上海大学高等代数历年考研真题
- 格式:doc
- 大小:1.25 MB
- 文档页数:13
且f(x)在有理数域上不可约。
第一章多项式1 (清华2 000— 20分)试求7次多项式f(X ),使f(M 1能被(X -1)4整除,而f(X )-1能被(X 1)4整除。
2、 (南航 2001 — 20 分)(1) 设 x —2px+2 I x +3x +px+q ,求 p,q 之值。
(2) 设f(x) , g(x), h(x) € R[x],而满足以下等式2(x +1)h(x)+(x -1) f(x)+ (x -2) g(x)=02(x +1)h(x)+(x+1) f(x)+ (x+2) g(x)=02 2证明:x +1 I f(x) , x +1 I g(x)3、 (北邮2002 —12分)证明:x d - 1 I x "- 1的充分必要条件是d I n (这里里记号 d I n 表示正整数d 整除正整数n )。
4、 、(北邮 2003 —15分)设在数域 P 上的多项式 g 1(x), g 2(x) , g 3(x) , f(x),已知 g 1(x) I f(x),g 2(x) I f(x) , g 3(x) I f(x),试问下列命题是否成立,并说明理由:(〔)如果 g 1(x) ,g 2(x) , g 3(x)两两互素,则一定有 g 1(x) , g 2(x) , g 3(x) I f(X )(2)如果g1(x) , g 2(x) , g 3(x)互素,则一定有 g 1(x)g 2(x)g 3(x)I f(X )5、 (北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p I ab 则p I a 或p I b 。
6、 (大连理工2003 —12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幕主充分必要条件是,对任意的多项式g(x) , h(x),由f(x) I g(x) h(x)可以推出f(x) I g(x),或者对某一正整数 m , f(x) I h m(x)。
上海交通大学1999年硕士研究生入学考试试题试卷名称:高等代数1.(10分)设P 为数域。
()()[]x P x g x f ∈,令()()()()()x g x x x f x X F 1122++++=;()()()()x g x x xf x G 1++=。
证明:若()x f 与()x g 互素,则()x F 与()x G 也必互素。
2.(10分)设J 为元素全为1的阶方阵。
(1) 求J 的特征多项式与最小多项式;(2) 设()x f 为复数域上多项式。
证明()J f 必相似于对角阵。
3.(10分)(1) 设n 阶实对称矩阵()ij x A =,其中1+=j i ij a a x 且0...21=+++n a a a ,求A 的n 个特征值。
(2) 设A 为复数域上n 阶方阵。
若A 的特征根全为零,证明:1=+E A 。
此处E 为n 阶单位阵。
4(10分)设()x f 是数域F 上的二次多项式,在F 内有互异的根21,x x ,设A 是F 上线性空间L 的一个线性变换且I x A 1≠,I x A 2≠(I 为单位变换)且满足()0=A f ,证明21,x x 为A 的特征值;且L 可以分解为A 的属于21,x x 的特征子空间的直和。
5(10分)用正交线性变换将下列二次型化为标准形,并给出所施行的正交变换:32312123222184422x x x x x x x x x ++---6(10分)对的不同取值,讨论下面方程组的可解性并求解:7(10分)假设A 为n m ⨯实矩阵,B 为1⨯n 实矩阵,TA 表示A 的转置矩阵。
证明: (1) AB=0的充要条件是0=AB A T; (2) 矩阵A A T与矩阵A 有相同的秩。
8(10分)设p A A A ,...,,21均为n 阶矩阵且0...21=p A A A 。
证明这p 个矩阵的秩之和小于等于()n p 1-,并举例说明等式可以达到。
2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅(二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和. (三)B A ,分别为mn ⨯和m n ⨯矩阵,nI 表示n n ⨯单位矩阵.证明:m n⨯阶矩阵0n A I XB ⎛⎫= ⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆.(四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)VAV A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r Aa Aa Aa ⋅⋅⋅是2()A V 的一组基. (六)设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f g g==试证:(1)f 与g 有相同的值域⇔,fg g gf f==.