上海大学高等数学
- 格式:pdf
- 大小:763.02 KB
- 文档页数:12
上海大学插班生高等数学A基本要求1、函数、极限、连续(1)、理解函数的概念,掌握函数的表示方法(2)了解函数的奇偶性、单调性、周期性和有界性(3)理解复合函数的概念,了解反函数及隐函数的概念。
会建立简单函数关系式(4)掌握基本初等函数的性质和图形(5)理解极限的概念,了解分段函数的极限(6)掌握极限四则运算法则,掌握利用两个重要极限求极限的方法。
(7)掌握极限存在的二个准则,并会利用它们求极限(8)理解无穷小、无穷大以及无穷小的阶的概念,会利用等价无穷小求极限1(9)理解函数连续性的概念,会判断函数间断点的类型(10)了解初等函数的连续性和闭区间上的连续函数的性质,并会应用这些性质2、导数与微分(1)理解导数的概念导数的几何意义和物理意义,函数的可导性与连续性之间的关系(2)掌握导数的四则元算法则和复合函数的求导法,掌握基本初等函数的导数公式。
会求分段函数的一阶二阶导数(3)了解高阶函数的概念,会求简单的函数的n阶导数,掌握初等函数的二阶导数的求法(4)会求隐函数和参数方程所确定的函数的一、二阶导数。
(5)了解微分的概念和四则运算(6)会用导数描述一些简单的物理量3、中值定理与导数的应用(1)理解并会应用罗尔定理、拉格朗日定理,利用定理能求方程的根、证明不等式。
了解柯西定理(2)理解函数的极值概念,掌握用导数判别函数的单调性和求函数极值的方法(3)会用导数描绘图形(4)会求MAX、MIN的应用问题(5)掌握洛必达法则求未定式极限的方法(6)了解曲率,曲率半径的概念,并会计算(7)了解求方程近似解的二分法和切线法4、不定积分(1)理解原函数的概念,理解不定积分的概念及性质(2)掌握不定积分的基本公式、换元法、分部积分法5、定积分及其应用(1)理解定积分的基本概念,定积分的中值定理(2)理解变限函数及其求导定理,掌握牛顿—莱布尼兹公式(3)掌握定积分的性质及换元积分法和分部积分法(4)了解定积分的近似计算方法(5)掌握定积分在几何上的应用,和物理上的应用(6)了解广义积分的概念,会计算广义积分6、级数(1)理解常数项级数收敛与发散的概念、收敛级数和的概念,掌握级数的基本性质及收敛的必要条件(2)掌握几何级数、P—级数的收敛性(3)掌握正向级数的判别法(4)会用交错级数的莱布尼兹判别法(5)了解无穷级数绝对收敛与条件收敛的概念,及两者之间的关系(6)了解函数项级数的收敛域和函数的概念(7)掌握幂级数的收敛半径,收敛区间及收敛域的求法(8)了解幂级数在收敛区间内的一些基本性质,会求一些幂级数在收敛区间内的和函数,并会由此求出某些数的项级数的和(9)了解泰勒公式、泰勒级数,掌握的麦克劳林展开式,会用它们将一些简单函数展开幂级数(10)了解幂级数在近似计算中得到简单应用(11)了解傅立叶级数的概念及函数展开成傅立叶级数的狄利克莱定理(12)会将定义在上函数展开为傅立叶级数,会将定义在上的函数展开为正弦与余弦级数、会些出傅立叶级数的和表达式7、向量代数与空间解析几何(1)理解向量的概念及其表示(2)掌握向量的运算,了解两向量垂直、平行的条件。
高等数学(同济第七版)上册-知识点总结第 1 章 函数与极限一. 函数的概念1. 两个无穷小的比较设lim f (x ) = 0, lim g (x ) = 0 且lim f (x ) = l g (x )(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[ g (x ) ],称g(x) 是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2. 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x , arcsin x ~ x , arccos x ~ x ,1− cos x ~ x ^2 / 2 , e x −1 ~ x , ln(1+ x ) ~ x , (1+ x ) -1~ x二.求极限的方法1. 两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若lim g (x ) = A , lim h (x ) = A ,则lim f (x ) = A2. 