全等三角形证明题练习(提高题)[1]
- 格式:doc
- 大小:723.50 KB
- 文档页数:8
全等三角形能力拔高题姓名:一、角度转化问题1.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.2.已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.3.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.4.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l 的垂线AE、BF,E、F为垂足.当直线l不与底边AB相交时,求证:EF=AE+BF.5.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.二、二次全等问题1.已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.2.已知:如图,AC与BD交于O点,AB∥DC,AB=DC.若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.3.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4.已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.MF E CBA5、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=DC , 求证:EB=FC【练习】1、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形。
2、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
求证:MB=MCG FEDC BA3、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD4、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30, BD :CD=3:2,则DE= 。
5、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
【巩固练习】一、选择题1. 如图,已知AB =AC ,D 为BC 的中点,结论:①AD ⊥BC ;②AD 平分∠BAC ;③∠B =∠C ;④△ABC 是等边三角形.其中正确的是( ).A.①②B. ②③C. ①②③D. ③④2.如图,AD 是ABC ∆的中线,E 、F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF 、CE ,下列说法:①CE BF =;② ABD ∆和ACD ∆的面积相等;③//BF CE ;④ BDF ∆≌CDE ∆,其中正确的有( ).A.1个B.2个C.3个D.4个3. AD 为△ABC 中BC 边上的中线, 若AB =2, AC =4, 则AD 的范围是( )A .AD <6 B. AD >2 C. 2<AD <6 D. 1<AD <34.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如下,则说明∠CAD=∠DAB的依据是( )A .SSSB . SASC . ASAD . AAS5. 根据下列条件能唯一画出△ABC 的是( )A.AB =3,BC =4,AC =8B.AB =4,BC =3,∠A =30°C.AB =5,AC =6,∠A =45°D. ∠A =30°,∠B =60°,∠C =90°6.(2016•洛阳模拟)已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A运动,设点P 的运动时间为t 秒,当t 的值为( )秒时,△ABP 和△DCE 全等.A.1 B.1或3 C.1或7 D.3或7二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,△ABC是三边均不等的三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画个.9. (2016•微山县二模)如图,四边形ABCD中,∠1=∠2,请你补充一个条件,使△ABC≌△CDA.10.(2014春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件____________时,就可得到△ABC≌△FED.(只需填写一个即可)11. 如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.AA BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),12. 把两根钢条','如图,若测得AB=5厘米,则槽宽为厘米.三、解答题13.(2014秋•天津期末)如图在△ABE中,已知AB=AE,AD=AC,∠1=∠2.求证:△ABC≌△AED.14. 如图, ∠B=∠C, BD=CE, CD=BF.求证: ∠EDF = 90︒-12∠A15. 已知:如图,BE、CF是△ABC的高,且BP=AC,CQ=AB,求证:AP⊥AQ.【答案与解析】一.选择题1. 【答案】C【解析】由SSS证全等可得①②③是正确的.2. 【答案】D;3. 【答案】D;【解析】用倍长中线法;4. 【答案】A;【解析】解:从角平分线的作法得出,△AFD 与△AED 的三边全部相等,则△AFD≌△AED.故选A .5. 【答案】C ;【解析】A 不能构成三角形,B 没有SSA 定理,D 没有AAA 定理.6. 【答案】C ;【解析】解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE ,由题意得:BP=2t=2,所以t=1,因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE ,由题意得:AP=16﹣2t=2,解得t=7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等. 故选C .二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒,所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】在DE 的两侧可以各画2个.9.