如何确定空间中的点的位置
- 格式:doc
- 大小:10.00 KB
- 文档页数:1
怎样找空间直角坐标系的坐标在空间几何中,我们经常需要利用直角坐标系来描述和定位不同点的位置。
直角坐标系由三个互相垂直的坐标轴组成,分别表示x、y和z方向的坐标。
通过找到空间直角坐标系的坐标,我们可以准确地描述和计算点与点之间的距离、角度以及其他几何信息。
下面将介绍如何找到空间直角坐标系的坐标。
在空间直角坐标系中,我们要找到一个点的坐标,需要确定它在x、y和z轴上的投影长度或坐标值。
下面以一个具体的例子来说明具体的步骤。
假设我们要找到点P的坐标,在已知直角坐标系中,我们首先需要确定一个基准点,这个基准点一般被定义为原点O。
接下来,我们需要确定x、y和z轴的方向和单位长度。
1.确定原点和轴方向:–将我们选定的基准点标记为原点O,在直角坐标系中通常处于空间的中心。
–分别选择三个互相垂直的轴作为x轴、y轴和z轴,并标记它们的正方向。
2.确定轴的单位长度:–由于直角坐标系的单位长度可以自由选择,我们需要确定每个轴的单位长度。
–可以根据具体的要求和情境来选择适当的单位长度。
比如,当我们描述点的物理距离时,可以选择米(m)作为单位长度。
3.量取点P在每个轴上的投影长度:–在找寻点P的坐标时,我们需要测量它在每个轴上的投影长度。
这可以通过测量该点到原点O沿着每个轴的距离来实现。
–为了测量点P到原点O的距离,我们可以使用直尺、尺子或其他测量工具。
4.记录坐标值:–确定了点P在每个轴上的投影长度后,我们可以将它们作为点P的坐标值进行记录。
–然后按照一定的次序表示点P的坐标值,一般以(x, y, z)的形式表示,其中x、y和z分别代表在x轴、y轴和z轴上的坐标值。
通过上述步骤,我们可以找到空间直角坐标系中点P的坐标。
这个坐标可以帮助我们准确地描述和计算点P与其他点之间的距离、角度以及其他几何信息。
在三维空间中,直角坐标系是一种非常有用且常见的坐标系,它在数学、物理、工程等领域都有广泛的应用。
总结起来,找到空间直角坐标系的坐标需要确定原点和轴的方向,以及选择适当的轴单位长度。
打印版本
高中数学 3.2 如何利用向量确定点、线、面在空间的位置?
答:立体几何研究的基本对象是点、直线、平面以及由它们组成的空间图形,用向量表示点、直线、平面在空间中的位置,是利用空间向量解决立体几何问题的基础和关键.
(1)利用向量确定点的位置
在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置就可以用OP 来表示.我 们把向量OP 称为点P 的位置向量.
(2)利用向量确定直线的位置
设点A 是直线l 上一点,向量a 是直线l 的方向向量,在直线l 上取=AB a ,那么对于 直线l 上任意一点P ,一定存在实数t ,使得AP t AB =.这样,点A 和向量a 就可以确定直线l 的位置,同时还可以具体表示出l 上的任意一点.
(3)平面α的法向量:直线l α⊥,取直线l 的方向向量a ,则向量a 叫做平面α的法向量;给定一点A 和一个向量a ,那么,过点A ,以向量a 为法向量的平面是完全确定的.
如何求一个平面的法向量?