两个重要公式公式 1 lim sin x = 1x →0 x公式 2 lim(1+ x )1/ x = e x →03. 用无穷小重要性质和等价无穷小代换4. 用泰勒公式当 x → 0 时,有以下公式,可当做等价无穷小更深层次2 3 n 3 5 2 4 e x = 1+ x + x + 2! x +... + 3! x + o (x n ) n ! sin x = x - x +3!x +... + (-1)n 5!x 2n +1 (2n +1)! + o (x 2n +1 ) cos x = 1- x + 2! x +... + (-1) 4!n x 2n 2n ! + o (x 2n )ln(1+ x ) = x - x 2 + x 3 3... + (-1) n +1 x n n + o (x n ) (1+ x ) = 1+x +(-1) x 2 +... + (-1)...(- (n -1)) x n + o (x n ) arctan x = x - x 3 + x 5 5 2! -... + (-1) n +1x 2n +1 2n +1 n ! + o (x 2n +1 ) 5. 洛必达法则定理 1 设函数 f (x ) 、 F (x ) 满足下列条件:(1) lim f (x ) = 0 , lim F (x ) = 0 ;x → x 0 x → x 0(2) f (x ) 与 F (x ) 在 x 0 的某一去心邻域内可导,且 F '(x ) ≠ 0 ; (3) lim f '(x ) 存在(或为无穷大),则lim f (x ) = lim f '(x ) x → x 0 F '(x ) x → x 0 F (x ) x → x 0 F '(x ) 这个定理说明:当limf '(x ) 存在时, lim f (x ) 也存在且等于lim f '(x ) ; x → x 0 F '(x ) x → x 0 F (x ) x → x 0 F '(x ) 当lim f '(x ) 为无穷大时, lim f (x ) 也是无穷大.x → x 0 F '(x ) x → x 0 F (x )这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达( L 'H ospital )法则.∞ 型未定式∞定理 2 设函数 f (x ) 、 F (x ) 满足下列条件:(1) lim f (x ) = ∞ , lim F (x ) = ∞ ;x → x 0 x → x 0 (2) f (x ) 与 F (x ) 在 x 0 的某一去心邻域内可导,且 F '(x ) ≠ 0 ; (3) lim f '(x ) 存在(或为无穷大),则 lim f (x ) = lim f '(x )x → x 0 F '(x )x → x 0 F (x ) x → x 0 F '(x ) 注:上述关于 x → x 0 ∞ 型同样适用.∞时未定式∞型的洛必达法则,对于 x → ∞ 时未定式 ∞ 使用洛必达法则时必须注意以下几点: (1) 洛必达法则只能适用于“ 0 ”和“ ∞ ”型的未定式,其它的未定式须 0 ∞2 30 先化简变形成“ 0 ”或“ ∞”型才能运用该法则; 0 ∞(2) 只要条件具备,可以连续应用洛必达法则;(3) 洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6. 利用导数定义求极限基本公式lim ∆x →0 f (x 0 + ∆x ) - f (x 0 ) = ∆xf ' (x ) (如果存在) 7. 利用定积分定义求极限1 n k 1基本格式lim n ∑ f ( n ) = ⎰ f (x )dx (如果存在) n →∞ k =1 03. 函数的间断点的分类函数的间断点分为两类:(1) 第一类间断点设 x 0 是函数 y = f (x )的间断点。
值此上海大学数学系建系50周年之际,我们搜集整理了数学系部分教授,副教授,讲师的经典语录,与大家共同怀念曾经的经典时光。
持续更新补充中,希望大家群策群力,把这份经典语录不断充实完善。
希望大家能够积极留言!精彩开始了!!王卿文(授课:高等代数)1、华罗庚老先生说过一句话:把厚书读薄,把薄书读厚。