【答案】AD=BC ;【解析】由题意知,已知条件是△ABC 与△CDA 对应角∠1=∠2、公共边AC=CA ,所以根据全等三角形的判定定理SAS 来证△ABC ≌△CDA 时,需要添加的条件是AD=BC.10.【答案】BC=ED 或∠A=∠F .11.【答案】27;【解析】可证△ADB ≌△CDB ≌△CDE.12.【答案】5;三.解答题13.【解析】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC ,∴∠BAC=∠EAD ,在△ABC 和△AED 中,,∴△ABC ≌△AED (SAS ).14.【解析】证明:在△ABC 中,∠B =∠C ,∴∠B =90︒-12∠A 在△DBF 和△ECD 中BD CE B C BF CD =⎧⎪∠=∠⎨⎪=⎩∴△DBF ≌△ECD (SAS )∴∠BFD =∠CDE∴∠EDF =180°-∠BDF -∠CDE =180°-(∠BDF +∠BFD )=∠B =90︒-12∠A .15.【解析】证明:∵BE ⊥AC ,CF ⊥AB (已知)∴∠ACF +∠BAC =90°,∠ABE +∠BAC =90°,(三角形内角和定理)∠ACF =∠ABE (等式性质)在△ACQ 和△PBA 中 ∵⎪⎩⎪⎨⎧=∠=∠=BP AC ABP ACF AB CQ∴△ACQ ≌△PBA (SAS )∴∠Q =∠BAP (全等三角形对应角相等)∵CF ⊥AB (已知)∴∠Q +∠QAF =90°,(垂直定义)∴∠BAP +∠QAF =90°,(等量代换)∴AP ⊥AQ.(垂直定义)附录资料:【巩固练习】一、选择题1. (2016•长沙模拟) 如图所示,△ABC ≌△DEC ,则不能得到的结论是( )A. AB =DEB. ∠A =∠DC. BC =CDD. ∠ACD =∠BCE2. 如图,△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为( )A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有( )①形状相同的两个图形是全等图形 ②对应角相等的两个三角形是全等三角形 ③全等三角形的面积相等 ④若△ABC ≌△DEF ,△DEF ≌△MNP ,△ABC ≌△MNP.A.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC ≌△A ′B ′C ,∠ACB=90°,∠A ′CB=20°,则∠BCB ′的度数为()A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4cm,则△DEF的边中必有一条边等于______.10. 如图,如果将△ABC向右平移CF的长度,则与△DEF重合,那么图中相等的线段有__________;若∠A=46°,则∠D=________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A 和D 、B 和E 是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C ;【解析】因为△ABC ≌△DEC ,可得:AB=DE ,∠A=∠D ,BC=EC ,∠ACD=∠BCE ,故选C .2. 【答案】B ;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。
三角形全等的判定一、(SSS)1.如图,AD=AC ,BD=BC ,QA 求证:△ABC≌△ABD .证明:在△ABC 和ABD 中,⎩⎨⎧ AD =ACBD =BCAB =AB ,∴△ABC≌△ABD(SSS )2.如图,AB=AD ,CB=CD ,求证:△ABC≌△AD C .证明:∵在△ABC 和△ADC 中⎩⎨⎧ AB =ADBC =CDAC =AC,∴△ABC≌△ADC(SSS ).3.如图,A 、D 、B 、E 在同一直线上,AC=EF ,AD=BE ,BC=DF ,求证:∠C=∠F.证明:∵AD=BE∴AD+DB=BE+DB,即:AB=DE ,在△ABC 和△DEF 中,⎩⎨⎧ AC =EFAB =DEBC =DF ,∴△ABC≌△DEF(SSS ),∴∠C=∠F.4.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等)二、(SAS )5.已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .6.如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB (SAS )∴DE=AB .7. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .8. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB(SAS)∴DE=AB.三、(ASA)(AAS)9.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.证明:∵FB=CE,∴BC=EF.∵AB∥ED,∴∠B=∠E∵AC∥EF,∴∠ACB=∠DFE.在△ABC和△DEF中{∠B=∠EBC=EF∠ACB=∠DFE∴△ABC≌△DEF(ASA).∴AC=DF.10. 如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,AE∥DF,AB=CD,求证:CE=BF。
完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。
2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。
3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。
4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。
5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。
6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。
7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。
8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。
9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。
10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。
