不确定度的表示方法
- 格式:docx
- 大小:121.61 KB
- 文档页数:11
测量不确定度评定与表示JJF1059.1--20122015.12.29南京JJF1059.1测量不确定度的评定与表示一、(测量)不确定度概念1.不确定度概念绝对测量 x y =直接测量相对测量 0x x y -= 0y U y Y ⊃±=间接测量 ),(21N x x x f y ⋅⋅⋅=定义:测量不确定度是与测量结果相联系的参数,合理地赋予被测量结果的分散性。
新定义:根据所获信息,表征赋予被测量值分散性的非负参数。
2.不确定来源表现为:(1)对被测量的定义不完整或不完善 (2)复现被测量定义的方法不理想 (3)测量所取样本的代表性不够(4)对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善(5)对模拟式仪器的读数存在人为偏差(6)仪器计量性能上的局限性(7)赋予测量标准和标准物质的标准值的不准确 (8)引用常数或其它参量的不准确(9)与测量原理、测量方法和测量程序有关的的近似性或假定性 (10)在相同的测量条件下,被测量重复观测值的随机变化 (11)对一定系统误差的修正不完善 (12)测量列中的粗大误差因不明显而未剔除(13)在有的情况下,需要对某种测量条件变化,或者是在一个较长的规定时间内,对测量结果的变化作出评定。
应把该相应变化所赋予测量值的分散性大小,作为该测量结果的不确定度。
3.测量不确定度分类与字母表示 3.1绝对量表达A 类标准不确定度(用统计方法得到):A u 一般可统一表示 标准不确定度B 类标准不确定度(用其他方法得到):B u 为:)(x u 或i u 测量不 合成标准不确定度C u 或)(y u C 确定度扩展不确定度 U 或)(y U : C ku U = (k 为包含因子)3.2相对量表达A 类标准不确定度(用统计方法得到):rel A u . 一般可表示 相对标准不确定度B 类标准不确定度(用其他方法得到):rel B u . 为:)(x u rel 或rel i u . 相对测量 合成标准不确定度relC u . 或 )(y u rel C 不确定度相对扩展不确定度 rel U 或 )(y U rel : rel C rel ku U .= (k 为包含因子)二、测量不确定度评定与表示1.A 类标准不确定度计算A 类标准不确定度是指测量随机效应引入的标准不确定度,用A 类评定。
大物实验不确定度计算公式
在大物实验中,不确定度是一个非常重要的概念。
不确定度可以理解为测量结果与真实值之间的差异,它是一个用来描述测量精度的指标。
在实验中,我们需要计算出每个测量值的不确定度,以便更好地评估实验结果的可靠性和精确性。
下面是大物实验中常用的不确定度计算公式:
1. 算术平均值的不确定度:
其中,n表示测量次数,Δx表示每次测量值与平均值之差,s
表示样本标准差。
2. 直接测量值的不确定度:
其中,δ表示仪器误差,Δ表示读数误差,L表示仪器量程。
3. 复合测量值的不确定度:
其中,u表示单个元件的不确定度,σ表示元件间的相关系数。
在实验过程中,我们需要根据实际情况选择合适的不确定度计算公式,并根据公式计算出每个测量值的不确定度。
同时,我们还要注意将不确定度传递至最终结果中,以便更好地评估实验的可靠性和精确性。
- 1 -。
不确定度的正确表示方法
在科学研究中,不确定性是无法避免的。
它是由各种因素引起的,包括实验误差、测量仪器的限制以及数据处理的不完善等。
正确地表示不确定度对于正确解读和解释实验结果至关重要。
目前,有几种常用的方法来表示不确定度。
首先,最常见的表示方法是使用标准偏差。
标准偏差是一种衡量数据集的离散程度的统计量,可以通过计算数据集中每个数据点与平均值的差异来得到。
标准偏差越大,表示数据的离散程度越高,因此不确定度也就越大。
标准偏差通常以±符号表示,如±0.05。
其次,另一种常见的表示方法是置信区间。
