七年级上册数学教案设计5.4 应用一元一次方程——打折销售2
- 格式:doc
- 大小:28.50 KB
- 文档页数:5
5.4 应用一元一次方程——打折销售【教学目标】1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用. 2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力.【重难点预见】重点:用列方程的方法解决打折销售问题。
难点:用列方程的方法解决打折销售问题。
【教学流程】一、知识链接。
1.引例一件衣服标价是200元,现打7折销售。
问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.议一议:(1)、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”(2)、你是怎样理解某种商品打“六折”出售的?想一想:假如你是商店老板你追求的是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本×100% 3.算一算:(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;二、自主教学。
看课本p141—142内容,解决提出的问题。
例1 一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?解:设每件服装的成本价为X 元,(用含X 的代数式表示)那么 每件服装的标价为: ;每件服装的实际售价为: ;每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= .因此,每件服装的成本价是 元.例 2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1800元,那么这种商品的原价是多少元?解:设商品原价为X元,根据题意,得方程:;解方程,得:X= .因此,这种商品的原价是元.总结:用一元一次方程解决实际问题的一般步骤是什么:(2).设未知数X,并用X表示其它相关的量,根据等量关系列出方程.(3).解方程并验证结果的合理性。
北师大版七年级上册数学5.4《应用一元一次方程——打折销售》说课稿一. 教材分析《应用一元一次方程——打折销售》这一节的内容,是北师大版七年级上册数学的第五章第四节。
这部分内容是在学生已经掌握了方程的解法的基础上,引导学生运用一元一次方程解决实际问题,特别是打折销售问题。
教材通过具体的案例,让学生了解和掌握一元一次方程在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
二. 学情分析面对七年级的学生,他们在数学学习方面已经有了一定的基础,对于方程的解法已经有了一定的了解和掌握。
但是,对于如何将数学知识运用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生将理论知识与实际问题相结合,提高他们解决实际问题的能力。
三. 说教学目标1.知识与技能目标:学生能够理解打折销售的概念,掌握一元一次方程在打折销售问题中的应用。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:学生能够理解打折销售的问题模型,熟练运用一元一次方程解决打折销售问题。
2.教学难点:如何引导学生将实际问题转化为数学模型,并运用一元一次方程解决。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例教学法和小组合作学习法。
通过讲解打折销售的概念,让学生理解一元一次方程在实际问题中的应用;通过案例分析,让学生掌握解决打折销售问题的方法;通过小组合作学习,让学生在讨论中提高解决问题的能力。
六. 说教学过程1.导入:通过引入生活中的打折销售实例,激发学生的学习兴趣,引出本节课的主题。
2.讲解:讲解打折销售的概念,引导学生理解打折销售问题中的一元一次方程模型。
3.案例分析:分析具体的打折销售案例,让学生掌握解决打折销售问题的方法。
4.小组讨论:学生分组讨论,共同解决打折销售问题,提高学生解决问题的能力。
应用一元一次方程——打折销售本课数学内容的本质、地位、作用方程是刻画现实世界数量关系的有效模型,对方程的学习是初中数学学习的重要内容。
《应用一元一次方程——打折销售》选自北师大版七年级数学上册第五章第4节的内容,是学生学习了代数式、一元一次方程的解法后一个理论联系实际的最好教材,也是前一部份知识的应用与巩固。
所有列方程(如二元一次方程、分式方程、一元二次方程等)解应用题的大体方式和一元一次不等式的应用都与列一元一次方程解应用题的大体方式类似,因此这一节又是整个列方程解应用题和一元一次不等式的应用的重点。
列方程解应用题表现了现实世界中事物的彼此联系,学生从这些联系中看问题的同时也为尔后学习函数奠定了基础。
在能力方面,不管是逻辑思维能力、计算能力,仍是分析问题、解决问题的能力,都可在本节教学中得以培育和提高。
“打折销售”是列一元一次方程解决实际问题的一种题型,在市场经济社会中,它紧密联系社会实际,与人们的日常生活息息相关,因此又具有重要的现实意义。
本节课《应用一元一次方程——打折销售》在前面学习一元一次方程解法的基础上,通过结合生动有趣的实例,第一使学生了解打折问题中的一些大体量,如本钱价,标价,售价,打折率,利润,利润率等,找出这些量之间的经常使用等量关系,列出方程,进一步体会体会方程的模型思想,并总结出运用方程解决实际问题的一样步骤。
本节课通过生动的生活情境熟悉生活中的打折问题,并用所学知识来解决生活问题,进展学生的应用意识。
