四年级 第5讲 最不利原则
- 格式:pptx
- 大小:845.27 KB
- 文档页数:13
每日一课:奥数知识点——最不利原则在日常生活和生产中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则。
下面通过具体例子说明最不利原则以及它的应用。
例1 口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?分析与解:如果碰巧一次取出的4个小球的颜色都相同,就回答是“4”,那么显然不对,因为摸出的4个小球的颜色也可能不相同。
回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。
如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。
“最不利”的情况是什么呢?那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。
这样摸出的9个球是“最不利”的情形。
这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。
所以回答应是最少摸出10个球。
由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。
如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。
现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不利的情况分析问题。
例2 口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。
其中红球3个、黄球5个、蓝球10个。
现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?分析与解:与例1类似,也要从“最不利”的情况考虑。
最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。
此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。
因此所求的最小值是12。
例3一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。
最不利原则【知识点】1、当问题中出现“保证”二字,就要求我们必须利用“最不利”原则分析问题。
最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。
才能达到“保证”目的。
2、要求:从最不利的条件开始分析;考虑所有最坏的可能。
例题1:一个盒子中装有10个黑球、6个白球和4个红球,一次至少取出多少个球才能保证其中有白球?【答案】15个【分析】最不利的情况是每次取出的都是黑球或红球,就是没有白球。
这时取了10个黑球和4个红球。
然后第15个球就必然能取到白球。
所以一次至少取出10+4+1=15(个)球。
例题2:泡泡糖出售机内有各种颜色的糖,有红色糖10颗、白色糖15颗、蓝色糖16颗、黄色糖20颗,紫色糖3颗。
如果投入1元钱钱币可得到1颗糖,那么至少投入多少元钱,就可以保证得到5颗颜色相同的糖?【答案】20元【分析】要想保证有5颗颜色相同的糖,根据最不利原则,先把数量不够5的得到。
然后让剩下4种颜色的糖都各得到了4颗,那么再任意得到一颗糖就能达到“保证有5颗颜色相同的糖”,算式:3+4×4+1=20(元),至少投20元钱。
例题3:一个布袋里有大小相同、颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个。
请问:(1)一次至少要取出多少个球,才能保证取出的球至少有3种颜色?(2)一次至少要取出多少个球,才能保证其中必有红色球和黄色球?【答案】(1)19(2)15【分析】(1)要使取出的球至少有3种颜色,最不利的情况是尽量多的取出其中某2种颜色的球,且这2种球的数量要最多。
显然红球和黄球最多,全都取出共有10+8=18个球,此时再多取1个球,就可以保证至少有3种颜色,因此取19个球即可。
(2)要使取出的球中必有红球和黄球,最不利的情况首先是蓝色和绿色的球都取出,然后红色和黄色的其中一种颜色的球都取出(选最多)。
算式:3+1+10+1=15个球。
例题4:一个布袋里有大小相同、颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个。
第五讲简单抽屉原理、最不利原则(讲义)小学数学,第五讲简单抽屉原理、最不利原则(讲义)的教案一、教学目标1.了解简单抽屉原理和最不利原则的概念和应用。