11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。
12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。
13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。
14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。
15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。
16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。
18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。
19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。
20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。
全等三角形证明中考题精选[有答案解析]七年级数学下---全等三角形证明题1如图,已知人。
是厶ABC勺中线,分别过点B、C作BEL AD于点E,CF丄AD交AD的延长线于点F,求证:BE=CF2•如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中/(1)操作发现:如图2,固定△ ABC使厶DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_____________②设△ BDC的面积为$,△ AEC的面积为S,则(2)猜想论证S与S2的数量关系是 _____________当厶DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍然成立,并尝试分别作出了△BDC ffiA AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究已知/ABC=60,点D是角平分线上一点,BD=CD=, DE// AB交BC于点E (如图4).若在射线BA 上存在点F,使S A DC=S BDE,请直接写出相应的BF的长.3.如图,把一个直角三角形ACB(/ACB=90 )绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F, G分别是BD BE上的点,BF=BG延长CF与DG交于点H. (1)求证:CF=DG (2)求出/ FHG勺度数.全等三角形证明中考题精选[有答案解析]4•如图所示,在△ ABC 中,D E 分别是AB AC 上的点,DE// BQ 如图①,然后将厶ADE 绕A 点顺 时针旋转一定角度,得到图②,然后将 BD CE 分别延长至M N,使DM=BD EN=CE 得到图③, 请解答下列问题:(1)若AB=AC 请探究下列数量关系:① 在图②中,BD 与CE的数量关系是_ _ ;② 在图③中,猜想AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,并证明你的猜想;(2)若AB=I?AC( k > 1),按上述操作方法,得到图④,请继续探究: AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,直接写出你的猜想,不必证明.4. (1)如图,在△ ABC ffiA ADE 中, AB 二AC AD=AE Z BAC K DAE=90 .① 当点D 在AC 上时,如图1,线段BD CE 有怎样的数量关系和位置关系? 直接写出你猜想的结论;② 将图1中的△ ADE 绕点A 顺时针旋转口角(O °VaV 90°),如图2,线段BD CE 有怎样的数量 关系和位置关系?请说明理由.(2)当厶ABC^P ^ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD CE 在(1)中的位置关系 仍然成立?不必说明理由.甲: AB AC=AD AE=1, / BAC K DA 字90°;乙:AB AC=AD AE M 1,K BAC K DAE=90 ;丙: 6. CD 经过/ BCA 顶点C 的一条直线,CA=CB E, F 分别是直线CD 上两点,且/ BEC K CFA Ka.(1)若直线CD 经过/ BCA 的内部,且E, F 在射线CD 上,请解决下面两个问题:①如图 1,若/ BCA=90 , Ka =90°,则 BE ______________ CF; EF ___________ |BE - AF| (填“〉”, “v”或“=”);②如图2,若0°<Z BCA : 180°,请添加一个关于Ka 与/ BCA 关系的条件—AB: AC=AD AE M 1,/ BAC K DAE^ 90E__________ ,使①中的两个结论仍然成立,并证明两个结论成立.7. 如图,已知 AB=AC (1)若 CE=BD 求证:GE=G ;⑵若CE=mBD (m 为正数),试猜想GE 与 GD 有何关系.(只写结论,不证明)8. (1)已知:如图①,在△ AOBf^A COD 中, OA=OJ 3OC=OD / AOB M COD=60,求证:① AC=BD ②/ APB=6(度;(2)如图②,在△ AOBf^A COD 中,若 OA=OBOC=O , / AOB M COD a ,贝U AC 与 BD 间的等量关系式为 _____________ ; Z APB 的大小为 _____________ ;(3)如图③,在△ AOBf^ACOD 中,若 OA=?OBOC=?OD(k > 1),Z AOB ZCOD a ,贝U AC 与 BD间的等量关系式为 10.已知:EG// AF, AB=AC DE=DF 求证:BE=CF参考答案与试题解析(2)如图3,若直线CD 经过/ BCA 的外部,/ a =Z BCA 请提出EF, BE AF 三条线段数量关系的 合理猜想(不要求证明)•Z APB 的大小为 _____2. 