(2)f 与g 有相同的核⇔,fg f gf g==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A ab b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X=的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x xx=++--为标准形 (四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()AA aAA=,求证'm AA aE =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n n A A -≠=求证:存在a V ∈,使2211,,,,n n n a A a A aA aA a A a A a a---++++为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a Aa a ≠<⇔A的所有特征值都小于0.(七)设Aa B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'1a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a aax a aA B a a x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭.(二)设A 是n 阶可逆方阵,0A AB A ⎛⎫= ⎪⎝⎭. (1)计算k B (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2B CC E=+,求C .(三)设(1)(1)(1)(1)p p p n ppp n pp A p n p p p n pppp--------=--------,A是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i aa a + ,若121121r i i ri k a k a k a ++++= ,则121,r k k k + 或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B AB tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V aa V Aa a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A Ea A Ea A Ea +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a a A a a x a aaax=(A为n 阶矩阵),2AA B A A ⎛⎫=⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若AB E A =- (1)求证:1A=±,(2)若200120232B -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求A .(四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121nn a a a a -=++121n n a a a a β-=+++ ,求AX β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为k a -(k 为正整数) (六)设A为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GAG E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =. (1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X=的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A . (2)求正交变换XPY=,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥(十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,Aa a B a Vβββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ijA a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑,其中ij A 为ij a 的代数余子式.(2)如果ija 都是整数(1,2)i n = ,则a 整除A .(二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =.(1)求行列式'E A A λ-. (2)求'0A AX=的解(X是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E AB=-.(1)求证:21A B+=.(2)若100110231B -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B=.(2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a Aa a a λ≥.(六) 设123,,λλλ为3阶方阵A的特征值,且()()()111,011,01分别为其对应的特征向量,求n A .(七)V是n 维欧氏空间,σ是n 维空间V 上的线性变换,如果1231,,n a a a a -是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证:(1)()()2r A r B == (2)题型与钱吉林书习题类示。