2.培养学生观察和思考能力,以及解决问题的能力。
3.提高学生的逻辑思维能力和数字概念。
二、教学重难点1.学生理解简单抽屉原理的基本概念。
2.学生掌握最不利原则的应用。
三、教学准备1.准备写有题目的幻灯片或板书。
2.准备《小学数学教材》学生用书及练习册。
四、教学过程(一)导入环节在教师引导下,学生回顾前几节课所学的内容,让学生回忆这些原则的名字和应用。
(二)新课讲解1.简单抽屉原理的应用教师通过幻灯片演示,向学生解释简单抽屉原理的定义。
简单抽屉原理:把物品放入相同数量的抽屉中,那么其中至少有一个抽屉是有两个或两个以上物品的。
教师利用实感教学法,让学生产生感性认识,进而把它转变为理解。
通过下面这个例子,学生更容易理解简单抽屉原理。
比如,你把10只鞋子放在5抽屉中,不管如何,其中必然有至少一个抽屉里会放2只及以上的鞋子。
2.最不利原则教师向学生介绍最不利原则的定义。
最不利原则:在不确定情况下,可以认为对于某个问题的结构和策略选择,是最不利和最不利的。
让学生理解,最不利原则这个名字意思是要考虑到最不利的情况。
下面这个例子可用最不利原则进行练习:李明想猜一个数字,他一开始猜37,但是没有猜中。
然后他每次猜的时候,你都告诉他他猜的数是大于或小于正确答案的数。
怎么才能用最少的猜测次数找出正确答案?根据最不利原则:考虑到最不利的情况,对于每次猜错的情况,我们先排除它能确定的数字,对于剩下的区间,我们只需要猜区间中间的数字。
因此,可以采用二分法,每次猜数范围的中间数,直到猜中答案。
(三)课堂练习让学生分思考题和实践练习两个部分练习。
思考题练习:1.把6个苹果装在5个盒子里,其中至少有两个盒子有苹果。
2.把9个人排成三排,其中至少有2个人在同一排。
实践练习:1.商场的数字锁是四位数的,每位都是从0到9的数字,不允许重复,那么最多可以有多少个组合?2.在一张地图上,给定三个点A、B和C,找出它们中任意两个点之间的最短距离。
最不利原则例题解答在日常生活和生产中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则。
下面通过具体例子说明最不利原则以及它的应用。
例1:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?分析与解:如果碰巧一次取出的4个小球的颜色都相同,就回答是“4”,那么显然不对,因为摸出的4个小球的颜色也可能不相同。
回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。
如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。
“最不利”的情况是什么呢?那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。
这样摸出的9个球是“最不利”的情形。
这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。
所以回答应是最少摸出10个球。
由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。
如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。
现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不利的情况分析问题。
例2口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。
其中红球3个、黄球5个、蓝球10个。
现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?分析与解:与例1类似,也要从“最不利”的情况考虑。
最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。
此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。
因此所求的最小值是12。
例3一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。
问:在乐乐之前已就座的最少有几人?分析与解:将15个座位顺次编为1~15号。
简单抽屉原理与最不利原则(二)
本讲主线
1.最不利原则
2.最不利原则与抽屉
1. 最不利原则:
这是一种从反面考虑的思想,要保证能够在最坏的情况下都能保证事情肯定发生的思考方式
实例:盒子里,有
双完整的筷子
相同的点数?
相的点数
