《勾股定理的应用》教学设计
- 格式:doc
- 大小:13.50 KB
- 文档页数:3
北师大版八年级数学上册:1.3《勾股定理的应用》教案一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。
本节课主要让学生掌握勾股定理在实际问题中的应用,培养学生的解决问题的能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探索直角三角形斜边与两直角边的关系,从而引入勾股定理。
学生通过观察、实验、猜想、验证等过程,体验数学的探索乐趣,提高解决问题的能力。
二. 学情分析学生在七年级已经学习了直角三角形的性质,对直角三角形的边长关系有一定了解。
但勾股定理的应用涉及实际问题,对学生来说是一个新的挑战。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理在直角三角形中的应用。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的合作、交流、探究能力,体验数学探索的乐趣。
四. 教学重难点1.重难点:勾股定理的应用。
2.难点:如何将实际问题转化为勾股定理的形式,求解问题。
五. 教学方法1.采用问题驱动法,引导学生探究勾股定理的应用。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.采用启发式教学法,教师提问、学生回答,激发学生的思维。
4.利用多媒体辅助教学,展示勾股定理的应用实例。
六. 教学准备1.准备相关课件、教学素材。
2.设计好教学问题,准备好答案。
3.安排好教学过程中的各个环节。
七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的动画故事,引导学生了解勾股定理的背景。
同时,提问学生:“你们认为直角三角形的斜边与两直角边有什么关系?”2.呈现(10分钟)教师提出一组实际问题,如:“一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
”让学生尝试解决。
学生在解决过程中,发现无法直接运用已知的直角三角形性质解决问题,从而引出勾股定理。
3.操练(10分钟)教师提出多个关于勾股定理的应用问题,让学生在小组内讨论、交流,共同解决。
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
1.3勾股定理的应用教学目标:1.学会用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.2.能熟练运用勾股定理求最短距离.3.在实际问题中构造直角三角形,提高建模能力,进一步深化对构造法和代数计算法的理解.教学重点:学会用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题教学难点:能熟练运用勾股定理求最短距离.教学过程:一、情境导入今早7:00,我从家出发,以100米/分的速度向西走5分钟,又以120米/分的速度向南走10分钟,到达学校.1.早上老师共走了多少路程?500+1200=1700(米).2.家到学校的距离是多少?解:由勾股定理,得AC2=AB2+BC2=5002+12002=13002.因为AC>0,所以AC=1300米.二、探索新知如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么爬最近?学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么爬最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.学生汇总了四种方案:学生很容易算出:情形(1)中A→B的路线长为:AA'+d,情形(2)中A→B的路线长为:AA'+.所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA'剪开圆柱得到矩形,情形(3)A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.如图:(1)中A→B的路线长为:AA'+d.(2)中A→B的路线长为:AA'+A'B>AB.(3)中A→B的路线长为:AO+OB>AB.(4)中A→B的路线长为:AB.得出结论:利用展开图中两点之间线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来提问:怎样计算AB?在Rt△AA'B中,利用勾股定理可得AB2=A'A2+A'B2,若已知圆柱体高12cm,底面半径为3cm,π取3,则AB2=122+(3×3)2.∴AB=15cm.做一做:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?(2)李叔叔量得边AD长是30厘米,边AB长是40厘米,点B,D之间的距离是50厘米.边AD垂直于边AB吗?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验边AD是否垂直于边AB吗?边BC与边AB呢?解:(1)能.办法:用卷尺量出AB,AD和BD的长度,计算AB2,AD2和BD2的值,若AB2+AD2=BD2,则根据勾股定理的逆定理可知∠BAD=90°,即AD⊥AB.检测BC⊥AB同理.(2)∵AB2+AD2=402+302=2500,BD2=2500,∴AB2+AD2=BD2.