答:求法向量的步骤:(1)设出平面的法向量),,(z y x =;(2)找出平面内的两个不共线的向量的坐标),,(),,,(321321b b b a a a ==;(3)根据法向量的定义建立关于z y x ,,的方程组⎪⎩⎪⎨⎧=⋅=⋅0
0;(4)解方程组,取其中的一个解,即得一个法向量。
1.2 空间向量在立体几何中的应用 1.2.1 空间中的点、直线与空间向量学习 目 标核 心 素 养1.了解空间中的点与空间向量的关系. 2.理解直线的方向向量.(重点) 3.掌握利用空间向量求空间两直线所成的角的方法.(重点、难点)4.掌握利用空间向量证明两条直线平行或垂直的方法.(重点)5.理解公垂线段的概念并会求其长度.1.通过学习直线的方向向量,公垂线段等概念,培养数学抽象素养.2.利用向量法证明两直线垂直,求两直线所成的角,提升逻辑推理和数学运算的素养.在如图所示的正方体中,怎样借助空间向量来描述A 、B 、C 、D 在空间中是不同的点?如何借助空间向量来描述直线AD 与A 1D 1,AD 与BB 1以及AD 与AA 1的位置关系?怎样借助空间向量来求BC 1与BD 1所成的角?1.空间中的点与空间向量一般地,如果在空间中指定一点O ,那么空间中任意一点P 的位置,都可以由向量OP →唯一确定,此时,OP →通常称为点P 的位置向量.提醒:空间直角坐标系中的任意一点都由它的位置向量唯一确定. 2.空间中的直线与空间向量一般地,如果l 是空间中的一条直线,v 是空间中的一个非零向量,且表示v 的有向线段所在的直线与l 平行或重合,则称v 为直线l 的一个方向向量.此时,也称向量v 与直线l 平行,记作v ∥l .(1)如果A 、B 是直线l 上两个不同的点,则v =AB →,即为直线l 的一个方向向量.思考1:直线l 的方向向量唯一吗?直线l 的方向向量之间有怎样的关系? [提示] 直线l 的方向向量不唯一,若v 为直线的方向向量,则λv (λ≠0)也为直线l 的方向向量,直线l 的任意两个方向向量都平行.思考2:空间中的直线l 的位置由v 能确定吗?[提示] 空间中直线l 的位置可由v 和直线上的一个点唯一确定. (2)如果v 1是直线l 1的一个方向向量,v 2是直线l 2的一个方向向量,则v 1∥v 2⇔l 1∥l 2或l 1与l 2重合.3.空间中两条直线所成的角(1)设v 1、v 2分别是空间中直线l 1,l 2的方向向量,且l 1与l 2所成角的大小为θ,则θ=〈v 1,v 2〉或θ=π-〈v 1,v 2〉,所以sin θ=sin 〈v 1,v 2〉,cos θ=|cos 〈v 1,v 2〉|.(2)〈v 1,v 2〉=π2⇔l 1⊥l 2⇔v 1·v 2=0. 4.异面直线与空间向量设v 1,v 2分别是空间中直线l 1与l 2的方向向量. (1)若l 1与l 2异面,则v 1与v 2的关系为v 1与v 2不平行. (2)若v 1与v 2不平行,则l 1与l 2的位置关系为相交或异面. 提醒:“v 1与v 2不平行”是“l 1与l 2异面”的必要不充分条件.(3)若A ∈l 1,B ∈l 2,则l 1与l 2异面时,v 1,v 2,AB →不共面.若v 1,v 2,AB →不共面,则l 1与l 2异面.提醒:“v 1,v 2,AB →不共面”是“l 1与l 2异面”的充要条件.(4)公垂线段:一般地,如果l 1与l 2是空间中两条异面直线,M ∈l 1,N ∈l 2,MN ⊥l 1,MN ⊥l 2.则称MN 为l 1与l 2的公垂线段,两条异面直线的公垂线段的长,称为这两条异面直线之间的距离.提醒:空间中任意两条异面直线的公垂线段都存在并且唯一.1.思考辨析(正确的打“√”,错误的打“×”) (1)直线l 的方向向量是唯一的.( )(2)若两条直线平行,则它们的方向向量的方向相同或相反.( )(3)若向量a 是直线l 的一个方向向量,则向量k a 也是直线l 的一个方向向量.