置信区间是指在给定的置信水平下,真实值可能落在的一个范围内。
置信区间通常以两个数值表示,如95%置信区间为(6.8, 7.2)。
这意味着在95%的概率下,真实值位于6.8和7.2之间。
除了以上两种方法外,还有一种表示不确定度的方法是使用误差棒。
误差棒是一种在图表中使用的图形表示方法,用于显示每个数据点附近的不确定度范围。
误差棒通常以垂直线或横杠的形式绘制在每个数据点上方或下方。
不确定度的正确表示对于科学研究的可靠性和可重复性至关重要。
科
学家应该根据实验的具体情况选择合适的表示方法,并明确说明表示方法以及代表的含义。
此外,还应该注意在实验设计和数据处理过程中尽量减小不确定度,以提高研究结果的可靠性。
测量不确定度基础知识测量是科学研究和工程技术实践中不可或缺的一环,而测量结果的准确性和可靠性对于决策和判断具有重要意义。
然而,在实际测量过程中,由于各种因素的影响,测量结果往往无法完全确定。
为了对测量结果进行科学评价和合理使用,我们需要了解和掌握测量不确定度的基础知识。
一、测量和测量不确定度的概念测量是指通过使用一定的方法和仪器,对某个物理量进行定量描述的过程。
而测量不确定度则是指测量结果与被测量值之间的差异范围,用于表征测量结果的可靠性和精确度。
二、不确定度的来源测量不确定度的来源主要包括以下几个方面:1. 仪器误差:由于仪器的制造、使用和环境等原因,仪器自身会引入一定的测量误差;2. 人为误差:人为因素,比如操作技巧、人的主观判断等,也会对测量结果产生一定的影响;3. 环境影响:测量环境中的温度、湿度、压力等因素会对测量结果产生影响;4. 校准误差:校准标准或参考物的不确定度会传递到被校准物上。
三、不确定度的分类不确定度可以分为随机不确定度和系统性不确定度。
1. 随机不确定度:由于测量条件的变化以及仪器本身的随机误差等原因而引起的不确定度。
2. 系统性不确定度:由于仪器固有误差、人为误差以及环境因素等引起的不确定度。
四、常见的不确定度评定方法1. 重复性法:在相同条件下,对同一物理量进行多次测量,计算测量结果的标准差,作为不确定度的估计值。
2. 间接测量法:通过对测量结果的计算和分析,结合测量过程中的误差来源进行综合估计。
3. 标准样品法:使用一系列已知精度的标准样品进行测量,通过对比分析得到不确定度的估计值。
五、不确定度的表示方法不确定度通常用标准不确定度或者扩展不确定度来表示。
1. 标准不确定度:表示为u(x),是由随机误差引起的不确定度的估计,在测量过程中通常使用标准差来表示。
2. 扩展不确定度:表示为U(x),是对标准不确定度进行扩展得到的,通常采用置信系数进行扩展计算,比如95%的置信度。
不确定度数据表示方法一.不确定度概述:在科学实验、产品生产、商业贸易及日常生活的各个领域,我们都要进行测量工作。
测量的目的是确定被测量的值,测量不确定度表示测量结果的不确定或不肯定的程度,也就是不可信度。
定义:不确定度是与测量结果相关联的,用于合理表征被测量值分散性大小的参数。
分类及表示:①标准不确定度:以标准差表示的不确定度,以µ表示。
②扩展不确定度:以标准不确定度的倍数表示的不确定度,以U表示。
(扩展不确定度表明了具有较大置信概率的区间的半宽)③合成标准不确定度:各标准不确定度分量的合成,以µc 表示(测量结果标准差的估计值)1.1.合成标准不确定度被测量y 由N 个其他量x i 的函数确定时,假设其函数关系为y=f (x 1,x 2,……,x N )上式称为不确定度传播率。
为灵敏系数,r (x i ,x j )为相关系数。