∴∠BAD=90°.∴边AD垂直于边AB.(3)能.办法:在AB边上量一小段AE=8cm,在AD边上量一小段AF=6cm,AE2+AF2=82+62=102,这时只要量一下EF是否等于10cm即可.边BC同理.三、掌握新知例如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.四、巩固练习1.甲、乙两位探险者到沙漠进行探险.某日早晨8:00甲先出发,他以6km/h的速度向正东行走.1h后乙出发,他以5km/h的速度向正北行走.上午10:00,甲、乙两人相距多远?解:如图,A是甲、乙的出发点,10:00甲到达B点,乙到达C点.∴AB=2×6=12(km),AC=1×5=5(km).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132.又∵BC>0,∴BC=13km.∴甲、乙两人相距13km.2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.解:如图,AB2=152+202=625=252.∵AB>0,∴AB=25.∴蚂蚁沿图中AB路线走最近,最近距离为25.3.有一个高为1.5m,半径是1m的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5m,问这根铁棒有多长?(小孔边缘到油桶壁的距离忽略不计)解:设这根铁棒伸入油桶中的长度为x m.则当这根铁棒最长时:x2=1.52+22,解得x=2.5,∴这根铁棒最长是2.5+0.5=3(m);当这根铁棒最短时:x=1.5,∴这根铁棒最短是1.5+0.5=2(m).答:这根铁棒的长应在2m~3m之间.4.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的大意是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问:这个水池水的深度和这根芦苇的长度各是多少?解:如图.设这个水池水的深度AC是x尺,则这根芦苇的长度AD=AB=(x+1)尺.在直角三角形ABC中,BC=5尺.由勾股定理,得BC2+AC2=AB2,即52+x2=(x+1)2.解得x=12.∴x+1=13.答:这个水池水的深度是12尺,这根芦苇的长度是13尺.五、归纳小结1.解决实际问题的方法是建立数学模型求解.2.在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题.六、布置作业从教材习题1.4中选取.通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程中,感受数学学习的魅力.。
《勾股定理的应用》教学设计
【教学目标】
1、知识与技能目标
能运用勾股定理及直角三角形的判定条件解决实际问题.
2、能力达成目标
(1)会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。
(2)发展学生的分析问题能力和表达能力。
3、情感态度目标
(1)在提升分析问题能力和完整表达解题过程能力的同时,感受“数形结合”和“转化”的数学思想,体会数学的应用
价值和渗透数学思想给解题带来的便利。
(2)积极参加数学学习活动,增强自主、合作意识,培养热爱科学的高尚品质。
【教学重点】勾股定理及直角三角形的判定条件的应用(在应用中概括出这两者在应用方面的区别,增强这两个定理的区分和应用
能力)
【教学难点】分析思路,渗透数学思想
【学情分析】学生已经学习了勾股定理、直角三角形的判定条件、平面展开图等知识,具备了应用勾股定理及直角三角形的判定条
件的基本能力,但对无理数缺乏“形”的认识,需要提高勾股
定理及直角三角形的判定条件的综合应用的能力,因此,本节
课着重培养学生对无理数缺乏“形”的认识,对勾股定理及直
角三角形的判定条件的综合应用的能力。
通过本节课的学习,,能够对勾股定理及直角三角形的判定条件进行综合应用。
【教具准备】多媒体电脑
【教学过程】
(一)创设情景,引入新课;
引入华罗庚提出的:把勾股定理送到外星球,与外星人进行数学交流,……。
来激发学生对勾股定理学习的乐趣
(二)引入实例,体会勾股定在现实生活中的作用,体现数学来源于现实生活
如放映的:可爱的小鸟、帮一帮消防员、电视的大小问题,这些都是现实生活中体现勾股定理应用的很好的例子。
进而引入勾股定理的应用。
(三)实战濱示
生活中路径最短问题转化为几何中的解直角三角形问题,即勾股定理的应用。
先演示在长方体中,小蚂蚁吃农食物这个情境问题,在分析问题的过程中由学生讨论分析会出现几种情况,最后师生共同总结,合作完成,不但很好地应用了勾股定理,而且还巩固了把几何体展开为平面图形的知识,体现了数形结合的数学思想。
(四)变式训练
把长方体转化成圆柱,爬的路径由半周到一周,让学生自行完成,然后讨论结果的正确性。
(五)轻松一分钟
观看图片,聪明的葛藤,让学生引发联想植物的聪明性,进而引入更深一点的问题,还是体现数学来源于现实生活,由看到的问题引出实际要解决的问题。
(六)深度挖掘
由绕一圈到两圈,最后提出问题:到多圈该怎么处理?学生课后自行讨论完成。
给学生以自己思考的空间,体现不同的学生在数学上有不同的发展。
(七)练习,以上面的形式分层次出现
(八)感悟与反思(让学生来小结本节课的内容):
1、通过这节课的学习活动你有哪些收获?
2、对这节课的学习,你还有什么想法吗?
(九)作业:见卷子
(十)紧扣主题,观看给出的勾股定理的应用的图片,体会本节课的教学内容,以及勾股定理在现实生活中的具大作用。