( )[答案] (1)× (2)√ (3)×[提示] (1)× 与直线l 平行或共线的任何向量都可作为l 的方向向量. (2)√ (3)× k ≠0.2.(教材P 36练习A ①改编)设A (2,2,3),B (4,0,1)在直线l 上,则直线l 的一个方向向量为( )A .(1,2,5)B .(3,-2,-2)C .(1,-1,-1)D .(-1,1,-1) C [AB →=(4,0,1)-(2,2,3)=(2,-2,-2)=2(1,-1,-1),故选C .] 3.若异面直线l 1,l 2的方向向量分别是a =(0,-2,-1),b =(2,0,4),则异面直线l 1与l 2的夹角的余弦值等于( )A .-25B .25C .-255D .255B [∵|a |=5,|b |=25,a·b =(0,-2,-1)·(2,0,4)=-4, ∴cos 〈a ,b 〉=-45×25=-25.∵异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,∴选B .]4.直线l 1,l 2的方向向量分别为v 1=(3,0,2),v 2=(1,0,m ),若l 1∥l 2,则m 等于________.23 [因为l 1∥l 2,所以存在实数λ,使v 1=λv 2. 即(3,0,2)=λ(1,0,m ),∴⎩⎪⎨⎪⎧λ=3,λm =2.∴m =23.]空间中点的位置确定【例1A (3,4,0),B (2,5,5),C (0,3,5).(1)若OP →=12(AB →-AC →),求P 点的坐标;(2)若P 是线段AB 上的一点,且AP ∶PB =1∶2,求P 点的坐标. [思路探究] (1)由条件先求出AB →,AC →的坐标,再利用向量的运算求P 点的坐标.(2)先把条件AP ∶PB =1∶2转化为向量关系,再运算. [解] (1)AB →=(-1,1,5),AC →=(-3,-1,5), OP →=12(AB →-AC →)=12(2,2,0)=(1,1,0), ∴P 点的坐标为(1,1,0).(2)由P 是线段AB 上的一点,且AP ∶PB =1∶2, 知AP →=12PB →.设点P 的坐标为(x ,y ,z ),则AP →=(x -3,y -4,z ),PB →=(2-x,5-y,5-z ), 故(x -3,y -4,z )=12(2-x,5-y,5-z ),即⎩⎪⎨⎪⎧ x -3=12(2-x ),y -4=12(5-y ),z =12(5-z ),得⎩⎪⎨⎪⎧x =83,y =133,z =53.因此P 点的坐标为⎝ ⎛⎭⎪⎫83,133,53.此类问题常转化为向量的共线、向量的相等解决,设出要求的点的坐标,利用已知条件得关于要求的点的坐标的方程或方程组求解即可.[跟进训练]1.已知点A (2,4,0),B (1,3,3),如图,以AB →的方向为正方向,在直线AB 上建立一条数轴,P ,Q 为轴上的两点,且分别满足条件:(1)AP ∶PB =1∶2; (2)AQ ∶QB =2∶1. 求点P 和点Q 的坐标. [解] 由已知,得PB →=2AP →, 即OB →-OP →=2(OP →-OA →), OP →=23OA →+13OB →.设点P 坐标为(x ,y ,z ),则上式换用坐标表示,得 (x ,y ,z )=23(2,4,0)+13(1,3,3),即x =43+13=53,y =83+33=113, z =0+1=1.因此,P 点的坐标是⎝ ⎛⎭⎪⎫53,113,1.因为AQ ∶QB =2∶1,所以AQ →=-2QB →,OQ →-OA →=-2(OB →-OQ →),OQ →=-OA →+2OB →, 设点Q 的坐标为(x ′,y ′,z ′),则上式换用坐标表示, 得(x ′,y ′,z ′)=-(2,4,0)+2(1,3,3)=(0,2,6), 即x ′=0,y ′=2,z ′=6. 因此,Q 点的坐标是(0,2,6).综上,P 点的坐标是⎝ ⎛⎭⎪⎫53,113,1,Q 点的坐标是(0,2,6).