解:(1)①DEC绕点C旋转点D恰好落在AB边上,••• AC=CD:/ BAC=90 -Z B=90°- 30° =60°,二厶ACD是等边三角形,•••/ ACD=60,又TZ CDE Z BAC=60 ,:Z ACD Z CDE 二DE// AC;②T Z B=30°,Z C=90,二CD=AC=AB /• BD=AD=AC2根据等边三角形的性质,△ ACD的边AC AD上的高相等,•••△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S=S2;故答案为:DE// AC S=S;(2)如图,•「△ DEC是由厶ABC绕点C旋转得到,••• BC=CE AC=CD T Z ACN Z BCN=90,Z DCM Z BCN=180 - 90° =90°,•••Z ACN Z DCM T在厶ACNm DCM中,fZACM=ZDCHI ZCND=ZH=90°,[AC=CD•△ACN^A DCM( AAS, • AN=DM•△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S i=S2;3、解(1)证明:•••在厶CBF ft^ DBG K答.fBC=BD答《二,:BF=BG•△CBF^A DBG( SAS , • CF=DQ(2)解:•••△ CBF^A DBG •Z BCF Z BDG又T Z CFB Z DFH •Z DHF Z CBF=60 ,•Z FHG=180 -Z DHF=180 - 60°=120°.4、解答:解:(1)①结论:BD=CE BDL CE②结论:BD=CE BDL CE;理由如下:T Z BAC Z DAE=90• Z BAC-Z DAC Z DAE-Z DAC 即Z BAD Z CAE ft^ ABD与△ ACE中, AB=ACT*4皿ZCAE •△ABD^A ACE(SAS • BD=CEb AD=AE延长BD交AC于F,交CE于H.在厶ABF 与厶HCF 中,T Z ABF=/ HCF Z AFB=/ HFC •Z CHF Z BAF=90••• BDL CE(2)结论:乙.AB AC=AD AE / BAC K DAE=905.6.解答:解:(1)①IK BCA=90,/a =90°,.・.K BCE K CBE=90,/ BCE K ACF=90 , • K CBE K ACF v CA=CB K BEC K CFA •△ BCE^A CAF •- BE=CF EF=|BE- AF|. ②所填的条件是:Ka +K BCA=180 . I AE=AD 卩. 7 •••△ CAE^A BAD( SAS , AC 二 AB • / ACE K ABD v DM=BD EN=CE • BM=CN 在厶 ABM ffiA ACN 中, r 瓏二 CN ••• ZAC14=ZAbr 〔AB 二AC • △ ABMm ACN( SAS , • AM=AN •/ BAM K CAN 即K MAN K BAC (2)AM=?AN 在厶BADfy CAE 中 解答: / CAE=/ BAD K MAN K BAC全等三角形证明中考题精选[有答案解析]证明:在厶 BCE 中,/ CBE# BCE=180 -Z BEC=180 — /a. v/ BCA=180 —/a,•••/ CBE Z BCE Z BCA 又v/ ACF Z BCE Z BCA CBE Z ACF又v BC=CA / BEC Z CFA •△BCE^A CAF( AAS •- BE=CF CE=AF又v EF=C- CE, • EF=|BE- AF|.(2) EF=BE+AF7.解证明:(1)过D作DF// CE交BC于F,答: 贝UZ E=Z GDF v AB=AC •/ ACB Z ABC/ DF/ CE •/ DFB Z ACB•Z DFB Z ACB Z ABC • DF=DB v CE=BD •- DF=CE 在厶GDF^ GEC中, (ZE 二ZGDFI ZDGF=ZEGC ,[DF=EC•△GDF^A GEC(AAS. • GE=GD• / AOB Z BOC Z COD Z BOC 即:/ AOC Z BOD 答:又v OA=OB OC=OD •△ AOC^A BOD • AC=BD②由①得:/ OAC Z OBDv/ AEO Z PEB / APB=180 — (/ BEP+Z OBD, / AOB=180 —(/ OAC Z AEO , • Z APB Z AOB=60 .(2) AC=BD a(3) AC=?BD 180°—a.。
1 / 811.2 全等三角形的判定(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,•则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,AB=AC ,BD=CD ,求证:∠1=∠2.6、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .7、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .8、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.12.2 全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA2 / 8D CBA 4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CDADCFO3 / 8例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( )AABD C EO12 3AFDOBEC4 / 8①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?DOE CB ANEBM A D【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.N C D EB M A F ED C BA O ED CB AN M CBA【例5】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.NM C BA C ED B A全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
7.如图,在△ABC中,已知D是BC中点,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF. 求证:AB=AC8.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.你能说明BE与DF相等吗?9.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A=30°.求证:BD=14ABCDF12AB10.如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E . (1)若BC 在DE 的同侧(如图①)且AD =CE ,说明:BA ⊥A C .(2)若BC 在DE 的两侧(如图②)其他条件不变,问AB 与AC 仍垂直吗?若是请予证明,若不是请说明理由.1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且角B+角D=180度,求证:AE=AD+BEAB DCE122已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。