高等代数历年考研真题高等代数是数学学科中的一门重要课程,对于数学专业的学生来说,它是必修课之一。
考研是追求学术进阶的一个重要途径,因此高等代数也成为许多考研学生备战的重点科目之一。
本文将通过回顾历年考研真题,分析高等代数考点和解题技巧,帮助考生更好地应对高等代数考研。
一、线性代数线性代数是高等代数的重要组成部分,它主要研究向量空间、线性变换、矩阵等内容。
在考研真题中,线性代数所占比例较大,因此掌握好线性代数的基本概念和基本性质非常关键。
1.1 向量空间向量空间是线性代数的核心概念之一。
考研真题中常涉及到子空间、基、维数等概念。
在解题过程中,要注意对向量空间性质的分析,运用相关定理和定理的推论进行证明。
1.2 线性变换线性变换是研究向量空间的重要方法之一。
考研真题中常涉及到线性变换的矩阵表示、特征值和特征向量等。
对于线性变换的性质和特征值的计算,考生需要熟练掌握相应的运算方法和计算技巧。
1.3 矩阵矩阵是线性代数中的重要工具之一。
考研真题中常要求计算矩阵的特征值、特征向量以及矩阵的秩等。
在解答这类问题时,要善于利用矩阵的性质和运算规则,结合相应的定理进行证明和计算。
二、群论群论是代数学的一个重要分支,用于研究对称性和对称性破缺等问题。
在高等代数考研中,群论占有一定的比例,因此对群论的掌握和理解是非常重要的。
2.1 群的基本概念在群论中,要掌握群的定义、子群、陪集等基本概念。
考研真题中常结合这些概念来进行命题证明和运算。
2.2 循环群循环群是群论中重要的一类特殊群。
考研真题中常要求判断某个群是否为循环群以及计算循环群的阶等。
在解答这类问题时,要熟练应用循环群的定义和基本性质。
2.3 正规子群与商群正规子群和商群是群论中的重要概念。
考研真题中要求理解正规子群和商群的定义,熟练运用这些概念进行证明和计算。
三、域论域论是代数学的一个重要分支,主要研究环和域的性质与结构。
在高等代数考研中,域论占有一定比例,因此对域的基本概念和性质的理解是十分重要的。
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
《高等代数》试题库一、选择题1.在[]F x 里能整除任意多项式的多项式是( )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。
A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。
A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。
A . 充分 B . 充分必要 C .必要 D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。
A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。
A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。
高等代数825考研真题高等代数是数学中的一门重要课程,对于提高数学建模能力和解决实际问题具有重要作用。
本文将针对高等代数825考研真题展开讨论。
第一部分:选择题(1)设V是数域K上的线性空间,S是V的子空间,则下列命题中正确的是()A. V⊂SB. V⊂VC. V=VD. V≠V(2)设A,B都是n阶方阵,则下列命题中正确的是()A. VV(VV+VV)≤VV V+VV VB. VVV V+VVV V=VV(VV+VV)C. VV(VV+VV)≥VV V+VV VD. VVV V+VVV V≥VV(VV+VV)第二部分:解答题1. 证明引理:设V={V1, V2,..., VV} ,V是V的一个非零子空间,则V(V1+V2+V+VV)≥2。
其中,V(V) 表示向量V的秩。
解:假设V1+V2+V+VV= V0 ,其中V0≠V为一线性组合等于零向量,需要证明线性相关,即证明存在VV≠V使得VV是线性相关向量。
首先,假设V1+V2+V+VV= V0 成立,则可以得到其中至少有一项VV=0。
其次,如果保持原假设成立,那么对于其他项V j ∈V中的向量V j,可以写成V j= −(V1+V2+V+VV)+2V i ,可知V j 是线性相关向量。
综上所述,线性空间V中至少存在两个线性相关的向量。
2. 设V,V,V是V阶方阵。
证明:如果V,V是可逆的,则VV和VV也是可逆的,并且特征值λ(VV) = 特征值λ(VV)。
解:首先,V,V是可逆的,则存在V的逆矩阵V^-1 和V的逆矩阵V^-1 。
其次,考虑矩阵VV,假设存在非零向量V使得 (VV)V= 0 ,则有V(VV)=0。
由于V是可逆的,所以V^-1 存在,因此可以得到VV=0。
由于V是可逆的,所以只有V为零向量才能使等式成立,即零向量是唯一解。
综上所述,矩阵VV是可逆的。
类似地,可以证明矩阵VV也是可逆的。
在特征值方面,由于可逆矩阵与其逆矩阵存在相同的特征值,所以特征值λ(VV) = 特征值λ(VV)。