1.1.1. 当被测量的函数形式为:y =A 1x 1+A 2x 2+……+A N x N ,且各输入量之间不相关时,合成标准不确定度为:若用灵敏系数表示:∑∑∑=-=+=∂∂⋅∂∂+∂∂=N i N i Ni j j i j i j i i i c x u x u x x r x f x f x u x f y u 111122)()(),(2)(][)(i x f ∂∂∑∑∑===⋅⋅⎥⎥⎦⎤⎢⎢⎣⎡∂∂∂⋅∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂=N i N i N j j i j i i j i i i c x u x u x x f x f x x f x u x f y u 1112232222)()(21)(][)(2∑=∂∂=N i i i c x u x f y u 122)(][)(∑==Ni i i i c x u A y u 122)()(∑∑====ni i N i i i i c y u x u c y u 12122)()()(∑∑∑=-=+=∂∂⋅∂∂+∂∂=N i N i Ni j j i j i ji i i cx u x u x x r x fx f x u x f y u 111122)()(),(2)(][)(1.1.2. 当被测量的函数形式为: 合成标准不确定度为:1.1.3若所有输入量都相关,且相关系数为1时,合成标准不确定度为: u c (y):合成标准不确定度u i (x ) :各输入量的标准不确定度 νi : u i (x )的自由度νeff 越大表明评定的合成标准不确定度u c (y)越可靠。
不确定度数据表示方法一.不确定度概述:在科学实验、产品生产、商业贸易及日常生活的各个领域,我们都要进行测量工作。
测量的目的是确定被测量的值,测量不确定度表示测量结果的不确定或不肯定的程度,也就是不可信度。
定义:不确定度是与测量结果相关联的,用于合理表征被测量值分散性大小的参数。
分类及表示:①标准不确定度:以标准差表示的不确定度,以µ表示。
②扩展不确定度:以标准不确定度的倍数表示的不确定度,以U表示。
(扩展不确定度表明了具有较大置信概率的区间的半宽)③合成标准不确定度:各标准不确定度分量的合成,以µc 表示(测量结果标准差的估计值)1.1.合成标准不确定度被测量y 由N 个其他量x i 的函数确定时,假设其函数关系为y=f (x 1,x 2,……,x N )上式称为不确定度传播率。
为灵敏系数,r (x i ,x j )为相关系数。
1.1.1. 当被测量的函数形式为:y =A 1x 1+A 2x 2+……+A N x N ,且各输入量之间不相关时,合成标准不确定度为:若用灵敏系数表示:∑∑∑=-=+=∂∂⋅∂∂+∂∂=N i N i Ni j j i j i j i i i c x u x u x x r x f x f x u x f y u 111122)()(),(2)(][)(i x f ∂∂∑∑∑===⋅⋅⎥⎥⎦⎤⎢⎢⎣⎡∂∂∂⋅∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂=N i N i N j j i j i i j i i i c x u x u x x f x f x x f x u x f y u 1112232222)()(21)(][)(2∑=∂∂=N i i i c x u x f y u 122)(][)(∑==Ni i i i c x u A y u 122)()(∑∑====ni i N i i i i c y u x u c y u 12122)()()(∑∑∑=-=+=∂∂⋅∂∂+∂∂=N i N i Ni j j i j i ji i i cx u x u x x r x fx f x u x f y u 111122)()(),(2)(][)(1.1.2. 当被测量的函数形式为: 合成标准不确定度为:1.1.3若所有输入量都相关,且相关系数为1时,合成标准不确定度为: u c (y):合成标准不确定度u i (x ) :各输入量的标准不确定度 νi : u i (x )的自由度νeff 越大表明评定的合成标准不确定度u c (y)越可靠。