求证:AF=CE 。
3已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
F EA C D BA ED C B4如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CF7、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。
求证:EB=ED 。
DA E CB8、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。
求证:∠ACE=∠BDF 。
9. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。
求证:BF ⊥AC 。
10. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC、∠B 'A 'C '的平分线,且AD=A 'D '。
全等三角形判定专题一(证明题)1、如图,AC=AD,BC=BD,求证:AB平分∠CAD.2如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.3、如图,已知AB=AC,AD=AE.求证:BD=CE.4如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB 于E,请说明AE=BE.5、一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.6、已知:如图,AB=DC,AB∥DC,求证:AD=BC.7、如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.8、如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.9、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.10、已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.11已知:如图,CB⊥AD,AE⊥DC,垂足分别B、E,AE、BC相交于点F,且AB=BC.求证:△ABF≌△CBD.12、如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.、13、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?14、已知:如图,AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AE=CF;(2)AE∥CF.15、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.16:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。
2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题12.1 全等三角形的证明及计算大题(专项拔高30题)试题说明:精选最新2022-2023年名校真题30题,主要考察全等三角形的证明方法,强化学生解题模型的掌握以及计算能力!难度由易到难,循序渐进,逐步探索,精准拿分!1.(2022秋•宝安区期末)如图,在△ABC中,过点B作BD⊥CA交CA的延长线于点D,过点C作CE⊥BA交BA的延长线于点E,延长BD,CE相交于点F,BF=AC=.(1)求证:△BEF≌△CEA;(2)若CE=2,求BD的长.2.(2023春•漳州期末)某同学制作了一个简易的T形分角仪来二等分任意一个角.如图,该T形分角仪是由相互垂直的两根细棍EF,GD组成,D是EF的中点.寻找角的平分线时,需要调整位置,使得所分角的顶点O在GD上,同时保证T形分角仪的E,F两点正好落在所分角的两条边OA,OB上,此时OD就会平分∠AOB.为说明制作原理,请结合如图图形,用数学符号语言补全“已知”、“求证”,并写出证明过程.已知:如图,点E,F分别在∠AOB的边上,DG经过点O,,.求证:.3.(2022秋•龙岩期末)阅读下题及证明过程.已知:如图,AB=AC,∠ABP=∠ACP,求证:∠BAP=∠CAP.证明:∵AB=AC,∠ABP=∠ACP,PA=PA,∴△PAB≌△PAC第一步,∴∠BAP=∠CAP第二步.上面的证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.4.(2022秋•葫芦岛期末)在等腰△ABC中,AB=AC,D为AB上一点,E为CD的中点.(1)如图1,连接AE,作EH⊥AC,若AD=2BD,S△BDC=6,EH=2,求AB的长.(2)如图2,F为AC上一点,连接BF,BE.若∠BAC=∠ABE=∠CBF,求证:BD+CF=AB.5.(2022秋•千山区期末)如图,△ABC中,∠ACB=90°,BD平分∠ABC,AE⊥AB交BD延长线于点E,过点E作EF⊥AC,垂足为F.(1)求证:AE=AD;(2)写出与线段CD相等的线段,并证明.6.(2023春•大埔县期末)如图,在△ABC中,GD=DC,过点G作FG∥BC交BD的延长线于点F,交AB于点E.(1)△DFG与△DBC全等吗?说明理由;(2)当∠C=90°,DE⊥BD,CD=2时,求点D到AB边的距离.7.(2023春•贵州期末)如图,在△ABC中,AB=AC=6,∠B=40°.点D在边BC上运动(D不与B、C重合),连结AD作∠ADE=40°,DE交边AC于点E.(1)当DC等于多少时,△ABD≌△DCE,请说明理由.(2)在点D的运动过程中,当△ADE是等腰三角形时,求∠BAD的度数.8.(2023春•渭南期末)如图,点E、F在BD上,且AB=CD,BF=DE,AE=CF,试说明:点O是AC的中点.请你在横线上补充其推理过程或理由.解:因为BF=DE所以BF﹣EF=DE﹣EF,即,因为AB=CD,AE=CF,所以(理由:SSS).所以∠B=∠D(理由:).因为∠AOB=∠COD(理由:),所以△ABO≌△CDO(理由:).所以(理由:全等三角形对应边相等).所以点O是AC的中点.9.(2023春•埇桥区期末)把两个同样大小的含30°角的三角尺按照如图1所示方式叠合放置,得到如图2的Rt△ABC和Rt△ABD,设M是AD与BC的交点,则这时MC的长度就等于点M到AB的距离,你知道这是为什么吗?