过程K+顺浓度差向膜外扩散,膜内A-因不能透过细胞膜被阻止在膜内。
致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。
当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。
这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。
二、动作电位1、概念表述动作电位是指可兴奋细胞受到刺激时,在静息电位的基础上发生的一次快速扩布性电位变化。
2、产生条件(1)细胞膜内外离子分布不平衡。
细胞内外存在着Na+浓度差,Na+在细胞外的浓度是细胞内的13倍之多。
(2)膜对离子通透性的选择。
细胞受到一定刺激时,膜对Na+的通透性增加3、产生过程(1)去极化:细胞受到阀上刺激→细胞外Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时Na+通道全部开放→Na+顺浓度梯度瞬间大量内流(正反馈倍增)→细胞内正电荷增加→膜内负电位从减小到消失,进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→膜两侧电位达到一个新的平衡点。
该过程主要是Na+内流形成的平衡电位,可表示为动作电位模式图的上升支。
(2)复极化:达峰值时Na+通道迅速关闭而失活→Na+内流停止→K+通道被激活→膜对K+的通透性增加→K+借助于浓度差和电位差快速外流→膜内电位迅速下降(负值迅速上升)→电位恢复静息值。
一、静息电位(resting potential, RP)1、概念:静息电位:细胞在静息(未受刺激)状态下膜两侧的电位差称静息电位(膜电位)2、静息时细胞的特点静息时细胞内外离子的特点:①细胞内[K+]一般比细胞外液高30倍;②细胞内带负电荷的生物大分子(主要是蛋白质)比细胞外液高10倍;③细胞外液中[Na+]和[CL-]都比细胞内高20倍。
所以,细胞内正离子主要为K+,负离子主要为带负电荷的蛋白质分子。
细胞外正离子主要为Na+,负离子主要为CL- 。
静息时细胞膜的选择通透性:①带负电荷的蛋白质分子完全不可通过;②Na+和CL-通透性极小;③K+有较大的通透性。
3、静息电位形成的机理:细胞内的K+在细胞膜内外浓度差(内高外低)作用下携带正离子外流,当膜内外K+浓度差(K+外流动力)和K+外流所形成的电位差(K+外流阻力)达到动态平衡时,K+的净通量为零,此时所形成的电位差稳定于某一数值而不再增加,即形成静息电位;所以说静息电位实质为K+外流所形成的跨膜电位。
细胞内外的K+不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。
(二)动作电位1. 动作电位的概念动作电位(action potential):可兴奋组织接受刺激而发生兴奋时,细胞膜原有的极化状态立即消失,并在膜的内外两侧发生一系列的电位变化,这种变化的电位称为动作电位。
2. 动作电位形成的机理证明:①人工地改变细胞外液Na+浓度,动作电位上升支及其幅度也随之改变,*海水实验;②用河豚毒阻断Na+通道后,动作电位幅度↓或消失;③膜片钳实验。
3.动作电位组成动作电位的扫描波形包括升支和降支两部分。
如采用慢扫描并高度放大,则升支和降支的开始部分显示为尖锐的剑锋状,故动作电位又称为锋电位。
动作电位的升支代表细胞受到刺激后膜的去极化和反极化过程,即膜内电位由静息时的-70毫伏逐渐减小到-55毫伏(由于这一膜电位可以激发动作电位产生,故把-55毫伏的膜电位称为阈电位);然后,膜电位再减小到0毫伏(去极化结束);最后膜电位由0毫伏迅速上升到+35毫伏(反极化)。
简介静息电位(Resting Potential , RP )是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。
由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。
形成机理静息电位产生的基本原因是离子的跨膜扩散,和钠- 钾泵的特点也有关系。
细胞膜内K+浓度高于细胞外。
安静状态下膜对K+通透性大,K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。
这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。
膜内外电位差便维持在一个稳定的状态,即静息电位。
测定静息电位的方法插入膜内的是尖端直径<1μm的玻璃管微电极,管内充以KCl溶液,膜外为参考电极,两电极连接到电位仪测定极间电位差。
静息电位都表现为膜内比膜外电位低,即膜内带负电而膜外带正电。
这种内负外正的状态,称为极化状态。
静息电位是一种稳定的直流电位,但各种细胞的数值不同。
哺乳动物的神经细胞的静息电位为-70mV(即膜内比膜外电位低70mV),骨骼肌细胞为-90mV,人的红细胞为-10mV。