自由度的含义:自由度是方差之不确定度的度量,由于测量不确定度用标准偏差(方差的正平方根)表示,自由度也就是“测量不确定度的不确定度”。
自由度大表示测量不确定度的不确定度小,即测量结果之不确定度的可信度高,反之亦然。
用第一ppt 的例子来说明,当自由度很大时,表示“被测量的值落在 831。
9 ℃ ~839.1 ℃区间的置信水平约为 95 ﹪”的可信度高,对于自由度 v= 12,3.6 ℃的不可信度大约是 21 ﹪。
1.2扩展不确定度 分为两种U 和U p 。
1.2.1.U :就是合成标准不确定度的倍数,U =ku c ,即由合成标准不确定度直接乘以包含因子k ( k 的典型值为2~3) 1.2.2. U p :对于给定的置信概率P ,扩展不确定度记为U p =k p u c ,此时包含因子 k p 的选择如下如果组成u c 的不确定度分量较多,且各分量对不确定度的影响不大时,据中心极限定理,合成不确定度u c 的分布接近正态分布。
若有效自由度充分大,按正态分布计算若有效自由度较小,按t 分布计算(按有效自由度查表)如果u c 的概率分布为非正态分布时,应根据相应的分布确定k p 。
二.不确定度的评定测量不确定度的评定方法分为两类,即A 类和B 类,两者之间无主次之分,享有同等地位。
2.1 A 类不确定度评定A 类不确定度是采用观察列进行统计分析的方法来评定标准不确定度的,用标准误差来表示。
测量列算术平均值的标准误差σx ̅为 σx ̅=σ√nn P nP P x x x y ⋅⋅⋅⋅=2121∑==Ni i i i c x x u P y y u 12]/[)()(∑=∂∂=N i i ic x u x fy u 1)()(当测量次数较少时,其估算值会偏大,这是,从理论上可得A类不确定度的估算值为u A=t(n-1)·σx̅式中,t(n-1)是一个大于1的修正值(被称为t分布临界值)。
测量次数n不同,修正量t(n-1)不同。
下表给出了不同测量次数n对应的修正量。
2.2 B类不确定度的评定实则基于对一个事件发生的信任程度。
很多不确定度分量实际上还必须用别的非统计方法来评定。
2.2.1 B类不确定度评定的信息来源主要有六项:①:以前的测量数据。
②:对有关数据资料和测量仪表特性的了解和经验。
③:生产部门提供的技术说明文件。
④:校准证书、检定证书或其他文件提供的数据、准确度的等别或级别,包括目前还在使用的极限误差等。
⑤:手册或某些资料给出的参考数据及其不确定度。
⑥:规定实验方法的国家标准或类似技术文件中给出的重复性限r或重复性限R。
2.2.2 B类不确定度的评定方法采用不同于A类的其他方法估算。
首先,根据仪器、仪表说明书,国家标准,材料特性等来确定测量误差限△,例如,已知仪表精度等级和量程可计算出误差限。
其次,确定测量误差的分布,常见的有正态分布和均匀分布。
最后,将测量误差限(对应的置信度≈1)换算成相似的标准误差u j(对应一倍的标准误差置信度)。
对于均匀分布的误差,其B类不确定度估算为u j=√3对于服从正态分布的误差,其B类不确定度估算为u j=△3三.测量不确定度评定实例3.1用电压表测量稳压电源的输入电压3.1.1测量方法及测量的数学模型用已经校准的电压表测量一台稳压电源的输出电压U 。
电压表的分辨力为0.01V 。
电压表校准的不确定度和表的分辨力引起的不确定度可以忽略不计。
因此,多次直接测量,数据的平均值即为输出电压的最佳估计值。
故测量的数学模型可以表示为:U =U 测 (1.1)3.1.2测量数据进行了10次测量,测量数据及相关计算列于表1.1表1.1 输出电压测量数据及相关计算检查平均值和残差的计算是否有误,可将正残差与负残差分别相加,若两个和的绝对值不相等,且两者之差大于末位的1/2,则可判定计算有误。
本例中183i i υυ∑+=∑-=,再复核计算,表明计算正确。
也可直接求残差的代数和看是否为零,或小于末位的半个单位来进行判断。
10次测量值的平均200.56V 10iU U ∑==测 (1.2)即为输出电压U 的最佳估计值。
