-
直线 MA1 的方程为 y=
(x+2),直线
NA
2 的方程为 y=
+
联立直线 MA1 与直线 NA2 的方程可得
=
由
+ ( +) ( -)
=
=
- ( -) ( -)
=
-
(x-2),
-
-
· -· +
提升·关键能力
类分考点,落实四翼
考点一
定值问题
[例1] 已知双曲线 C: - =1 (a>0,b>0)的虚轴长为4,直线2x-y=0
为双曲线C的一条渐近线.
(1)求双曲线C的标准方程;
(1)解:因为虚轴长为4,所以2b=4,即b=2,
因为直线2x-y=0为双曲线C的一条渐近线,
与曲线C方程联立,消去y整理得(4+3k2)x2+6kx-9=0,
Δ=36k2+4×9×(4+3k2)=144(1+k2)>0恒成立,
设M(x1,y1),N(x2,y2),
则|MN|= +
|x1-x2|=
+
×
设线段 MN 的中点为 T(x0,y0),
+
则 x0=
=-
由题意,直线MN的斜率不为0,
设M(x1,y1),N(x2,y2),
直线 MN 的方程为 x=my-4,且-<m<,
2
2
2
与 -=1 联立消去 x 可得(4m -1)y -32my+48=0,且Δ=64(4m +3)>0,