2、普林斯顿号称“数学家的摇篮”。
它们的理念是:把孩子扔进水里。
3、我一直想要写一本书,就是没时间。
(过段时间):我一直想出本书,写好了,就是没时间印刷出版邬冬华(授课:数学模型,博弈论)1、我可以告诉你(这句是口头禅),我侄子智商不高,应该说不如在坐的同学,他靠的就是努力,我可以告诉你……2、我可以告诉你,我前几届有一个学生,现在在哥伦比亚大学,你们不相信我下次可以把他发给我的邮件给你们看下,我可以告诉你,他在那里,早上4点钟,图书馆里坐满了人,他在那里一天就睡4个小时。
3、我可以告诉你,我的小舅子,当年中学的时候参加数学竞赛什么的,全国都获过奖,当年上海中学10个公派出国的,现在在美国**大学里面,我可以讲,他就是勤奋出来的。
4、我可以告诉你们,这个世界上哪里有这么多的天才,每个人的能力都是在(ε,δ)之间的,如果你真正遇到了天才,那你就要小心了!!5、我可以告诉你们,现在中国的学校,就是一批愚蠢的老师去教聪明的学生,然后把学生教蠢了。
这批学生,蠢一点的出国留学,更蠢一点的就去当老师,再去教聪明的学生,然后把学生教蠢了。
6、我考试范围就是上课讲过的和没讲过的。
王远弟(授课 数学分析)1、你看那个xx,人家小姑娘,人又长的漂亮,作业也写的工整。
2、考试题早就出好了,就在我办公室的抽屉里。
3、你们要看着我!看着我就知道xx定理了。
4、在数分课堂这么神圣的地方怎么能发出剪指甲这种不和谐的声音呢?5、考试不要作弊,千万不要心生邪恶的念头!许凤良(传说上大最受欢迎的高数名师,上大理科“龙凤虎”中的凤。
已退休!授课:高等数学,数学分析 )1、数分课,一同学没做作业,借同学一建平中学的作业本抄好后交了上去。
⼀、申请课程学分转移(免修免考)规定总则 国家承认学历的专科以上(含专科)毕业⽣及肄业⽣、结业⽣(⾮学历结业⽣除外)可申请免修免考相同层次、相同名称、学时相当的课程(即承认并转移学分)。
1、申请课程免修免考者须出具正本证明材料:毕业(肄业、结业)证书及原学校教务处开具的课程名称、学时数及原始成绩证明;⾃学考试单科合格证书。
2、在整个学习期间申请免修免考的课程⼀般不得超过教学计划规定课程总学分的三分之⼀,且每学期不超过两门课程。
3、申请免修免考的课程只能是第⼀次修读的课程(即:再次修读课程不得申请免修免考)。
4、申请免修免考者经审核批准后,承认并转移相关课程的学分,但不减免学费。
⼆、申请课程学分转移或免听课的程序 1、办理课程学分转移(即免修免考) 每学期开学第⼀周:凡符合本规定的学⽣,可通过班主任向办学学院成教办公室提出免修免考书⾯申请,填写“上海⼤学成⼈学历教育学⽣免修免考申请单”,提供必要的正本证明材料,交原件及复印件各⼀份。
办学学院成教办公室指定专⼈审核,审核后原件返还学⽣本⼈,收取复印件,在复印件上注明“已验证”、签名并注上⽇期。
开学第⼆周的第三天前:办学学院成教办公室汇总“免修免考申请单”与证书复印件,送所在校区成教院分部审核批准(校区外办学点由办学学院成教办公室审核批准)。
开学第三周末:办学点所在校区成教院分部公布获准免修免考的学⽣名单。
注:“免修免考申请单”上有“不参加考试”与“参加考试”两个单选框。
学⽣若认为课程免修免考转换成绩偏低[成绩转换标准详见本规定“三、课程学分转移(免修免考)的成绩登录规定”],依然愿意参加课程的期末考试,则须在“免修免考申请单”上“参加考试”栏⽬的单选框内选择打勾,凡不选或多选的⼀律默认为“不参加考试”。
2、办理课程免听课 每学期开学第⼀周务必要求免听课的考⽣填写“上海⼤学成⼈学历教育学⽣免听课申请单”。
3、关于课程免听课的规定 已取得以下合格证书者六年内(含六年)可免听课、免考勤,但不免考试: (1)⾃学考试“计算机应⽤基础”单科合格证书。
