计算地球物理课件 第3章 电磁场数值模拟
- 格式:pptx
- 大小:9.57 MB
- 文档页数:47
电磁场的数值模拟方法引言电磁场的数值模拟方法是一种在工程和科学领域中广泛应用的技术。
通过数学模型和计算方法,可以模拟和分析电磁场的行为和特性。
本文将介绍电磁场数值模拟的基本原理和常用方法。
电磁场模拟的重要性电磁场在许多领域中起着重要作用,包括电子设备设计、电力系统分析、天线设计等。
通过模拟电磁场,我们可以更好地理解和优化系统的性能。
同时,由于电磁场的方程通常是非线性的,无法得到解析解,因此数值模拟方法是求解电磁场问题的主要手段之一。
电磁场的基本方程电磁场可以用麦克斯韦方程组描述,包括麦克斯韦方程和洛伦兹力方程。
对于静电场和静磁场问题,可以根据静态麦克斯韦方程进行求解。
而对于时变场问题,需要考虑到电磁波的传播,可以利用时域或频域的电磁波方程进行求解。
有限差分法有限差分法是求解偏微分方程的常用离散化方法之一。
对于电磁场的数值模拟,可以将空间离散化为一系列网格点,并用差分方式求解电磁场的方程。
常见的有限差分法包括有限差分时间域法(FDTD)和有限差分频域法(FDFD)等。
有限差分时间域法 (FDTD)有限差分时间域法是一种广泛应用于求解时变电磁场问题的数值方法。
它将空间和时间离散化,并通过迭代的方式求解电磁场的时变行为。
在FDTD方法中,电场和磁场分别通过麦克斯韦方程的差分形式进行更新。
由于FDTD方法是一种显式的时间离散方法,因此对时间步长有一定的限制,需要满足稳定性条件。
有限差分频域法 (FDFD)有限差分频域法是一种用于求解频域电磁场问题的数值方法。
它通过将时间域的麦克斯韦方程转化为频域来进行求解。
在FDFD方法中,电场和磁场的空间表达式被离散为一系列频域的谐波,通过求解谐波的耦合方程组来得到电磁场的分布。
相比于FDTD方法,FDFD方法需要耦合求解大规模的线性方程组,计算量较大,但对于频域分析更为适用。
有限元法有限元法是一种用于求解偏微分方程的数值方法,广泛应用于结构力学、电磁场、流体力学等领域。
湖北工业大学研究生考试答题纸考试科目工程电磁场数值计算研究生姓名陈天丽学号120130104任课教师邹玲教授学院、专业电气与电子工程学院成绩二0一四年6 月19日《工程电磁场数值计算》课程学习总结这一学期的工程电磁场数值计算学完了,在老师的教导下以及与同学的课堂交流中我学习了很多很多东西,接下来我将从以下七个方面来总结以下这一学期我们学习的东西。
1.高斯消元法 1.1高斯消元法概念高斯消除法是求解线性代数方程组最古老的方法之一。
它不仅容易在计算机上实现,同时,又是构造其他方法的基础。
基本思想:按序逐次消去未知量,把原来的方程化为等价的三角形方程组,或者说,用矩阵行的初等变换将系数矩阵A 约化为简单三角形矩阵;然后按相反方向顺序向上回代求解方程组。
一.下面以一个例子来说明高斯消除法的计算过程。
123123123234 6 (1)352 5 (2)433032 (3)x x x x x x x x x ⎧++=⎪++=⎨⎪++=⎩ 将上述方程写成矩阵形式23463525433032⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(1)以第一行为基底,消元:12121132*==k k k 131311422*===k k k (2)第二行减去第一行乘以12*k21211112332()02**=+∙=+⨯-=k k k k222212123153()22**=+∙=+⨯-=k k k k23231312324()42**=+∙=+⨯-=-k k k k221312356()42**=+∙=+⨯-=-p p k k(3)同理,第三行减去第一行乘以13*k31311113442()02**=+∙=+⨯-=k k k k32321213433()32**=+∙=+⨯-=-k k k k333313134304()222**=+∙=+⨯-=k k k k331334326()202**=+∙=+⨯-=p p k p变形后矩阵变为234600.544032220⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦(4)同理,以第二行为基地,消元:232322360.5*-===-k k k 323212233(3)0.5()00.5**=+∙=--⨯-=k k k k 33331313322(4)()20.5**=+∙=--⨯-=-k k k k331323320(4)()40.5**=+∙=--⨯-=-p p k k再次变形后的矩阵为234600.544004﹣﹣﹣2﹣⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦对应的方程为1232340 (1)++=x x x 230.54 4 (2)-=-x x 32 4 (3)-=-x解得3212813x x x ⎧=⎪=⎨⎪=-⎩二.有限元的方程组的求解方法归纳:13121110112223202122001020300n n n n n n n n n k k p k k p k k k k p k k k k ϕϕϕ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦高斯法如下:以第一行为基底消元:11ij ijp p k *=1111j jk k k *=第二 行减去第一行乘12k *第n 0行减去第一行乘01n k *同理有如下通式111111ii i i i p p p k p p k k **=-∙=-∙111111j ij ij j jij i k k k k kk k k **=-∙=-∙1.2列主元消除法一.基本实例 二.基本思想 给出增广矩阵111211,1212222,112,1a ,b =n n n n n n nnn n a a a a a a a A aa a a +++⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦用增广矩阵表示方程组,在增广矩阵上进行计算,其计算步骤是: (1) 选1,111a max i i i na ≤≤=,交换第1行和第1i ,然后进行消元得,()()()()()()()()()()()()()()111111121n 1,1111111212222,11111n12,1a ,b =n n n n nn n n a a a a a a a A a a a a +++⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦(2) 选()21,1i22a max i i n a ≤≤=,交换第2行和第2i ,然后进行消元,得()()22,b A ⎡⎤⎣⎦依次类推,每次消元前都要换行取最大的列元素为主元 三.列主元消去法技巧和注意在消元过程中适当选取主元素是十分必要的。