2003年高等代数(综合卷)6.(14)设P 是数域,n n P B A ⨯∈,,E 是n 阶单位矩阵.证明:P b a ∈∀,(1)当bB aA +是可逆矩阵时,bB aA B bB aA B b A bB aA A a -=+-+--1212)()(.(2)当bB aA +,bB aA -都是可逆矩阵时, E bB aA B bB aA B b bB aA A bB aA A a =+--+-----112112)()()()(7.(20)设Ax x '是秩为r 的n 元半正定二次型,(1)证明:存在秩为r 的r n ⨯实矩阵C ,使C C A '=. (2)证明:x E A x )(+'是n 元正定二次型.8.(20)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2212221212121n n n n n a a a a a a a a a a a a a a a A是数域P 上的n 阶非零矩阵)1(>n (1)求A 的行列式A 和A 的秩. (2)当022221≠=+++k a a a n 时,证明存在n 阶可逆矩阵T 使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-001 k AT T . 9.(21)设P 是数域,m n P A ⨯∈,如果m n P X ⨯∈∀规定AX X A :(1)证明A 是数域上线性空间n n P ⨯的线性变换.(2)令},{m n m n O AY P Y Y W ⨯⨯=∈=,证明W 是m n P ⨯的-A 子空间.(3)设秩n r A <=,求W 的维数W dim .2004年 高等代数1.(15)设n a a ,,1 是数域P 上n 个不同的数,解线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++----11212111222221212211211n nn n n n n n n n n n n n a x a x a x a a x a x a x a a x a x a x a x x x . 2.(15)设P 是数域,12)(,3++=∈⨯x x x m P A n n 是A 的最小多项式,求—A ,3.(20) 设P 是数域,n n n ij P a A ⨯∈==),,()(1αα ,nn a 的代数余子式0≠nn A ,(1)证明: n αα,,1 线性无关.(2)当0=A 时,求线性方程组O X A =*的基础解系,其中*A 是A 的伴随矩阵4.(30) 设P 是数域,}{1A A P A V n n ='∈=⨯, }{2是上三角矩阵B P B V n n ⨯∈=,(1)证明: 21V V ,都是n n P ⨯的子空间.(2)证明2121,V V P V V P n n n n ⊕≠+=⨯⨯.5.(30)设)(x p 是数域P 上的不可约多项式,α是)(x p 的复根,(1)证明:)(x p 的常数项不等于零.(2)证明:对任意正整数1)),((,=m x x p m (3)设22)(3+-=x x x p ,求51x. 6.(20)设n 元实二次型Ax x x x x f n '=),,,(21 经过正交替换Qy x =(其中Q 是正交矩阵)化为223222132n ny y y y ++++ ,证明: (1)A 的特征值是n ,,2,1 . (2)存在正定矩阵B ,使2B A =7.(20)设A 是数域P 上n 维线形空间V 的线性变换,0)(,0)(1=A ≠A ∈=αααn n V ,,证明:(1))(,),(),(,12αααα-A A A n 是V 的基.(2)设W 是A 的不变子空间,0,,,,121≠∈a P a a a n ,并且存在向量W a a a a n n ∈A ++A +A +=-)()()(12321ααααβ ,则V W =.2005年 高等代数1.(15)设A 是数域P 上的r r ⨯阶矩阵,D 是s s ⨯阶矩阵,A B M C D ⎛⎫= ⎪⎝⎭,并且r A r M r ==)()(,证明:1D CA B -=.2.(15)设A 是数域P 上的m n ⨯矩阵,12,,,t ααα 是齐次方程组0Ax =的线形无关的解,0A β≠,证明12,,,t ββαβαβα+++ 线性无关.3.(30)设P 是数域,1110{()|,0,1,2,,}n n n n i V f x a x a x a x a a P i n --==++++∈= .(1)证明V 关于多项式的加数乘多项式构成数域P 上的线性空间.(2)(),f x V ∀∈规定:()().'(),A f x f x x f x - 证明A 是V 的线性变换.(3)求线性变换A 在基21,,,,n x x x 上的矩阵.4.(20)设A 是n n ⨯阶复矩阵,0,k A =123,,,,r λλλλ 是A 的所有非零的特征值,(1)证明E A -是可逆矩阵,并求1()E A --. (2)求1()E A --的所有特征值.5.(20)设A 是n 阶正定矩阵,B 是n 阶半正定矩阵,(1)证明1A -是n 阶正矩阵;(2)求实的可逆矩阵T ,使得1210000'()00n a a T A B T a -⎛⎫ ⎪ ⎪+= ⎪ ⎪⎝⎭ (0,1,2,,.ia i n >= )是对角矩阵,并说明主对角线上的元素6.(20)设()ij A a =是n 阶矩阵,1()nii i Tr A a ==∑是主对角线上的元素之和,22P ⨯表示数域P 上所有2阶构成的集合,22,A P ⨯∀∈规定:()f A Tr A ,(1)证明f 是线性空间22P ⨯线性函数.(2)1112212210000000,,,00011001E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭是22P ⨯的一组基.求22P ⨯上的线性函数g ,使得11122122()2,()3,()4,() 1.g E g E g E g E ====-7.