《高等数学教程》习题答案第一章 习题1-1 (A)1.(1)),2()2,1()1,(+∞⋃⋃-∞ (2)]1,0()0,1[⋃-(3)),1()1,1()1,(+∞⋃-⋃--∞ (4)πk x ≠且),2,1,0(2 ±±=+≠k k x ππ(5)),2,1,0()352,32( ±±=++k k k ππππ(6)]3,1[- 2.202)(6,916,6h x +++3.0,22,22,215.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数(6)当)(x f 为奇函数或偶函数时,该函数为偶函数;当)(x f 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数 6.(1)是周期函数,π2=T (2)是周期函数,4=T(3)是周期函数,4=T (4)不是周期函数7.(1)acx b dx y-+-=(2)2arcsin31x y=(3)21-=-x e y (4)xxy -=1log2(5)2xx ee y --=8.(1)2,xa u u y-==(2)2,xue y u ==(3)cos ,lg ==u u y (4)xv tgv u u y 6,,2===(5)21,,cos ,xw e v v u arctgu yw-====(6)22,ln ,ln ,xw w v v uu y ====9.(1)]1,1[- (2) zk k k ∈+])12(,2[ππ (3)]1,[a a --(4)若210≤<a ,则]1,[a a D -=;若21>a,则=D Ф.10.4)]([xx =ϕϕ,xx 22)]([=ψψ,x x 22)]([=ψϕ,22)]([x x =ϕψ.11.1,4-==b a12.⎪⎩⎪⎨⎧>-=<=0,10,00,1)]([x x x x g f ,⎪⎪⎩⎪⎪⎨⎧>=<=-1,1,11,)]([1x e x x e x f g13.)20(,])2([22r h h rh V <<-=π14.πααπααππ20,4)2(242223<<--=rV15.),2(,])[(32232+∞--=r r r h hr Vπ16.(1)⎪⎩⎪⎨⎧≥<<⋅--≤≤=1600,751600100,01.0)100(901000,90x x x x p(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600,151600100,01.0311000,30)60(2x x x x x x x x p p(3)21000=p (元)习题1-1 (B)1.)(x f 为偶函数.2.41)1(,2)(222-+=--=xx xx f x x f3.⎩⎨⎧≥<=0,0,0)]([2x x x x g f ,⎩⎨⎧≥<=0,0,0)]([2x x x x f g4.22123xx ++8.⎩⎨⎧-≤-<<--=-1,101,1)(x x e x f x9.]0,(,)1ln()(-∞-=x x g10.奇函数,偶函数,偶函数,偶函数. 12.1)2005(=f习题1-2 (A)1.(1)121+n ,0 (2)11)1(1+-+n n ,0(3)2+n n ,1 (4)1)1()1(+-⋅+n n ,没有极限(5)222)1(1)1(2)1(1+++++++n n n n ,21(6)2)2)(1()1(++-n n ,没有极限.2.(1)17; (2)24; (3)]3[ε3.0,]1[ε习题1-3 (A)3.0002.0=δ4.397≥Z6.1)(lim )(lim==+-→→x f x f x x ,1)(lim 0=→x f x1)(lim-=-→x x ϕ,1)(lim 0=+→x x ϕ,)(lim 0x x ϕ→不存在.习题1-4 (A)3.(1)0; (2)0; (3)04.0lim 1=-→y x ; ∞=→y x 1lim 习题1-4 (B)3.x x ycos =在),(+∞-∞上无界,但当+∞→x 时,此函数不是无穷大.5.当1,0==b a 时,)(x f 是无穷小量; 当b a ,0≠为任意实数时,)(x f 是无穷大量.习题1-5 (A)1.(1)0; (2)1; (3)1; (4)103;(5)231aa -; (6)23x ; (7)34; (8)1-.2.(1)43-; (2)0; (3)∞; (4)41-;(5)503020532⋅; (6) 41-.3.(1)⎪⎩⎪⎨⎧>-=<<1,11,010,1a a a ; (2)3; (3)34; (4)21-4.(1)10; (2)2)(m n mn -; (3)nm ; (4)0;(5)0; (6)21; (7)43; (8)21.习题1-5 (B)1.