3.1.3根据贝塞尔公式计算测量列的实验标准差 单次测量值的实验标准差()()0.477V i S U ==B(1.3)S (U i )表征测量列中测量数据的分散性。
假定测量值服从正态分布,就可以估计,大约有68.3%的测量值处在(200.56±0.48)V 区间,95%的测量值处在(200.56±2×0.48)V 区间,99.7%的测量值处在(200.56±3×0.48)V 区间。
残差绝对值大于3×0.48V 的测量值不应该出现(小概率事件)。
如果出现,可判定为粗大误差。
10次测量的每一个测量值的实验标准差均为0.48V 。
这10个测量值仅是测量值总体的一个样本。
由此计算的标准差仅是这个样本的标准差,而不是总体标准差。
总体标准差可表示为:()i U n σ=→∞(1.4)这无法实际测得,只是理论上存在,又叫理论标准差。
而样本标准差仅是理论标准差的有偏估计值。
样本方差S 2(U i )才是总体理论方差σ2(U i )的无偏估计值,即最佳估计值。
所以在统计分析中,多用方差作为数据分散性的度量。
标准差是方差的正平方根,在实际工作中使用更为方便。
3.1.4计算平均值的实验标准差()(()0.15V i S U S U =B 测(1.5)可以这样理解S (U 测)的含义:再进行若干组测量,每组n 个测量值均可求得一个平均值和相应的测量列的标准差。
若测量条件不变,各组测量列的标准差相互很接近。
各组测量值的平均值不会完全一样,它们也构成一个数列。
由这个数列也可用贝塞尔公式计算它的标准差。
由统计理论可证明,平均值数列的标准差等于单个测量列标准差的1/n 倍,即为(1.5)式。
这表明,平均值数列的分散性比单一测量列的分散性小,即各平均值比测量列中的测量值相互之间更靠近。
v =n -a 叫做自由度,它是求和的项数n ,减去对和的限制数a 。
上例中,n =10,限制条件仅有残差之和为零,即Συi =0,故a =1,因而v =10-1=9。
自由度越大,计算的样本标准差就越接近总体标准差,所得结果的可信度就越高。
3.1.5测量结果报告平均值的实验标准差就是它的标准不确定度。
本例中,这是唯一的不确定度来源。
认为近似服从正态分布,测量结果可以表示为:输出电压 U =200.56V ,u =S (U 测)=0.15V , (1.6)或者 U =200.56V ±2×u=200.56V ±0.30V ,p =95% (1.7)0.30V 即为扩展不确定度。
说明:测量值的分散是输出电压的随机变化和测量仪表读数随机起伏的综合反映。
3.2用发光强度标准灯校准光照度计的示值3.2.1校准方法如图(2.1)所示,将光强标准灯和照度计的光度探测器安置在测光导轨上,并调整好它们的状态,设定两者之间的距离为l 。
则标准灯在接收面上产生的标准照度值为E S =I / l 2 (2.1)式中,I 为标准灯的发光强度,I =268.8 cd ,l =1.600 m ,故有:E S =268.8 cd/(1.600 m )2=105.0 lx (2.2)由照度计测得的照度示值为E t图2.1 发光强度标准灯校准光照度计示意图3.2.2数学模型如上所述,校准的数学模型可以表示为2t s t IE E E E l ∆=-=-(2.3)式中,△E 为照度计的示值误差。
3.2.3输入量的标准不确定度评定(1) 由△E 分别对E t ,I 和l 求偏导数,即得相应的灵敏系数()()()12233112tE c E E c I l E I c l l ∂∆⎫==⎪∂⎪⎪∂∆⎪==-⎬∂⎪⎪∂∆==⎪∂⎪⎭(2.4)由此可得:()()()()()()1122233312t t u c u E u E u c u I u I l I u c u l u l l ⎫==⎪⎪⎪==⎬⎪⎪==⎪⎭(2.5)(2) E t 为照度计10次测量所得示值E ti 的平均值,即E t =ΣE ti /10。