(20)设V 是数域P 上的线性变换,A 的最小多项式是2()23,m x x x KerA =--表示A 的核,Im A 表示A的值域,证明:(1)V 中存在一组基,使A 在这基下的矩阵是对角矩阵;(2)(3)Im()Ker A E A E -=+,其中E 是V 的恒等变换; (3)(3)()V Ker A E Ker A E =-⊕+2006年 高等代数1.(14)计算n 阶行列式:213141111222324221222331323334244142434421234n n n n n n n n n n na a a a a a x a a a a a a a a a a a x a a a a a a a x a a a D a a a a a a a a x a a a a a a a a a x a +++=++,其中120n x x x ≠…. 2.(20)设11112122122212(,,),(,,),(,,),n n r r r rn a a a a a a a a a ααα===…………且12,,αααr …线性无关,12(,,,)n b b b β=….证明:12,,,αααβr …线性相关的充分必要条件是:线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩………的解都是方程11220n n b x b x b x +++=…的解.3.(24)R 是实数域,V 是线性方程组1234513451234512345242470224034440426340x x x x x x x x x x x x x x x x x x x +-+-=⎧⎪+--=⎪⎨-++-=⎪⎪-++-=⎩的所有解构成的集合.(1)证明:V 是5R (列向量组成的空间)的子空间. (2)求V 的基个维数.(3)求V 的正交补V +的基与维数(5R 的内积(,)'αβαβ=).4.(32)设P 是数域,{()[]|()0()}.V f x P x f x f x n =∈=∂<或121210()n n n n f x a x a x a x a V ----∀=++++∈…,规定11:().n n A f x a x --(1)证明A 是V 的线性变换. (2)求A 在基12,,,,1n n x x x --…下的矩阵.(3)求A 在核10A -()的基. (4)求A 的所有特征值和特征向量.5.(20)设P 是数域,,,.n n A B P C AB BA BC CB ⨯∈=-=,且 证明:(1)对大于1的自然数k,有1k k k A B B A kB C --=.(2)设()f λ是B 的特征多项式,'()f λ是()f λ的微商,则'()0f B C =.6.(20)R 实数域,n n A R ⨯∈,且A 是对称矩阵. (1)证明A 的伴随矩阵*A 也是实对称矩阵.(2)试问A 与*A 合同的充分必要条件是什么?并证明你的结论.7.(20)设V 是数域P 上的n 维线性空间,n r r εεεεε,,,121 +,,,是V 的基,),,(),(12211n r r V L V εεεεε +==,,,.(1)证明:V 是12,V V 的直和(即12V V V =⊕); (2)设A 是1V 的线性变换,B 是2V 的线性变换,求V 的线性变换C ,使得1V 与2V 的不变子空间,并且C 在1V 与2V 上的限制分别是 12|,|C V A C V B ==2007年 高等代数1.(20)设)(x f 是非零复多项式,用)(x f '记)(x f 的微分(导数)多项式;设)(x d 是)(x f 与)(x f '的最大公因式,设整数1>m .证明:复数c 为)(x f 的m 重根的必要充分条件是c 为)(x d 的1-m 重根.请说明这里为什么要假设1>m ?2.(30)设A 是n m ⨯矩阵,设⎪⎪⎪⎭⎫ ⎝⎛n a a 1是线性方程组0=AX 的非零解.证明:(1)如果A 的任何列向量非零,则n a a ,,1 中至少两个非零.(2)如果的A 任何两个列向量线性无关,则n a a ,,1 中至少三个非零.(3)推广(1),(2),你得到什么结论?请证明你的结论.3.(30)对n m ⨯矩阵A ,记A '是A 的转置矩阵.(1)设A 是实矩阵,证明:实线性方程组0=AX 与实线性方程组0)(='X A A 同解.(2)证明:实矩阵A 的秩与A A '矩阵的秩相等.(3)在复数域,上述结论成立吗?为什么?(4)对复数域,你认为应如何修改断言(2)得到一个正确的断言?为什么?4.(20)设A 是实方阵,证明:如果下面三条中的任意两条成立,则另外一条也成立:(1) A 是正交矩阵; (2)A 是对称矩阵; (3) E A =2,其中E 表示单位矩阵.5.(20)已知⎪⎪⎪⎭⎫ ⎝⎛=a b a b a A 0000的特征根为3,2,1,其中b a ,是实数.求b a ,,并求正交矩阵T 使得AT T '是对角矩阵,其对角线元素依次为3,2,1.6.(30)用C 表示复数域.设A 是n m ⨯复矩阵,设A 的特征多项式)()()(λλλg f A =∆,其中)(λf 与)(λg 互素.在n 维向量空间n C 中,设F 是齐次线性方程组0)(=⋅X A f 的解子空间,G 是齐次线性方程组0)(=⋅X A g 的解子空间,证明: (1) ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⋅=n n n n n n C c c c c A f G C c c c c A g F 1111)(,)(; (2)G F C n ⊕=.2008年 高等代数1.(20)以下陈述是否正确?正确的请予以证明,不正确的请举反例(例子的正确性要求论证).