静息电位的产生与细胞膜内外离子的分布和运动有关。
正常时细胞内的K+浓度和有机负离子A-浓度比膜外高,而细胞外的Na+浓度和Cl-浓度比膜内高。
在这种情况下,K+和A-有向膜外扩散的趋势,而Na+和Cl-有向膜内扩散的趋势。
但细胞膜在安静时,对K+的通透性较大,对Na+和Cl-的通透性很小,而对A-几乎不通透。
因此,K+顺着浓度梯度经膜扩散到膜外使膜外具有较多的正电荷,有机负离子A-由於不能透过膜而留在膜内使膜内具有较多的负电荷。
这就造成了膜外变正、膜内变负的极化状态。
由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随着K+外移的增加,阻止K+外移的电位差也增大。
动作电位静息电位1. 什么是动作电位和静息电位?动作电位和静息电位是神经元细胞膜的两种电位状态。
动作电位是指神经元细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。
而静息电位则是指神经元细胞膜在没有受到任何刺激时的电压状态。
2. 动作电位的过程当神经元受到足够强度的刺激时,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位的反转。
这种电位反转的过程被称为动作电位。
动作电位的过程可以分为四个阶段:- 静息状态:细胞膜内外的离子浓度分布保持不变,细胞膜内外电位差为-70mV左右。
- 起始阶段:细胞膜受到刺激后,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位差快速反转到+30mV左右。
- 上升阶段:细胞膜内外电位差继续上升到峰值,此时细胞膜内外电位差为+30mV左右。
- 下降阶段:细胞膜内外电位差开始迅速下降,恢复到静息状态。
3. 静息电位的维持静息电位的维持与神经元细胞膜内外的离子浓度分布有关。
在静息状态下,神经元细胞膜内外的离子浓度分布如下:- 细胞内钾离子(K+)浓度高,细胞外钠离子(Na+)浓度高。
- 细胞内氯离子(Cl-)浓度低,细胞外氯离子(Cl-)浓度高。
这种离子分布的差异导致了细胞膜内外的电位差,使得细胞膜内电位为负电荷,外电位为正电荷。
这种静息状态的电位差通常为-70mV左右。
维持这种静息状态需要通过细胞膜上的离子通道和离子泵来实现。
4. 总结动作电位和静息电位是神经元细胞膜的两种电位状态。
动作电位指细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。
静息电位指细胞膜在没有受到任何刺激时的电压状态。
神经元细胞膜内外离子浓度分布的差异是维持静息电位的主要原因。
通过细胞膜上的离子通道和离子泵来调节离子浓度分布,从而维持静息状态。
动作电位和静息电位的研究有助于人们更好地理解神经元的工作原理,为治疗神经系统相关疾病提供参考。
静息电位动作电位
静息电位动作电位(Resting Membrane Potential Action Potential,简称RMP-AP)是指由一个细胞的内外电位差引发的生物电位过程。
在此过程中,当外界环境中的电位变化时,会引起细胞内外电位差,从而产生电位上升或降低。
RMP-AP是由三个不同的周期组成的,即静息电位、动作电位和恢复期。
首先,当细胞的外界环境中的电位变化时,会导致细胞内外电位差的变化,从而使细胞内外电位差发生变化,这就是静息电位(RMP)。
此时,细胞内外电位差处于一个稳定的水平,这样细胞就可以保持正常的功能。
接下来是动作电位(AP),当细胞内外电位差超过一定的阈值时,会产生一个动作电位,它具有较快的上升速度和较高的电压水平,从而使细胞内外电位差急剧上升,这样细胞便会发出电位信号,从而改变细胞的生理功能。
最后是恢复期。
当动作电位(AP)发生后,细胞内外电位差会再次降低,直到恢复到原先的静息电位(RMP),此时会有一个恢复期,即当细胞内外电位差回到正常水平时,细胞便会恢复到正常的功能状态。
总之,静息电位动作电位(RMP-AP)是由一个细胞的内外电位差引发的生物电位过程,其主要由静息电位、动作电位和恢复期三个不同的周期组成,它能够使细胞内外电位差发生变化,从而使细胞发出的电位信号改变细胞的生理功能,从而使细胞获得正常的功能状态。
动作电位和静息电位是生理学上描述神经细胞功能状态的重要概念。
动作电位指的是
神经元在收到外界刺激后产生的电位变化,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位指的是神经元在没有任何刺激的情况下产生的电位变化,它是一种持续的电信号传递,可以用来维持神经元的基础功能。
动作电位的构成主要来自于膜电位的变化,膜电位是由离子通道的选择性渗透决定的,它的变化反映了细胞内外离子的平衡状态的变化;静息电位的构成主要来自于安定电位的变化,它是由膜蛋白电位决定的,它的变化反映了细胞内外离子的偏置态的变化。