(1)2; (2)21-; (3)561-; (4)2)13(2-a(5)23; (6)⎪⎩⎪⎨⎧<∞=>2,2,12,0k k k ; (7)2; (8)0 .2.1,1-==βα3.9=a4.1,1-==b a5.不一定.习题1-6 (A)1.(1)2; (2)3; (3)21; (4)-1; (5)a cos ;(6)2π; (7)1; (8)2; (9)1; (10)x .2.(1)1-e ; (2)2e ; (3)2-e ; (4)2-e ; (5)1-e ; (6)2e .习题1-6 (B)1.(1)21; (2)π2; (3)1; (4)0;(5)0; (6)1; (7)0; (8)1-e . 2.(4)3; (5)251+.习题1-7 (A)1. 当0→x 时,34xx -比32xx +为高阶无穷小.2. (1)同阶,但不是等价; (2)同阶,且为等价.3.21=α4.m =α6.(1)23;(2)⎪⎩⎪⎨⎧>∞=<n m n m n m ,,1,0; (3)21;(4)21; (5)ba ; (6)41.习题1-7 (B)1.(1)32; (2)2e; (3)21; (4)0;(5)1; (6)41-; (7)∞; (8)1.5.xx x x p 32)(23++=.6.a A ln .习题1-8 (A)1.1=a2.)(x f 在0=x 处连续3.(1)1=x为可去间断点,补充2)1(-=f2=x 为第二类间断点(2)0=x 和2ππ+=k x 为可去间断点,补充0)2(,1)0(=+=ππk f f ;)0(≠=k k x π为第二类间断点.(3)1=x 为第一类间断点(4)0=x 为第二类间断点. 4.(1)1=x为可去间断点,补充32)1(=f ; (2)0=x 为可去间断点,补充21)0(=f ;(3)1=x 为可去间断点,补充2)1(π-=f ;0=x 为第二类间断点;(4)2=x 为可去间断点,补充41)2(=f ;0=x 为第一类间断点;2-=x 为第二类间断点.(5)0=x 为第一类间断点; (6)a x =为第一类间断点; (7)1=x为第一类间断点; (8)1-=x 为第二类间断点.习题1-8 (B)1. 1±=x 为第一类间断点.2. 1,0==b a3. 25=a4.),2,1,0(22 ±±=-=n n a ππ5. (1)当1,0≠=b a 时,有无穷间断点0=x ; (2)当e b a =≠,1时,有无穷间断点1=x.习题1-9 (A)1.连续区间为:),2(),2,3(),3,(+∞---∞21)(lim 0=→x f x ,58)(lim3-=-→x f x ,∞=→)(lim2x f x .2.连续区间为:),0(),0,(+∞-∞.3. (1) -1; (2) 1; (3) h ; (4) -1; (5) 22-; (6) -2; (7) 1; (8) 1;(9) ab; (10) 5e; (11) -1; (12) 2.4. 1=a5.1=a习题1-9 (B)1. (1)0=x 为第一类间断点; (2)1-=x 为第一类间断点; (3)0=x 为第一类间断点; (4)1±=x 为第一类间断点;(5)无间断点. 2.1,0==b a3. (1)1-e ; (2)21-e ; (3)a e cot ; (4)0; (5)0; (6)-2; (7)21; (8)82π.4.21总复习题一一. 1. D 2. D 3. D 4. B 5. C 6. D 7. D 8. C 9. D 10. D 二.1. ⎪⎩⎪⎨⎧≥<-=-0,0,)(22x x x x x x f 2.]2,2[,)1arcsin(2--x3. -14. 必要,充分5. 必要,充分6. 充分必要7. 21 8. b a =9.5610. 第二类,第一类 三. 1. 11)(-+=x x x ϕ 2. 20051,20052004=-=βα3.1lim =∞→n n x4. 45. 4e6. -507.aln 218. 当0≤α时,)(x f 在0=x 处不连续;当1,0-=>βα时,)(x f 在0=x 处不连续; 当1,0-≠>βα时,)(x f 在0=x 处不连续.9.82-部分习题选解 习题1-2 (B)1. 