(1)有理系数多项式)(x f ,如果在有理数域上不可约,则在任何数域上不可约.(2)两个有理系数多项式)(x f 与)(x g ,如果在有理数域上互素,则在任何数域上互素.{定义1 数域F 上的多项式)(x f 称为在上不可约.如果)(x f 次数大于0而且只要F 上的多项式)(x g 是)(x f 的因式,那么,)(x g 要么与)(x f 相伴,要么与1相伴.定义2 数域F 上的多项式)(x f 与)(x g 称为在F 上互素,如果它们在F 上的最大公因式与1相伴. }2.(20) (1)设B A ,都是n 阶方阵,且O AB =.证明:BA 的秩]2/[n ≤.其中]2/[n 表示不超过2/n 的最大整数(2)对于任意正整数n ,都存在n 阶方阵B A ,满足O AB =而BA 的秩]2/[n =.3.(30)令R 表示实数域,⎪⎪⎪⎭⎫ ⎝⎛=001000100A .(1)求实矩阵A 的实特征值和实特向量.(2)求3R 中所有的-A 不变子空间(实向量空间3R 的子空间U 称为不变的,如果U Au ∈,U u ∈∀,其中u 写为列向量).4.(30)(1)请叙述什么是实二次型?什么是化实二次型为平方和定理?什么是实二次型的惯性定理?(2)证明实二次型的惯性定理.5.(20)设n 维复向量空间V 的线性变换P 满足P P =2,证明:(1)KerP P V ⊕=Im ,其中P Im 表示P 的像子空间, KerP 表示P 核子空间.(2)像子空间维数trP P =Im dim ,其中trP 表示线性变换P 的迹,即P 的所有特征根(计重数)之和.6. (30)设n 2阶方阵⎪⎪⎭⎫ ⎝⎛-=E E E E A ,其中E 是n 阶单位矩阵, (1)求A 的特征多项式. (2)求A 的极小多项式. (3) 求A 的约尔当标准形.2009年 高等代数1.(20)设n a a ,,1 是n 个复数,x 是复变元.求x 取哪些复数值时下述等式(等式左边是1+n 阶行列式)成立:011112122221221=n n n n n n n a a a x a a a x a a a x2.(20) 设)(x f 是n 次实系数多项式,设)(x f '是)(x f 的导数多项式,证明:(1)如果r 是)(x f 的m 重根,0>m ,则r 是)(x f '的1-m 重根(若r 是)(x f '的零重根,则表示r 不是)(x f '的根).(2)如果)(x f 的根都是实数,则)(x f '的根也都是实数.3.(20)设A 是秩为r 的n m ⨯阶矩阵,B 是非零的1⨯m 阶矩阵,考虑线性方程组B AX =,其中X 是变元n x x ,,1 的列向量.证明:(1)线性方程组B AX =的任意有限个解向量n X X ,,1 的向量组的秩1+-≤r n .(2)若线性方程组B AX =有解,则它有1+-r n 个解向量是线性无关的.4.(30)设C B A ,,都是n 阶方阵,⎪⎪⎭⎫ ⎝⎛O C B A 是分块构成的n 2阶方阵,其中右下块O 表示n 阶零方阵.(1)证明:)()(C rank B rank O C B A rank +≥⎪⎪⎭⎫ ⎝⎛,这里)(B rank 表示B 矩阵的秩. (2)举例说明:(1)中的等号和不等号都可能成立.5.(30)设V 是有限维向量空间,设W U ,是V 两个字空间.(1)什么是U 与W 的和子空间W U +,请叙述关于W U +的维数公式.(2)证明关于和子空间的维数公式.6. (30)设A 是阶实矩阵,si r t +=λ是A 的特征根,其中s r ,是实数,i 是虚数单位.(1)证明:)(21A A '+的特征根都是实数,令n μμ≤≤ 1是)(21A A '+的全部特征根. (2)证明: n r μμ≤≤1.(3)你有类似估计s 的办法吗?2010年 高等代数1.(20)设F 是任意数域,][)(x F x p ∈.证明:)(x p 是不可约多项式当且仅当是)(x p 素多项式.2.(20) (1)设A 是n 阶方阵,E 是单位矩阵,0≠k .证明kA A =2当且仅当n kE A rank A rank =-+)()(.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20)设R 表示实数域,)(3R M V =表示所有33⨯实矩阵构成的向量空间.对给定的)(3R M A =定义在V 上的线性替换V V T A →:为BA AB B T A -=)(,对任意的)(3R M B =.设⎪⎪⎪⎭⎫ ⎝⎛=200010000A ,求A T 的特征值和相应的特征子空间;并求此时A T 的极小多项式.4.(30)设有三元实二次型xz z y x z y x f 43),,(222+++=,并设z y x ,,满足1222=++z y x .试求f 的最大值和最小值,并求当z y x ,,取什么值时,f 分别达到最大值和最小值.5.(30)设R 是实数域,])1,0([1C V =是闭区间]1,0[上的连续可微函数的集合. V 在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数x e x h x x g x x f ===)(,2)(,cos )(在V 中线性无关.(2)任意给定0>n ,在V 中找出1+n 个线性无关的元素,并证明你的结论.(3)对某个m ,是否有V 和m R 同构,如果是,给出证明;如果不是,说明理由.6. (30)(1)设A 和B 均为n 阶复方阵,证明:A 与B 相似当且仅当作为-λ矩阵有A E -λ等价于B E -λ.(2)设B A ,都是3阶幂零矩阵,证明: A 相似于B 当且仅当A 与B 有相同的极小多项式.(3)试说明上述结论(2)对4阶幂零矩阵是否成立,为什么?。