动作电位主要由膜电位变化产生,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位主要由安定电位变化产生,它是一种持续的电信号传递,可以用来维持神经
元的基础功能。
动作电位变化可以使神经元间的电信号传递得以实现,而静息电位则可以维持神经元内部的稳定性。
因此,动作电位和静息电位都是神经元功能的重要指标,为神经元功能的研究提供了重要的参考依据。
静息电位和动作电位的特点静息电位和动作电位是神经细胞中的两种不同的电信号。
在神经元的兴奋传导过程中,静息电位是维持细胞处于静止状态时的电位,而动作电位则是细胞受到足够强的刺激后,发出的快速且短暂的电信号。
下面将分别介绍静息电位和动作电位的特点。
一、静息电位的特点静息电位(Resting Membrane Potential)是指神经元在没有受到外界刺激时,维持在一个稳定的电势水平。
静息电位的主要特点如下:1. 电压低静息电位为负电压,通常在-65mV到-85mV之间。
这意味着,神经元内部相对于外部有一个负电荷。
2. 相对稳定静息电位是相对稳定的,即使没有外部刺激,也会维持在稳定的水平上。
静息电位主要是由细胞膜上的Na+、K+离子泵维持的。
3. 不具有传导性静息电位并不是神经元信号传导的一种形式,只是维持细胞膜的稳定状态。
静息电位的存在是为了使神经元随时准备好接收外部刺激。
二、动作电位的特点动作电位(Action Potential)是神经元收到足够强的刺激后产生的一种短暂的电信号。
动作电位的主要特点如下:1. 快速性动作电位具有很快的传导速度,通常在1-2毫秒内完成传导。
2. 大幅度变化动作电位的电压变化幅度比静息电位大得多,通常在+30mV到-70mV 之间。
3. 具有传导性动作电位是神经元信号传导过程中最重要的形式之一,可以在神经元之间、神经元与肌肉细胞之间传递信号。
综上所述,静息电位和动作电位是神经元中两种不同的电信号。
静息电位是为了维持细胞膜的稳定状态,而动作电位则是为了进行信息传递和神经元的兴奋传导。
两种信号的特点和作用不同,但在神经元的正常功能和活动中都具有非常关键的作用。
细胞膜的生物电现象主要有两种表现形式,即安静时的静息电位和受刺激时产生的膜电位的改变(包括局部电位和动作电位)。
生物电现象是以细胞为单位产生的,以细胞膜两侧带电离子的不均衡分布和离子的选择性跨膜转运为基础。
1.静息电位(resting potential,RP):指细胞未受刺激时存在于细胞膜内外两侧的电位差。
将一对测量电极中的一个放在细胞的外表面,另一个与微电极相连,准备刺入细胞膜内。
当两个电极都位于膜外时,电极之间不存在电位差。
在微电极尖端刺入膜内的一瞬间,示波器上显示一突然的电位跃变,表明两个电极间出现电位差,膜内侧的电位低于膜外侧电位。
该电位差是细胞安静时记录到的,因此称为静息电位。
几乎所有的动植物细胞的静息电位都表现为膜内电位值较膜外为负,如规定膜外电位为0,膜内电位可以负值表示,即大多数细胞的静息电位在-10~-100mV之间。
神经细胞的静息电位约为-70mV,红细胞的约为-10mV。
细胞膜两侧存在电位差,以及此电位差在某种条件下会发生波动,使细胞膜处于不同的电学状态。
人们将细胞安静时膜两侧保持的内负外正的的状态称为膜的极化;当膜电位向膜内负值加大的方向变化时,称为膜的超极化;相反,膜电位向膜内负值减小的方向变化,称为膜的去极化;细胞受刺激后先发生去极化,再向膜内为负的静息电位水平恢复,称为膜的复极化。
2.静息电位形成的原理(1)细胞膜内、外的离子浓度差RP的形成与细胞膜两侧的离子有关。
下表显示枪乌贼巨轴突细胞膜两侧主要离子浓度。
由表可见,细胞膜内外的离子呈不均衡分布,膜内K+多于膜外,Na+和Cl-低于膜外,即细胞内为高钾低钠低氯的状态。
此外,A-表示带负电蛋白质基团,仅存在于膜内。
(2)细胞膜对离子的选择通透性和K+平衡电位Hodgkin和Huxley推测:由于细胞内外存在K+的浓度差(细胞内高钾),K+具有从膜内侧向膜外侧扩散的趋势。
如果细胞膜在安静时只能允许K+自由通透(K+通道开放),K+即可顺浓度差外流到细胞外。
简介
静息电位(Resting Potential , RP )是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。
由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。
形成机理
静息电位
产生的基本原因是离子的跨膜扩散,和钠- 钾泵的特点也有关系。
细胞膜内K+浓度高于细胞外。
安静状态下膜对K+通透性大,K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。
这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。
膜内外电位差便维持在一个稳定的状态,即静息电位。
测定静息电位的方法
插入膜内的是尖端直径<1μm的玻璃管微电极,管内充以KCl溶液,膜外为参考电极,两电极连接到电位仪测定极间电位差。