只兔子在埋头偷吃胡萝卜.
“砰”的一枪打死了一只兔子. 请问:菜园里还剩多少只兔子?
3.抽屉原理:
抽屉原理:
⑴10个苹果放到
个苹果
⑵本质:平均数思想,肯定有人要不低于平均数
⑶用途:证明题
知识大总结平均数思想,肯定有人要不低于平均数;。
最不利原则最不利原则1、肉包子7个,素包子6个,至少吃几个,才能吃到两种馅。
2、白球7个,黑球8个,至少摸几个,才能保证。
a、有2个相同颜色的球。
b、有2个不同颜色的球。
c、有2个黑球。
d、有2个白球。
e、有1个黑,1个白。
f、每种颜色都有5个球。
g、保证有5球同色。
3、黄球10个,白球7个,黑球a、有3种颜色的球。
b、一定会有黑球。
8个,至少摸多少个,才能保证:c、一定会有黄球。
d、有3球同色。
4、黄球3个,白球7个,黑球8个,至少摸几个,才能保证5个球同色。
5、在一副扑克牌种,最少取出多少张,才能保证。
a、四种花色都有。
b、取出2张红桃。
c、有1张10。
d、有1张红桃10。
e、有2张花色相同。
6、5把钥匙5把锁,一把钥匙开一把锁,a、最少试多少次才能保证打开所有的锁。
b、最少试多少次才能将钥匙和锁配套。
7、在一个口袋中有10个黑球,6个白球,4个红球,至少从中取出多少个球才能保证其中有白球。
8、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个,问一次至少摸出几个球才能保证有4个颜色相同的小球。
9、一只鱼缸里有很多条鱼,共有五个品种,至少捞出多少条鱼才能保证有5条相同品种的鱼。
10、一个布袋里有红色、黄色、黑色袜子各20只,至少取出多少只袜子才能保证其中有2双颜色不相同。
至少取出多少只袜子才能保证其中有2双颜色相同。
11、口袋里有同样大小和同样质地的红,黄,蓝三种颜色的小球共20个,其中红球4个,黄球6个,蓝球10个,一次至少取出多少个小球才能保证有6个小球颜色相同。
12、口袋里有足够多的红,白,蓝,黑四种颜色的单色球,从口袋中任意取出若干个球,至少要取出多少个球才能保证有9个球是同一颜色的。
13、一排椅子只有27个座位,部分座位已有人就座,东东来后一看,他无论坐哪个座位,都将与已就座得人相邻。
在东东来之前就已就座的最少有几人。
14、一排椅子只有35个座位,部分座位已有人就座,乐乐来后一看,她无论坐在那个座位,都将与已就座的人相邻,在乐乐来之前就已就座的最少有几人。
数量关系排列组合最不利原则一、排列与组合的基础概念排列是指从n个不同元素中取出m个元素(m≤n),按照一定的顺序放入一起所构成的组合。
组合是指从n个不同元素中取出m个元素(m≤n),不考虑顺序。
排列的总数是A(n,m),组合的总数是C(n,m)。
二、排列的计算公式A(n,m) = n! / (n-m)!,其中"!"表示阶乘,即n×(n-1)× (1)三、组合的计算公式C(n,m) = n! / [m!(n-m)!]。
四、最不利原则的应用场景最不利原则主要用于解决某些最值问题,当需要找出最坏情况下的结果时,可以采用最不利原则。
在排列组合中,最不利原则常用于计算至少需要多少个元素才能保证至少有一种排列或组合满足特定条件。
五、最不利原则的解题步骤1. 确定问题的要求和条件,明确需要求的是最坏情况下的结果。
2. 分析问题中的排列或组合情况,找出所有可能的排列或组合。
3. 确定最不利的情况,即违反条件最多的情况。
4. 计算在最不利情况下所需要的元素数量。
5. 得出结论。
六、举例说明最不利原则在排列组合中的应用假设有5个不同的物品,我们需要至少取出多少个物品才能保证至少有一种特定的排列或组合。
按照最不利原则,我们需要先考虑所有可能的排列和组合情况,然后找出违反条件最多的情况,即最不利的情况。
在这种情况下,我们需要至少取出3个物品才能保证至少有一种特定的排列或组合。
因为只有取出3个物品时,才可能出现所有可能的排列和组合情况,从而得到最不利的结果。
七、练习题与答案解析1. 题目:有5本不同的书分给4名同学,每人至少分到一本书,共有多少种不同的分法?答案解析:根据最不利原则,我们需要先考虑所有可能的分法,即4人中的任意1人都可以得到任意1本不同的书,因此共有4种分法。
由于每本书只能给一个人,所以剩下的3本书只能按照相同的顺序分给剩下的3个人,因此共有4×3×2=24种不同的分法。
第5讲最不利原则一、学习目标1.理解最不利原则,学会从“最倒霉”情况思考问题。
2.利用最不利原则解释并证明一些结论及生活中的一些问题。