根据数列极限的定义证明:(1))0(1lim时>=∞→a a nn 证明:(ⅰ) 0>∀ε当1>a 时,令)0(1>+=n n n h h a nnn n n nn nh h h n n nh h a>++-++=+=∴ 22)1(1)1(εεan na h n><<<∴0 ∴取1][+=εaN ,当Nn >时,有ε<<=-na h a n n1,即1lim=∞→nn a(ⅱ)当1=a时,显然成立.(ⅲ)当10<<a 时,令11>=a b∴11limlim==∞→∞→nn nn ab∴1lim=∞→nn a综合(ⅰ),(ⅱ),(ⅲ),∴当0>a时,有1lim=∞→nn a .习题1-6 (B)3.设0,00>y x ,nn n y x x =+1,21nn n y x y+=+.证明:n n n n y x ∞→∞→=lim lim证明:2nn n n y x y x +≤),2,1,0(011 =≤≤∴++n y x n nnnn nn n n n n n n n y y y y x y x x x y x x =+≤+==≥=∴++2211),2,1,0( =n由此可知数列}{n x 单调增加,数列}{n y 单调减少, 又011110y y y y x x x x n n n n ≤≤≤≤≤≤≤≤≤++∴}{n x 与}{n y 都是有界的.由“单调有界数列必有极限”准则, ∴}{n x ,}{n y 都收敛.设b y a x n n n n ==∞→∞→lim ,lim由21nn n y x y +=+,2limlimnn n n n y x y +=∴∞→∞→b a b a b =⇒+=∴2即n n n n y x ∞→∞→=lim lim.习题1-10 (B)3.设函数)(x f 在]1,0[上非负连续,且0)1()0(==f f ,试证:对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.证明:令)1,0(,)()()(∈∀+-=l l x f x f x F)(x f在]1,0[上连续,)(l x f +在]1,[l l --上连续,)(x F ∴在]1,0[l -上连续. 又)1()1()1()1(0)()()0()0(≥-=--=-≤-=-=l f f l f l F l f l f f F )0)((≥x f0)1()0(≤-⋅∴l F F (ⅰ)若0)0(=F ,取0=x ,即)()0(l f f =(ⅱ)若0)1(=-l F ,取lx -=10,即)1()1(f l f =-(ⅲ))01(,0)0(≠-≠l F F 0)1()0(<-⋅∴l F F 由零点存在定理,必存在一点]1,0[0l x -∈,使0)(0=x F , 即)()(00l x f x f +=.综合(ⅰ),(ⅱ),(ⅲ),对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.总复习题一三.11.设)(x f 在],[b a 上连续,且)(x f 在],[b a 上无零点. 证明)(x f 在],[b a 上不变号.证明:(反证法)假设)(x f 在],[b a 变号,即],[,21b a x x ∈∃,使0)(,0)(21<>x f x f 即0)()(21<⋅x f x f)(x f 在],[b a 上连续,∴)(x f 在],[21x x 上连续.由零点存在定理知,),(),(21b a x x ⊂∈∃ξ,使0)(=ξf 即ξ是)(x f 在],[b a 上的一个零点. 这与)(x f 在],[b a 上无零点矛盾, )(x f ∴在],[b a 上不变号.。
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()2arcsin 1x x'=- ⒁()2arccos 1x x'=-⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+ ⒄()1x '= ⒅2x x'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾2arcsin 1x c x=+-八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+22ln x x a c =±+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