利用向量法求异面直线的夹角(或余弦值)为26,则x =( )A .3B .-3C .-11D .3或-11 A [∵a ·b =x -8+10=x +2,|a |=x 2+41,|b |=1+4+4=3.∴26=cos 〈a ,b 〉=a ·b |a ||b |=x +23x 2+41.则x +2>0,即x >-2, 则方程整理得x 2+8x -33=0, 解得x =-11或x =3. x =-11舍去, ∴x =3.](2)如图,BC =2,原点O 是BC 的中点,点A 的坐标为⎝ ⎛⎭⎪⎫32,12,0,点D在平面yOz 上,且∠BDC =90°,∠DCB =30°.①求向量CD →的坐标;②求AD →与BC →的夹角的余弦值. [解] ①如图过D 作DE ⊥BC 于E , 则DE =CD ·sin 30°=32, OE =OB -BD cos 60°=1-12=12, ∴D 的坐标为⎝ ⎛⎭⎪⎫0,-12,32,又∵C (0,1,0),∴CD →=⎝ ⎛⎭⎪⎫0,-32,32.②依题设有A 点坐标为⎝ ⎛⎭⎪⎫32,12,0, ∴AD →=⎝ ⎛⎭⎪⎫-32,-1,32,BC →=(0,2,0),则AD →与BC →的夹角的余弦值:cos 〈AD →,BC →〉=AD →·BC →|AD →|·|BC →|=-105.利用向量求异面直线所成角的步骤(1)确定空间两条直线的方向向量; (2)求两个向量夹角的余弦值;(3)确定线线角与向量夹角的关系:当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角.提醒:两异面直线夹角范围为⎝ ⎛⎦⎥⎤0,π2,时刻注意两异面直线夹角的范围是解题的关键.[跟进训练]2.侧棱垂直底面的三棱柱ABC -A 1B 1C 1中,底面是边长为2的正三角形,侧棱AA 1=2,点O ,M 分别是BC ,A 1C 1的中点,建立如图所示空间直角坐标系.(1)写出三棱柱各顶点及点M 的坐标; (2)求异面直线CM 与BA 1夹角的余弦值. [解] (1)根据图形可求得下列点的坐标:A (3,0,0),B (0,-1,0),C (0,1,0),A 1(3,0,2),B 1(0,-1,2),C 1(0,1,2),M ⎝ ⎛⎭⎪⎫32,12,2.(2)CM →=⎝ ⎛⎭⎪⎫32,-12,2,BA 1→=(3,1,2),∴CM →·BA 1→=5,|CM →|=5,|BA1→|=22, ∴cos 〈CM →,BA 1→〉=5210=104.利用空间向量处理平行问题[1.直线的方向向量在确定直线时起到什么作用? [提示] (1)非零性:直线的方向向量是非零向量.(2)不唯一性:直线l 的方向向量有无数多个,可以分为方向相同和相反两类,它们都是共线向量.(3)给定空间中的任一点A 和非零向量a ,就可以确定唯一一条过点A 且平行于向量a 的直线.2.两条平行直线的方向向量有什么关系?[提示] 设直线l ,m 的方向向量分别为a ,b ,则l ∥m ⇔a ∥b ⇔a =λb . 【例3】 (1)已知向量a =(2,4,10),b =(3,x,15)分别是直线l 1、l 2的方向向量,若l 1∥l 2,则x =________.(2)如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证:FC 1∥平面ADE .(1)6 [∵l 1∥l 2,∴存在实数k 使得b =k a , ∴⎩⎪⎨⎪⎧3=2k ,x =4k ,15=10k ,解得x =6.](2)[证明] 如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1).→=(0,2,1),DA→=(2,0,0),AE→=(0,2,1),所以FC1因为DA⊂平面ADE,AE⊂平面ADE,且(0,2,1)=0×(2,0,0)+1×(0,2,1),→=0×DA→+1×AE→,即FC1所以有FC1⊂平面ADE或FC1∥平面ADE,又因为FC1⊄平面ADE,所以FC1∥平面ADE.1.