二、知识要点日常生活中,我们经常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则.最不利原则就是从“最糟糕”的情况下考虑问题,如果最不利的情况下都能满足要求,那么其他的情况下也必然能满足要求.三、例题精选【例1】桌子上有大小及形状相同的礼物盒,8个装着水晶球,9个装着小汽车.问:(1)从中至少取出多少个礼物盒,才能保证有两个相同的礼物?(2)从中至少取出多少个礼物盒,才能保证有两个不同的礼物?【★★★★★】【解析】(1)最不利的情况:取出了1个水晶球和1个小汽车.在这种情况下,再取1个,必然会有两个颜色相同的礼物.故至少取出3+(个)才2=1能保证;(2)最不利的情况:取出9个都是小汽车.在这种情况下,再加1个,必然会有两个不同的礼物.故至少取出10+(个)才能保证.9=1【巩固1】一个口袋里有大小及形状相同的黑球6个,白球7个.问:(1)从中至少摸出多少个小球,才能保证有两个颜色相同的球?(2)从中至少摸出多少个小球,才能保证有两个颜色不同的球?【★★★★★】【解析】(1)最不利的情况:取出了1个黑的1个白的.在这种情况下,再加1个,必然会有两个颜色相同的球.故至少摸出3+(个)才能保证;2=1(2)最不利的情况:取出7个都是白球.在这种情况下,再加1个,必然会有两个颜色不同的球.故至少摸出8+(个)才能保证.7=1【例2】教室的讲桌上放着大小及形状相同的白板笔,有5支黑笔,4支蓝笔,3支红笔.小倩蒙着眼睛从中摸笔,那么她要从中至少取出多少支笔,才能保证取出的笔中有蓝笔?【★★★★★】【解析】最不利的情况:取出了5支黑笔,3支红笔.在这种情况下,再加1支,必然会有蓝笔出现.故她要从中至少取出9+(支)笔才能保证.+15=3【巩固2】一个口袋中装着大小及形状相同的乒乓球,有6个白球,5个黑球,10个黄球.小红闭着眼睛从中摸球,那么她要从中至少取出多少个球,才能保证取出的球中有黑球?【★★★★★】【解析】最不利的情况:取出了6个白球,10个黄球.在这种情况下,再加1个,必然会有黑球出现.故她要从中至少取出17++(个)球才能保证.6=110【例3】口袋里有同样大小和同样质地的红、黄、蓝、绿颜色的弹珠各10个.问:依次最少摸出几个弹珠,才能保证至少有3个弹珠颜色相同?【★★★★★】【解析】最不利的情况:每种颜色的小球各拿出了2个.在这种情况下,再加1个,必然会有3个小球颜色相同.故最少摸出9⨯(个)才能保证.+4=12【巩固3】有一个布袋中有5种不同颜色的糖果,每种都有20个.问:一次至少要取出多少个糖果,才能保证其中至少有3个糖果的颜色相同?【★★★★★】【解析】5种颜色看作5个抽屉,要保证一个抽屉中至少有3个苹果,最“坏”的情况是每个抽屉里有2 个“苹果”,共有:5210⨯=个,再取1个就能满足要求,所以一次至少要取出11个糖果,才能保证其中至少有3个糖果的颜色相同.【例4】 小白给鱼缸中的鱼换水,需要先将鱼取出然后放至盛有水的容器中.鱼缸中有黄色小鱼4条,红色小鱼6条,蓝色小鱼8条.小白每次取2条鱼,那么至少要取几次,才能保证盛有水的容器中3种颜色的鱼都有?【★★★★★】【解析】最不利的情况:取出了6条红鱼,8条蓝鱼.在这种情况下,再取1条,必然会有黄鱼出现,即3种颜色都有.故至少要取15186=++(条)才能保证,所以要取)(1(7215条次)=÷,即至少要取817=+(次).【巩固4】笨笨家的小水缸里养着会长大的彩色精灵球,其中白的有9个,黑的有10个,黄的有5个,绿的有3个.若每次取2个精灵球,至少取几次才能保证有4个颜色不同的精灵球?【★★★★★】【解析】最不利的情况:取出了10个黑色,9个白色,5个黄色.在这种情况下,再取1个,必然会有白色精灵球出现,即4种颜色都有.故至少要取2515910=+++(个)才能保证,所以要取)(1(12225个次)=÷,即至少要取13112=+(次).【例5】 桔子、香蕉、梨、苹果四种水果各若干个混放在一起,每个人取出两个,那么,至少需要多少个人才能保证有两人取出的水果是完全相同的?(每种水果足够多)【★★★★★】【解析】在取水果时,一共有10种情况:1个桔子1根香蕉、1个桔子1个梨、1个桔子1个苹果、1根香蕉1个梨、1根香蕉1个苹果、1个梨1个苹果、2个桔子、2根香蕉、2个梨、2个苹果.最不利的情况是有10个人,他们选取的水果各不相同,可是只要再有一个人,就一定会和前面的某个人选取的水果相同,所以要10+1=11人就能保证有两人取出的水果是完全相同的.【巩固5】有蓝、绿、白三种颜色的卡片各若干张,每个人可以从中任意选取两张.那么,需要多少个人才能保证至少两人选的卡片颜色相同?【★★★★★】【解析】在选取卡片时,一共有6种情况:蓝绿、蓝白、绿白、蓝蓝、绿绿、白白.最不利的情况是有6个人,他们选取卡片的颜色各不相同,可是只要再有一个人,就一定会和前面的某个人选取的卡片颜色相同,要选7张.【例6】一副扑克牌,共54张,问:至少从中摸出多少张牌才能够保证:(1)至少有5张牌的花色相同;(2)四种花色的牌都有;(3)至少有3张牌是红桃。