同济大学的《高等数学》教材是一部经典的数学教材,其中关于多元函数的泰勒展开是数学学习者所必须掌握的重要内容。
本文将从多元函数泰勒展开的基本概念、公式推导和具体实例分析三个方面来详细介绍该内容。
一、多元函数泰勒展开的基本概念1.1 多元函数的概念多元函数是指自变量不止一个的函数,通常表示为$f(x_1, x_2,\cdots, x_n)$,其中$x_1, x_2, \cdots, x_n$为自变量,$f$为因变量。
在实际问题中,常常遇到多个自变量同时改变而导致因变量发生变化的情况,所以研究多元函数的泰勒展开对于理解函数的性质和应用具有重要意义。
1.2 泰勒展开的定义若函数$f(x)$在某点$x=a$处有各阶导数,那么$f(x)$在点$x=a$处可以展开为以$a$为中心的幂级数,即泰勒展开式:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)(x-a)^2}{2!}+\cdots+\frac{f^{(n)}(a)(x-a)^n}{n!}+R_n(x)$$其中$R_n(x)$为泰勒余项。
1.3 多元函数的泰勒展开对于多元函数$f(x_1, x_2, \cdots, x_n)$,若其各阶偏导数在点$(a_1, a_2, \cdots, a_n)$处存在,那么可以利用多元函数的偏导数来推广泰勒展开式,得到多元函数的泰勒展开式:$$f(x_1, x_2, \cdots, x_n)=f(a_1, a_2, \cdots,a_n)+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(a_1, a_2, \cdots, a_n)(x_i-a_i)$$$$+\sum_{i=1}^n\sum_{j=1}^n\frac{\partial^2 f}{\partialx_i\partial x_j}(a_1, a_2, \cdots, a_n)(x_i-a_i)(x_j-a_j)+\cdots+R_n(x)$$其中$R_n(x)$为多元函数的泰勒余项。
高等数学教程上海大学教材高等数学是大学理工科专业中的重要课程之一,对于培养学生的逻辑思维能力、抽象思维能力和问题解决能力具有重要意义。
上海大学作为国内知名高校之一,其高等数学教材展现了该校在数学教育方面的专业水平和丰富经验。
本文将对上海大学的高等数学教程进行简要介绍。
一、教材概况上海大学的高等数学教材是经过多年教学积累和教师精心编写的产物。
该教材以系统性、全面性和可读性为主要特点,涵盖了大学高等数学的各个重要分支,如极限与连续、微分学、积分学、多元函数等。
同时,教材内容既注重理论的讲解,又强调实际问题的应用,充分体现了高等数学的学科特点和实用性。
二、教材内容上海大学的高等数学教材内容安排合理,循序渐进,符合学科知识结构的逻辑关系。
教材以概念的引入和基础知识的建立为起点,通过例题和习题的讲解巩固学生的基本功。
随后,教材逐步深入,详细介绍了高等数学的核心内容,如导数与微分、不定积分与定积分、多元函数与偏导数等。
最后,教材还对高等数学与其他学科的联系进行了简要介绍,拓宽了学生的学科视野。
三、教学方法上海大学的高等数学教材注重理论与实践相结合的教学方法。
在讲解理论知识的同时,注重引导学生运用所学知识解决实际问题,培养学生的数学建模和问题解决能力。
教材中包含大量的例题和习题,供学生练习和巩固所学知识。
同时,教材还提供了相关的学习资源,如电子版教辅材料和计算机辅助教学软件,方便学生进行在线学习和实践操作。
四、教材特色上海大学的高等数学教材具有一些独特的特色。
首先,教材注重培养学生的数学思维能力,鼓励学生进行自主思考和探索,提高他们的问题解决能力。
其次,教材将抽象的数学知识与实际问题相结合,通过具体案例的分析,使学生更好地理解和应用所学数学知识。
此外,教材还提供了大量的数学应用实例,涵盖了工程、自然科学、经济等各个领域,使学生能够将数学知识与实际问题相结合,培养他们的创新思维和分析能力。
五、教材评价上海大学的高等数学教材在教学实践中得到了广大教师和学生的一致好评。