(变问法)本例3(2)中G,H分别为AD,B1C1的中点,求证:EGFH为平行四边形.[证明]如图所示,建立空间直角坐标系.则E(2,2,1),G(1,0,0),F(0,0,1),H(1,2,2).所以EG→=(-1,-2,-1),FH→=(1,2,1).所以FH→=-EG→,所以FH→∥EG→.显然EG 与FH 不重合,故EG ∥FH .又|EG →|=(-1)2+(-2)2+(-1)2=6,|FH →|=12+22+12=6,∴EG =FH ,∴四边形EGFH 为平行四边形.2.(变问法)本例3(2)条件不变,改为求平面ADE ∥平面B 1C 1F .[证明] 如图所示,建立空间直角坐标系,则A (2,0,0),D (0,0,0),B 1(2,2,2),C 1(0,2,2),E (2,2,1),F (0,0,1),得DE →=(2,2,1),FB 1→=(2,2,1),DA →=(2,0,0),B 1C 1→=(-2,0,0),所以DE →=FB 1→,DA →=-B 1C 1→,又相互不共面,所以DE ∥FB 1,DA ∥B 1C 1,又DA ∩DE =D ,FB 1∩B 1C 1=B 1,所以平面ADE ∥平面B 1C 1F .1.证两条直线平行可转化为证明两直线的方向向量平行.2.用向量法证明线面平行:一是证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;二是证明直线的方向向量与平面内的两个不共线向量是共面向量且直线不在平面内.3.利用向量证明面面平行,可转化为证明线面平行.提醒:利用直线的方向向量证明直线与直线平行、直线与平面平行时,要注意向量所在的直线与所证直线或平面无公共点.1.空间中的点与直线可以利用空间坐标与直线的方向向量来研究,更进一步研究空间几何中的平行、垂直关系.2.在解决空间中直线与直线所成角的问题时,既可构造相应的角求解,也可以借助空间向量求解,建立空间直角坐标系或选择合适的基底都能解决问题.3.利用空间坐标系可以研究异面直线问题,如异面直线所成的角、异面直线的距离等.1.若A(1,0,1),B(2,3,4)在直线l上,则直线l的一个方向向量是()A.(-1,3,3)B.(1,3,3)C.(3,3,5) D.(2,4,6)B[AB→=(2,3,4)-(1,0,1)=(1,3,3).]2.向量a=(x,1,-2),b=(3,x,4),a⊥b,则x=()A.8B.4C.2D.0C[∵向量a=(x,1,-2),b=(3,x,4),a⊥b,∴a·b=3x+x-8=0,解得x=2.故选C.]3.直线l1与l2不重合,直线l1的方向向量为v1=(-1,1,2),直线l2的方向向量为v2(-2,0,-1),则直线l1与l2的位置关系为________.垂直[∵v1·v2=-1×(-2)+1×0+2×(-1)=0,∴v1⊥v2.]4.已知向量a=(1,0,-1),向量b=(2,0,0),则〈a,b〉=________.45°[∵a·b=2×1+0×0+(-1)×0=2,|a|=2,|b|=2,∴cos〈a,b〉=a·b|a|·|b|=22.又0≤〈a ,b 〉≤180°,∴〈a ,b 〉=45°.]5.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,求BM 与AN 所成角的余弦值.[解] 以C 1为坐标原点,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则A (2,0,2),N (1,0,0),M (1,1,0),B (0,2,2),∴AN→=(-1,0,-2),BM →=(1,-1,-2),|AN →|=(-1)2+02+(-2)2=5, |BM →|=12+(-1)2+(-2)2=6,∴cos 〈AN →,BM →〉=AN →·BM →|AN →|·|BM →|=-1+45×6=330=3010.。