第一章多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X −整除,而()1f x −能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2−2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x −1)f(x)+(x −2)g(x)=0(x 2+1)h(x)+(x+1)f(x)+(x+2)g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d −1∣x n −1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x),g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x),g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x)(2)如果g 1(x),g 2(x),g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x)5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a,b 若p∣ab 则p∣a 或p∣b。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x),由f(x)∣g(x)h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
若存在数α使得f(α)=g(α)=0,则f(x)∣g(x)。
2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅ (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和.(三) B A ,分别为m n ⨯和m n ⨯矩阵, n I 表示n n ⨯单位矩阵.证明: m n ⨯阶矩阵n A I X B ⎛⎫=⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A ,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)V A V A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r A a A a A a ⋅⋅⋅是2()A V 的一组基. (六) 设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f gg ==试证:(1)f 与g 有相同的值域⇔,fg g g f f ==. (2)f 与g 有相同的核⇔,fg f g f g ==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X =的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x x x =++--为标准形(四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()A A a A A =,求证'm A A a E =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n nAA-≠=求证:存在a V ∈,使2211,,,,n n n a A a A a A a Aa Aa Aa a ---++++ 为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a A a a ≠<⇔A 的所有特征值都小于0. (七)设A a B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'10a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A 为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a a ax a aA B aa x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭. (二)设A 是n 阶可逆方阵,0A A B A ⎛⎫=⎪⎝⎭. (1)计算kB (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2BC C E =+,求C .