二、教学目标分析新课标要求体验从具体情境中抽象出数学符号的进程;探讨具体问题中的数量关系和转变规律;通过用方程表述数量关系的进程,体会模型思想,成立符号意识;能依照具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型;能依照具体问题的实际意义,查验方程的解是不是合理。
从心理特点来讲,初中时期的学生逻辑思维从体会型慢慢向理论型进展,观看能力,经历能力和想象能力也随着迅速进展。
5.4应用一元一次方程——打折销售考点:打折销售问题增长率问题知识点一 打折销售问题1、在商品销售问题中常出现的量:进价、售价、标价、利润、利润率等。
2、有关的关系式:①利润率;进价进价售价利润⨯=-= ②%100%100⨯-=⨯=进价进价售价进价利润利润率 ③利润率)(进价利润进价折扣价标价售价+⨯=+=⨯=110④10⨯=标价售价折扣价 注意:几折销售,若设x 折销售,则打折后的价格应该表示为打折前的价格乘x 的十分之一。
练习考查角度:利用一元一次方程解销售问题中的价格问题、折扣问题盈亏问题例题1 某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售。
请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标。
例题2 一件标价为250元的商品,若该商品按8折销售,则该商品的实际售价是?例题3 一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是?例题4 一件服装标价200元,若以6折销售,仍可获利20%,则这件服装进价是多少元?例题5 一商店把某种品牌的羊毛衫按标价的8折出售,仍可获利20%,若该品牌的羊毛衫的进价是每件100元,则标价是每件多少元?例题6 一家商店将某种服装进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价多少元?例题7 某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元,那这件衣服的进价为多少元?例题8 某件商品的进价是400元,标价为550元,按标价的8折出售,该商品的利润率是多少?例题9 已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?例题10 某商品的进价是200元,标价是300元,打折销售后的利润率为5%,此商品是按几折销售的?例题11 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打多少折?例题12 某商店将两台进价不同的豆浆机都卖了378元,其中一台盈利40%,另一台亏本20%,在这次买卖中,这家商店是盈利还是亏本?盈利或亏本多少元?思路:两台豆浆机共卖了378×2=756(元),是盈利还是亏本要看这家商店进这两台豆浆机时一共花了多少钱,进价高于售价就亏本,进价低于售价就盈利,所以首先要分别计算出这两台豆浆机的进价。
北师大版数学七年级上册5.4《应用一元一次方程——打折销售》说课稿一. 教材分析《应用一元一次方程——打折销售》这一节是人教版初中数学七年级上册第五章第四节的内容。
本节课的主要任务是让学生通过实例了解一元一次方程在实际生活中的应用,特别是在商品打折销售中的应用。
教材通过具体的案例,让学生学会建立一元一次方程,并求解方程,从而解决实际问题。
二. 学情分析学生在学习这一节内容之前,已经学习了有理数的运算、一元一次方程的解法等基础知识,对一元一次方程已经有了一定的理解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,因此,在教学过程中,需要引导学生如何将实际问题转化为一元一次方程,并让学生体会数学在实际生活中的应用。
三. 说教学目标1.知识与技能目标:让学生通过实例,了解一元一次方程在商品打折销售中的应用,学会建立一元一次方程,并求解方程。
2.过程与方法目标:通过解决实际问题,培养学生的数学建模能力,提高学生解决实际问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生学会建立一元一次方程,并求解方程,解决实际问题。
2.教学难点:如何引导学生将实际问题转化为数学问题,体会数学在实际生活中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,让学生在解决问题的过程中,学会建立一元一次方程,并求解方程。
2.教学手段:利用多媒体课件,展示商品打折销售的实例,引导学生直观地理解一元一次方程在实际中的应用。
六. 说教学过程1.导入:通过展示商品打折的实例,引导学生思考如何计算打折后的价格,从而引出一元一次方程的应用。
2.新课导入:介绍一元一次方程在商品打折销售中的应用,引导学生学会建立一元一次方程。
3.案例分析:分析具体的商品打折销售案例,让学生理解一元一次方程的建立和解法。
4.练习巩固:让学生通过练习,巩固所学的一元一次方程的解法。
导学案主备人:学案执行人:时间:年月日教材在教学过程设计设计者:班级: 姓名: 时间:一、复习铺垫1.把下面的“折扣”数改写成百分数。
九折八八折七五折2.你是怎样理解某种商品打“八折”出售的?二、创设情境,问题导入。
1 看教材P187页的图,尝试解决问题2. 你是怎样理解商品的利润?三、新知探讨1.你认为商品的标价、打折数与商品的售价之间有怎样的关系?2.练习(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?(2)一种画册原价每本16元,现在按每本11.2元出售。
