大数据技术及数据分析课程培训(PPT 51页)
- 格式:ppt
- 大小:3.51 MB
- 文档页数:52
数据科学与大数据技术专业特色课程研究篇一:随着大数据时代的到来,数据科学与大数据技术成为了热门的专业领域。
为了满足企业对数据分析和处理的需求,许多大学和研究机构都开设了数据科学与大数据技术专业,并且开设了一系列特色课程来培养学生的技能和知识。
一、数据科学与大数据技术基础课程数据科学与大数据技术专业的基础课程包括数据结构与算法、数据库原理、数据挖掘和机器学习等。
这些课程旨在让学生掌握数据处理和分析的基本原理和方法,了解常用的数据处理工具和编程语言,培养数据科学的思维方式和解决问题的能力。
二、大数据计算与存储技术课程大数据的处理和分析需要使用到一系列的计算和存储技术。
在这些课程中,学生将学习到大数据存储技术如Hadoop和Spark,以及大数据计算框架和分布式系统的原理与实践。
这些课程将帮助学生理解大数据处理的基本架构和流程,并且培养他们使用相应工具进行大数据处理和分析的能力。
三、数据可视化与故事讲述课程数据科学的一个重要应用是将数据可视化并通过故事讲述的方式传达给其他人。
数据可视化与故事讲述课程旨在培养学生使用可视化工具和技术,将数据转化为易于理解和传达的图形和图表,并通过故事讲述的方式向非专业人士解释和传递数据分析的结果和结论。
四、实践与项目课程为了让学生将所学的理论知识应用到实际问题中,许多专业还设置了实践与项目课程。
学生将在这些课程中参与真实的数据分析项目,通过与企业或研究机构的合作,解决实际问题并获得实践经验。
这些课程将帮助学生将理论知识转化为实际应用能力,并且培养他们的团队合作和沟通能力。
总之,数据科学与大数据技术专业的特色课程旨在培养学生在数据处理和分析方面的专业知识和技能。
通过这些课程的学习,学生将具备处理大数据的能力,并且能够使用数据科学的方法解决实际问题。
这些课程的设置将有助于培养更多的数据科学和大数据技术专业人才,满足社会对数据分析和处理的需求。
篇二:随着数据科学和大数据技术的迅速发展,越来越多的高校和教育机构开始开设相关的专业课程。
大数据时代的数据概念分析及其他一、概念:"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
"大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。
接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。
最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
百度概念:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume、Velocity、Variety、Veracity。
研究机构Gartner概念:"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。
它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。
研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。
" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。