请说明理由.10.(2023春•巴州区期中)如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD在直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=40°,求∠AOB的度数;(2)若OA平分∠BOE,求∠DOF的度数.11.(2023•芙蓉区校级三模)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.12.(2023春•梅江区期末)如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).13.(2022秋•青神县期末)如图,△ABC和△DEF都是等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E 在AB上,点F在射线AC上,连结AD,若AD=AB.求证:(1)∠AED=∠AFD.(2)AF=AE+BC.14.(2023•碑林区校级模拟)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于E.AD与BE交于F,若BF=AC,求证:△ADC≌△BDF.15.(2023春•六盘水期中)为了解学生对所学知识的应用能力,某校老师在八年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图1,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可;乙:如图2,先确定直线AB,过点B作直线BE⊥AB,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.甲、乙两个同学的方案是否可行?请说明理由.16.(2022秋•通川区期末)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时;①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是.(用含α的代数式表示)17.(2023春•余江区期末)如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC=EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为cm.(3)猜想AE与BD的位置关系,并说明理由.18.(2023•黄石模拟)如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.19.(2022秋•莱州市期末)在△ABC中,AB=AC,D是边BC上一点,点E在AD的右侧,线段AE=AD,且∠DAE=∠BAC=α.(1)如图1,若α=60°,连接CE,DE.则∠ADE的度数为;BD与CE的数量关系是.(2)如图2,若α=90°,连接EC、BE.试判断△BCE的形状,并说明理由.20.(2023春•扶风县期末)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:.21.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.22.(2023•武陵区一模)在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM=∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.23.(2022秋•西宁期末)如图,在四边形ABCD中,AD∥BC,E为CD中点,连接AE并延长交BC的延长线于点F.(1)求证:CF=AD;(2)连接BE,若BE⊥AF,AD=2,AB=6,求BC的长.24.(2023春•贵港期末)如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A (4,4),过C点作∠ECF分别交线段AB、OB于E、F两点(1)若OF+BE=AB,求证:CF=CE.(2)如图(2),且∠ECF=45°,S△ECF=6,求S△BEF的值.25.(2023春•鄠邑区期末)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.26.(2023•岳阳县一模)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=°,∠AED=°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.27.(2023•肥城市校级模拟)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.28.(2023春•惠民县期末)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E,F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,α=90°,证明BE=CF.②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.29.(2023春•沈北新区期末)如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1)思考AE与BE的位置关系并加以说明;(2)说明AB=AD+BC;(3)若BE=6,AE=6.5,求四边形ABCD的面积?30.(2022秋•兴隆县期末)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.。
′
O
全等三角形提高练习
1.如图所示,△ABC ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°, ∠B=50°,求∠DEF 的度数 。
2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°得到△A ′OB ′边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为 。
3.如图所示,在△ABC 中,∠A=90°,D,E 分别是AC,BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是 。
4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A= 。
5.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD= .