静息电位都表现为膜内比膜外电位低,即膜内带负电而膜外带正电。
这种内负外正的状态,称为极化状态。
静息电位是一种稳定的直流电位,但各种细胞的数值不同。
哺乳动物的神经细胞的静息电位为-70mV(即膜内比膜外电位低70mV),骨骼肌细胞为-90mV,人的红细胞为-10mV。
静息电位的产生与细胞膜内外离子的分布和运动有关。
正常时细胞内的K+浓度和有机负离子A-浓度比膜外高,而细胞外的Na+浓度和Cl-浓度比膜内高。
在这种情况下,K+和A-有向膜外扩散的趋势,而Na+和Cl-有向膜内扩散的趋势。
但细胞膜在安静时,对K+的通透性较大,对Na+和Cl-的通透性很小,而对A-几乎不通透。
因此,K+顺着浓度梯度经膜扩散到膜外使膜外具有较多的正电荷,有机负离子A-由於不能透过膜而留在膜内使膜内具有较多的负电荷。
这就造成了膜外变正、膜内变负的极化状态。
由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随着K+外移的增加,阻止K+外移的电位差也增大。
当促使K+外移的浓度差和阻
止K+外移的电位差这两种力量达到平衡时,经膜的K+净通量为零,即K+外流和内流的量相等。
此时,膜两侧的电位差就稳定于某一数值不变,此电位差称为K+的平衡电位,也就是静息电位。
其具体数值可按Nernst公式计算。
计算所得的K+平衡电位值与实际测得的静息电位值很接近,提示静息电位主要是由K+向膜外扩散而造成的。
如果人工改变细胞膜外K+的浓度,当浓度增高时测得的静息电位值减小,当浓度降低时测得的静息电位值增大,其变化与根据Nernst公式计算所得的预期值基本一致。
但是,实际测得的静息电位值总是比计算所得的K+平衡电位值小,这是由于膜对Na+和Cl-也有很小的通透性,它们的经膜扩散(主要指Na+的内移),可以抵销一部分由K+外移造成的电位差数值。
动作电位
概念
可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。
动作电位的主要成份是峰电位。
形成条件
①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。
(主要是Na+ -K+泵的转运)。
②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。
③可兴奋组织或细胞受阈上刺激。
形成过程
≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→N a+内流与去极化形成正反馈(Na+爆发性内流)→基本达到Na+平衡电位(膜内为正膜外为负,因有少量钾离子外流导致最大值只是几乎接近钠离子平衡电位)(形成动作电位上升支)。
膜去极化达一定电位水平→Na+内流停止、K+迅速外流(形成动作电位下降支)。
形成机制
动作电位上升支——Na+内流所致。
动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。
动作电位下降支——K+外流所致。
动作电位时细胞受到刺激时细胞膜产生的一次可逆的、可传导的电位变化。
产生的机制为①阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支。
②Na+通道失活,而 K+通道开放,K+外流,复极化形成动作电位的下降支。
③钠泵的作用,将进入膜内的Na+泵出膜外,同时将膜外多余的 K+泵入膜内,恢复兴奋前时离子分布的浓度。
离子通道的特征
细胞膜上有多种离子通道。
而动作电位的产生,则与钠和钾离子通道有关。
这些离子通道的开关状态与膜电位有关,即是所谓的电压门控通道。
例如钠离子通道,在静息时它是关闭并且是可激活的。
当去极化到一特定值时就会引起其构象的改变,成为打开状态。
但是离子通道却不会持续停留在开放状态,它会在几毫秒内关闭。
这是通过膜上一蛋白质的失活域的活动实现的,这个失活域会像塞子一样堵住离子通道。
离子通道这种状态被称为关闭并失活的。
过渡状态关闭但可激活的只有在完全复极化后才可能出现,而开放可激活的状态是在简单模型中不可能实现的。
(文献中也写道,一个关闭并失活的通道在复极过程中首先短时间内还是开放状态,然后才改变构象直接成为关闭但可激活的。
再次激活只能发生在完全复极之后,在去极化的细胞膜中不可能存在着过渡状态开放并失活的)。
当然,并不是所有的通道在电位到达一定值之时全部打开。
更可能的是,通道的处于某种状态的概率是与电压相关的。
而当阈电位出现时,大部分的通道便会开放,上述的模型便能很好的描述这种状态。
而状态之间过渡所需的时间也是因通道而异的。
钠通道从关到开发生在2毫秒之内,而钾通道则要10毫秒。
除了电压外,还有其他开关通道的机制,如化学门控通道。
对动作电位来说,有两种值得一提。
一种是与内向整流性钾通道 Kir有关,这种通道是不可调控的。
但却有一些带正电的小分子如精素,能够在去极化到一定程度时堵塞通道孔。
另一种机制与钾通道有关,当细胞间的钙离子与它结合后会开放。