位置原理知识点五年级位置原理是数学中一个重要的概念,它帮助我们确定物体在空间中的具体位置。
在五年级的数学课程中,学生将学习如何使用坐标系统来确定物体的位置。
以下是关于位置原理的一些基础知识点:位置原理是一个帮助我们确定物体在平面上位置的方法。
在数学中,我们通常使用一个叫做坐标系的工具来实现这一点。
坐标系由两条互相垂直的数轴组成,通常称为x轴和y轴。
1. 坐标系的建立:- 在平面上,我们首先确定两条互相垂直的直线,一条水平的称为x轴,另一条垂直的称为y轴。
- 这两条轴在交点处相遇,这个点被称为原点,用(0,0)表示。
2. 坐标的定义:- 每个点在坐标系中都有一个唯一的坐标,由两个数字组成,分别对应x轴和y轴上的位置。
- 例如,点A的坐标是(3,4),意味着它在x轴上距离原点3个单位,在y轴上距离原点4个单位。
3. 坐标的读法:- 坐标通常读作“x,y”,其中x是横坐标,y是纵坐标。
4. 正负坐标:- 如果一个点位于x轴的左侧或y轴的下方,它的坐标将包含负数。
- 例如,点B的坐标是(-2,-3),表示它在x轴左侧2个单位,y轴下方3个单位。
5. 图形的绘制:- 利用坐标,我们可以准确地绘制出各种图形,如直线、曲线、多边形等。
- 例如,要绘制一条通过点A(3,4)和点B(-2,-3)的直线,我们可以找到这两个点的坐标,然后在坐标系中连接它们。
6. 坐标的应用:- 坐标不仅在数学中有广泛应用,它也是地理、物理、工程和许多其他领域中确定位置的基础。
7. 练习和应用:- 通过绘制不同点的坐标,学生可以练习如何使用坐标系来确定物体的位置。
- 学生还可以通过解决实际问题来加深对位置原理的理解,例如确定两个城市在地图上的位置。
通过学习位置原理,五年级的学生将能够更好地理解空间中物体的位置关系,为以后更高级的数学学习打下坚实的基础。
希望这些基础知识点能帮助学生在五年级的数学学习中取得进步。
数学确定位置的方法数学中确定位置的方法有很多,主要涉及到几何学和代数学两个方面。
下面将详细介绍一些常见的数学方法来确定位置。
1. 坐标系坐标系是在空间中确定位置的重要数学工具。
平面坐标系一般用直角坐标系或极坐标系表示。
直角坐标系中,每个点都可以由横坐标和纵坐标确定。
在平面上,可以使用二维直角坐标系。
在三维空间中,可以使用三维直角坐标系。
而极坐标系则通过使用极径和极角来确定位置。
坐标系可以用来表示具体的位置,以及进行点的运算等。
2. 向量向量是另一种确定位置的数学工具。
向量可以表示位置、方向和大小。
在平面上,一个向量可以由两个分量表示,即向量的横坐标和纵坐标。
在三维空间中,一个向量可以由三个分量表示,即向量的x 坐标、y 坐标和z 坐标。
向量的长度可以表示距离,而方向可以帮助确定位置。
3. 矩阵变换矩阵变换是一种数学方法,可以用来确定物体在空间中的位置、旋转和缩放等。
在平面上,可以使用二维矩阵变换,其中一个矩阵表示了平移、旋转和缩放等变换。
在三维空间中,可以使用三维矩阵变换。
矩阵变换可以应用于计算机图形学和计算机动画等领域,用来确定对象的位置和变换。
4. 相似性变换相似性变换是指保持形状和比例的变换。
在平面上,相似性变换包括平移、旋转和缩放等操作。
这些变换可以通过矩阵运算来表示和计算。
相似性变换不改变物体的形状,只改变物体的位置和大小。
5. 三角学三角学是数学中研究三角形和角的学科。
三角学可以用来确定位置,特别是在测量和导航等领域。
通过使用三角函数,如正弦、余弦和正切等,可以计算角度和距离。
三角学的应用包括测量、导航、天文学和建筑学等。
6. 坐标变换坐标变换是一种数学方法,可以用来将一个坐标系中的点转换到另一个坐标系中。
坐标变换可以在平面上或者在空间中进行。
在平面上,常用的坐标变换包括平移、旋转和缩放等。
在三维空间中,坐标变换可以通过线性变换和非线性变换等实现。
坐标变换可以帮助确定物体在不同空间中的位置。