6.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分别过点B ,C,作过点A 的直线的垂线BD,CE,垂足为D,E ,若BD=3,CE=2,则DE= .
7.如图,AD 是△ABC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别是E,F ,连接EF,交AD 于G,AD 与EF 垂直吗?证明你的结论。
8.如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E,DF ⊥AC 于F, △ABC 的面积是 28cm 2,AB=20cm,AC=8cm,求DE 的长。
9.已知,如图,AB=AE, ∠B=∠E, ∠BAC=∠EAD, ∠CAF=∠DAF. 求证:AF ⊥CD
D A E
C
B
A
E
F
B
D
C
B C
F
A
E G
A
B D C
10.如图,AD=BD,AD ⊥BC 于D,BE ⊥AC 于E,AD 于BE 相交于点H ,则BH 与AC 相等吗?为什么?
11.如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD. 求证:BE ⊥AC
12.△DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三角形(4)MN ∥BC
D
C
C
B B
A
E
H
D
C
G F
H
A
D
C
E
B
13.已知:如图1,点C 为线段AB 上一点,△ACM ,△CBN 都是等边三角形,AN 交MC 于点E ,BM
交CN 于点F . (1)求证:AN=BM ; (2)求证:△CEF 为等边三角形;
(3)将△ACM 绕点C 按逆时针方向旋转90 O ,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
14.如图所示,已知△ABC 和△BDE 都是等边三角形。
下列结论:① AE=CD ;②BF=BG ;③BH 平分∠AHD ;
④∠AHC=600,⑤△BFG 是等边三角形;⑥ FG ∥AD 。
其中正确的有( ) A 3个 B 4个 C 5个 D 6个
15.已知:BD ,CE 是△ABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延长线上,CG=AB. 求证:AG ⊥AF
16.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线
B C D
A
G E
F
上截取
CG=AB ,连结AD 、AG 。
求证:(1)AD=AG ,
(2)AD 与AG 的位置关系如何。
17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE. 求证:AF=AD+CF
18.如图所示,已知△ABC 中,AB=AC,D 是CB 延长线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB,求证:AC=BE+BC
19.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC,DF ⊥AC,垂足为F,DB=DC. 求证:BE=CF.
A
D
E B
C
A
B
C
E
D
F
C
20.已知:如图3-50,AB=DE ,直线AE ,BD 相交于C ,∠B +∠D=180°,AF ∥DE ,交BD 于F . 求证:CF=CD .
21.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D , PE ⊥OB 于E ,F 是OC 上一点,连接DF 和EF ,求证:DF=EF 。
22.已知:如图,B F⊥AC 于点F ,CE⊥AB 于点E ,且BD=CD 求证:⑴△BDE≌△CDF ⑵点D 在∠A 的平分线上
23如图,已知AB ∥CD ,O 是∠ACD 与∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE =2,则AB 与CD 之间的距离为
24.如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E 。
(1)∠AEB 是什么角?
(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?
(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。
B
A D C
E
F
A B
D
C
O
E
26.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条
角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()
A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5
27.正方形ABCD中,AC、BD交于O,∠EOF=90o,已知AE=3,CF=4,
则S△BEF为___.
29.如图,在R t△ABC中,∠ACB=450,∠BAC=900,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.
30.在△ABC中,∠ACB=90o,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
⑴当直线MN绕点C旋转到图⑴的位置时,求证: DE=AD+BE
⑵当直线MN绕点C旋转到图⑵的位置时,求证: DE=AD-BE;
⑶当直线MN绕点C旋转到图⑶的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.。