第五章 数字信号处理系统的实现2
- 格式:ppt
- 大小:1.25 MB
- 文档页数:24
绪论单元测试1.如果想要实现模拟信号的数字化,以便后续处理,须经过:()。
A:数字滤波器B:D/A转换C:A/D转换D:抗混叠模拟滤波答案:CD2.以下属于数字信号处理技术的是()。
A:语音识别B:视频编码C:图像压缩D:谱分析答案:ABCD3.数字信号处理系统具有()的优点。
A:可靠性高B:精度高C:易于大规模集成D:灵活性高答案:ABCD4.数字信号处理系统可以采用如下方法实现()。
A:通用微处理器B:DSPC:通用计算机D:FPGA答案:ABCD5.序列经过()成为数字信号。
A:量化B:编码C:采样D:保持答案:AB6.数字信号在时间和振幅上都是离散的。
()A:错B:对答案:B7.周期信号和随机信号是功率信号。
()A:错B:对答案:B8.数字信号处理只对数字信号进行处理。
()A:对B:错答案:B9.与模拟系统相比,数字系统精度高、复杂度低。
()A:对B:错答案:B10.与模拟系统相比,数字系统可靠性更高。
()A:对B:错答案:A第一章测试1.从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax关系为:。
()A:fs≥ 2fmaxB:fs≤2 fmaxC:fs≥ fmaxD:fs≤fmax答案:A2.序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是。
()A:7B:5C:6D:6答案:C3.若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。
()A:2B:4πC:2πD:8答案:D4.一LTI系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为;输入为x(n-3)时,输出为。
()A:2y(n),y(n+3)B:y(n),y(n-3)C:2y(n),y(n-3)D:y(n),y(n+3)答案:C5.下列关系正确的为()。
A:B:C:D:答案:C6.设系统的单位抽样响应为h(n),则系统因果的充要条件为()A:当n>0时,h(n)≠0B:当n<0时,h(n)≠0C:当n>0时,h(n)=0D:当n<0时,h(n)=0答案:D7.下列哪一个单位抽样响应所表示的系统不是因果系统?( )A:h(n)=δ(n)B:h(n)=u(n)-u(n+1)C:h(n)=u(n)-u(n-1)D:h(n)=u(n)答案:B8. LTI系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为()A:y(n)B:3y(n)C:y(n-2)D:3y(n-2)答案:D9.下列哪一个系统是因果系统()A:y(n)= cos(n+1)x (n)B:y(n)=x (- n)C:y(n)=x (n+2)D:y(n)=x (2n)答案:A10.10设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A:0B:-∞C:∞D:1答案:A11.x(n)=cos(w0n)所代表的序列一定是周期的。
第五章信号处理初步一、知识要点及要求(1)了解信号处理的目的和分类,及数字信号处理的基本步骤;(2)掌握模拟信号数字化出现的问题、原因和措施;(3)掌握信号的相关分析及其应用;(4)掌握信号的功率谱分析及其应用。
二、重点内容及难点(一)信号处理1、信号处理的目的(1)分离信号和噪声,提高信噪比;(2)从信号中提取有用的特征信号;(3)修正测试系统的某些误差,如传感器的线性误差、温度影响等。
2、信号处理的分类模拟信号处理:对模拟信号进行处理,由一系列能实现模拟运算的电路来实现。
数字信号处理:对数字信号进行处理,可以在通用计算机上借助程序来实现,或由专用数字信号处理机(DSP芯片)来实现。
(二)数字信号处理的基本步骤1、(1)电压幅值调整;(2)必要的滤波;(3)隔直;(4)解调。
2、A/D转换的作用:把模拟信号转换为数字信号,以便能用数字方法进行处理。
(1)采样:时间离散;(2)量化:幅值离散;(3)截断。
3、计算机或数字信号处理器的作用对数字化之后的信号进行处理。
(三)模拟信号的数字化1、时域采样和混叠时域采样,就是等时间间隔地取点。
从数学处理上看,就是乘以采样函数,时域相乘相当于频域作卷积,就相当于频谱的周期延拓,即频谱的搬移。
在频域中,如果频谱的搬移距离过小,搬移后的频谱就会有一部分相互交叠,从而使新合成的频谱与原频谱不一致,无法准确地恢复原时域信号,这种现象称为混叠。
2、时域截断和泄漏时域截断,就是取有限长的信号。
从数学处理上看,就是乘以有限宽矩形窗函数。
时域相乘相当于频域作卷积,就相当于频谱的周期延拓,即频谱的搬移。
在频域中,由于矩形窗函数的频谱是一个无限带宽的sinc函数,即使原模拟信号是有限带宽的,截断后也必然成为无限带宽的,这种信号的能量在频率轴分布扩展的现象称为泄漏。
3、频域采样和栅栏效应频域采样,就是在频率轴上等间隔地取点,使频率离散化。
从数学处理上看,就是乘以频率采样函数。
频域相乘相当于时域作卷积,就相当于时域波形的周期延拓,即频域波形的搬移。
实验报告2012年04月26 日课程名称:数字信号处理实验名称:系统及系统响应班级:学号:姓名:实验二系统及系统响应一、实验目的(1)观察离散系统的频率响应;(2)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;(3)利用序列的FT对连续信号、离散信号及系统响应进行频域分析;(4)利用卷积方法观察分析系统的时域特性。
二、实验内容(1)给定一因果系统H(z)= ,求出并绘制H(z)的幅频响应与相频响应;(2)对信号x a(t)=Au(n) 0n50 其中A=444.128,a=50,=50,实现下列实验内容:a、取采样频率fs=10KHZ,观察所得采样x a(n)的幅频特性|X()|和图中的|Xa(j)|在折叠频率附近有无明显差别。
b、改变采样频率fs=1KHZ,观察|X()|的变化,并作记录:进一步降低采样频率,fs=300HZ,观察频谱混叠是否明显存在,说明原因,并记录这时的|X()|曲线。
(3)给定系统的单位抽样响应为h1(n)=R10(n)a、利用线性卷积求信号x1(n)=(n),通过该系统的响应y1(n)。
比较所求响应y1(n)和h1(n)之间有无差别,绘图说明,并用所学理论解释所得结果。
b、利用线性卷积求信号x2(n)=R10(n),通过该系统的响应y2(n),并判断y2(n)图形及其非0值序列长度是否与理论结果一致,改变x2(n)的长度,取N=5,重复该试验。
注意参数变化的影响,说明变化前后的差异,并解释所得结果。
(4)求x(n)=11(n+2)+7(n+1)-(n-1)+4(n-2)+2(n-3)通过系统h(n)=2(n+1)+3(n)-5(n-2)+2(n-3)+(n-4)的响应y(n)。
三、实验程序及解析(1)1、程序clear; close all;b=[1,sqrt(2),1];a=[1,-0.67,0.9];[h,w]=freqz(b,a);am=20*log10(abs(h));% am=20*log10(abs(h))为幅频响应取dBsubplot(2,1,1);%将窗口划分为2*1的小窗口并选择第一个显示plot(w,abs(h));xlabel('w');ylabel('幅频响应');title('系统响应')ph=angle(h);subplot(2,1,2); %选择第二个窗口显示plot(w,ph);xlabel('w');ylabel('相频响应');2、系统响应结果图1 因果系统的H(z)的系统响应3、结果分析分析z域系统的特性主要是由系统的零点和极点的分布得出结论的。