(三)设(1)(1)(1)(1)p p p n p pp n p p A p n p p p n pppp--------=--------,A 是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i a a a + ,若1211210r i i rika k a k a ++++= ,则121,r k k k +或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B A B tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V a a V A a a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A E a A E a A E a +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a aA a a x a aaax=(A 为n 阶矩阵),2AA B AA ⎛⎫= ⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若A B E A =- (1)求证:1A =±,(2)若200120232B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求A . (四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121n n a a a a -=++ 121n n a a a a β-=+++ ,求A X β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为ka -(k 为正整数)(六)设A 为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GA G E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =.(1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X =的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A .(2)求正交变换X P Y =,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥ (十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,A a a B a V βββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ij A a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑ ,其中i j A 为ij a 的代数余子式.(2)如果ij a 都是整数(1,2)i n = ,则a 整除A . (二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =. (1)求行列式'E A A λ-.(2)求'0A A X =的解(X 是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E A B =-.(1)求证:21A B+=.(2)若100110231B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B =. (2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a A a a a λ≥. (六) 设123,,λλλ为3阶方阵A 的特征值,且()()()111,011,01分别为其对应的特征向量,求nA .(七) V 是n 维欧氏空间, σ是n 维空间V 上的线性变换,如果1231,,n a a a a - 是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证: (1)()()2r A r B == (2)题型与钱吉林书习题类示。
(九)设F 为数域,A 为数域上n 阶方阵,且{}10V x F A x =∈=,{}2()0V x F A E x =∈-= 求证:2AA =⇔12F V V =⊕。
(十)设24aβγ=,aaA a a γβγβγβ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭为n 阶方阵,B 为n 阶正交方阵,求证:222(1)24n nB A an BA=+(十一)设221231(1)(1)()()()()(2)n n n n n nn x x f x xf x x f x x f x n --⎡⎤--++++≥⎣⎦求证:(1)()(1,21)i x f x i n -=- 。
(十二)设A 为n 阶实可逆矩阵,则A 为正定矩阵充分必要条件为存在n 阶上三角实可逆矩阵L ,使A L L ⊥=。
(十三)设A 为秩为r 的n 阶矩阵,证明:2A A =的充要条件是存在秩为r 的r n ⨯阶矩阵B 和秩为r 的n r ⨯矩阵C ,使A C B =且B C E =。
(十四)设V 为数域F 上n 维线性空间,设A 是n 维线性空间V 上的线性变换,()A V 为A 的值域,1(0)A -为A 的核。
(1) 求证:维1(()(0))2n A V A -+≥ ,(2) 求证:维1(()(0))2n A V A -+=充分必要条件为:1()(0)A V A -=,并举出这样的线性变换A 。
2005上海大学 高等代数(一) 已知1()2n nf x xx +=+-,求()f x 在有理数域上的不可约多项式并说明理由。
(二) 已知100110,0111A A A B A ⎛⎫⎛⎫⎪== ⎪⎪⎝⎭⎪⎝⎭,C 是6阶方阵,2B C C E =+。
求C 和C *。
(三) β是方程组A X b =的一个解,12,,n r a a a - 是其导出组的一个基础解系。
求证:(1) 12,,n r a a a - ,β线性无关,(2) 12,,,n r a a a ββββ-+++ 也线性无关。