这种画册按原价打了几折?(3)、为庆祝“六一儿童节”,某书店所有儿童读物一律八折优惠,小明花了24元买了一套读物,请问这套读物原价是多少?(4)一家商店将某种服装按成本价提高40%后卖出,已知每件服装的成本价是125元,每件服装获利多少?3.一家商店将某种服装按成本价提高40%后标价,又以8 折优惠卖出,结果每件仍获利15如果设每件服装的成本价为x元,根据题意,(1)每件服装的标价为:()(2)每件服装的实际售价为:()(3)每件服装的利润为:()(4)列出方程,并解答:()自我评价:小组评价:《5.4打折销售》问题训练拓展——评价单设计者:班级: 姓名: 时间:一、算一算:1.原价100元的商品打8折后价格为元;2.原价100元的商品提价40%后的价格为元;3.进价100元的商品以150元卖出,利润是元,利润率是;4.原价X元的商品打8折后价格为元;5.原价X元的商品提价40%后的价格为元;6.原价100元的商品提价P %后的价格为元;7.进价A元的商品以B元卖出,利润是元,利润率是。
二、应用题:1.一件衣服标价是200元,现打7折销售。
问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,3.某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25 %,第二件亏损25 %,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算?4.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?自我评价:小组评价:教师评价。
七年级上册数学教案设计5.4 应用一元一次方程
——打折销售2
七年级上册数学教案设计5.4 应用一元一次方程——打折销售2
5.4 应用一元一次方程——打折销售
教学目标
1.理解成本、售价、利润、利润率之间的数量关系,并能复述。
2.能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。
3.通过调查,体验和分析,充分感受身边的数学,尝试用数学的眼光分析生活中的打折现象,理性消费。
4.会从问题情境中探索等量关系,经历和体验运用一元一次方程解决实际问题的过程,培养抽象、概括、分析问题、解决问题的能力。
教学重难点
能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。
教学过程设计:
一情景引入
二、活动探究
根据调查了解到的有关商品打折销售实际,解答学生自己编拟的题目.
学生编题选:
1.一件商品原价为120元,按八折(即原价的80%)出售,则现售价应为元。
2.某件商品进价是270元,八折销售可获利润50元,则原售价为元。
3.某商品的进价是1530元,若按商品标价的九折出售,利润率是15%。
求该商品的标价。
4.某老板先把一件商品按成本提高50%后标价,再打八折销售,售价为600元,这种商品的成本是多少?商家的利润为多少元?
5.某商场售货员同时卖出两件衣服,每件都以135元售出,若按成本计算,其中一件盈利25%,另一件亏损25%,问这次售货员是赔了还是赚了?
(这里选了四人小组中比较有代表性的五道题,学生们都准备得很充分。
)
设置了比教科书更开放的问题。
实际生活中的数学问题往往可以有不同的方案,通过小组合作的形式,每个学生都有机会提出自己的解题方案,都有可能获得成功的体验。
同时又分享别人的解题方案,共同讨论不同方案的优缺点,这对于发展学生的解题思路、增强学生的自信心、培养创造性思维十分有利。
实际效果:
学生经过研究后回答了对方编写的题目。
答题的过程充分表现出他们对这类问题的胸有成竹,教学过程很顺利.
三、讲授例题,规范过程
例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠销售,结果仍获利15元,这种服装每件成本是多少元?
教师可出示表格,让学生尝试用填写表格的形式理清数量之间的关系。
如果设每件服装的成本价为x元
例2.某商场将某种商品按原价的八折出售,此时商品的利润率是10%。
此商品的进价为1800元,那么商品的原价是多少?
目的:
这两道题的分析是重点,在此过程中,首先让学生分小组读题,讨论,思考题目的已知和未知,考虑思路,在学生遇到困难时,教师给予适当的指导,并注意分析和综合两种分析方法的应用,先用分析法。
由未知找已知,执果索因;再用综合法由已知找未知,由因导果。
这样有利于解决学生“不知如何思考”的问题,提高解题能力。
实际效果:
两道例题,第一道题师生共同分析,第二道题学生自己分析。
部分学生在运用方程解答问题时,等量关系的寻找还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。
四、课堂小结
这节课我们学习了有关打折销售的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。
提示学生通过对《日历中的方程》《我变高了》以及本节《打折销售》学习还有以往经验,让学生分组讨论,用一元一次方程解决实际问题的一般步骤是什么?
让学生进一步体会方程的作用,这里教师又提到学生的小学学习,目的是想提示学生,将今天的方程解法与小学学过的算术方法相对比。
此活动的目的是使学生不再处于被动状态,而成为积极的发现者。
学习活动效果:
通过交流学生认识到列表分析问题的好处,发现打折销售中的一些规律,并感受到运用方程解决实际问题的优势。
充分体现了数学课堂由单纯传播知识的殿堂转变为学生主动从事教学活动,构建自己有效的数学理念的场所。
五、布置作业
习题第2、3、4题。