均值不等式练习试题
- 格式:doc
- 大小:3.49 MB
- 文档页数:31
均值不等式测试题一、选择题1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( )A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( )A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值224.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.210 5.设a>0,b>0,则以下不等式中不恒成立的是( )A.(a+b )(ba 11+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥-6.下列结论正确的是( )A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当0<x ≤2时,x -x1无最大值 7.若a 、b 、c>0且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( )A .13-B .13+C .223+D .223-二.填空题:8.设x>0,则函数y=2-x4-x 的最大值为 ;此时x 的值是 。
9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。
10.函数y=142-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=242+x x (x ≠0)的最大值是 ;此时的x 值为 _______________.三.解答题:12.函数y=log a (x+3)-1(a>0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn>0,求n m 11+的最小值为。
《 均值不等式》练习题1、 求下列函数的最小值(1) 已知t > 0 ,y = tt t 142+- ;(2) 、y = x 2 + 142+x ;(3)、y = 182++x x (x > 0 )(4)已知:0< x < 2π,求 f(x) = xx x 2sin sin 62cos 12++的最小值(5)若x> 0,y > 0,求 (x+22)21()21x y y ++ 的最小值2、已知 x < 45, 求函数 y = 4x -2 +541-x 的最大值。
3、求下列函数的最大值(1)、y = 41622++x x ; (2)、若20<x<60, y = 250022+-x x x4、已知x>0,132++x x x ≤ a 恒成立,求a 的取值范围5、已知a > 0,b > 0, a 2 +4b 2 = 1 , 求t = ba ab 22+的最大值。
6、已知:x > 0, y > 0,且x + y = 20,求lgx + lgy 的最大值7、已知:a > 0,b > 0,且.1222=+b a 求a.21b +的最大值8、已知 a + b = 1 ,求1212+++b a 的最大值9、若a + b+ c = 1,求121212+++++c b a 的最大值。
10、求下列函数的最大值(1)0< x <23,y = 4x (3-2x) (2) y = x 21x -(3)已知: a > 0,b > 0,c > 0,a 2 + b 2 + c 2 = 4 R 2 ,求y =ab +bc + ac 的最大值(结果用R 表示)(4)、已知:x > 0,y > 0,且x + 4y = 1,求xy 的最大值(5)、已知x > 0,y > 0,且143=+y x ,求xy 的最大值11、求下列函数的最小值(1)已知:x > 0, y > 0,且,191=+y x 求 x + y 的最小值(2)已知:a > 0, b > 0,且4a + b = 30,求ba 11+的最小值(3)、已知:x > 0, y > 0,且2x + 8y – xy = 0,求x+ y 的最小值(4)、已知:x > 0,y > 0,134=+yx 求x + 3y 的最小值 (5)、已知:x > 0,y >0,xlg2+ ylg8 = lg2. 求yx 311+的最小值均值不等式的高级应用12、求下列各式的最小值(1)、求)(162b a b a -+的最小值 (2)、设a >0,b >0, 求ab b a 211++的最小值。
(完整版)均值不等式专题20道-带答案均值不等式专题3学校:___________姓名:___________班级:___________考号:___________⼀、填空题1.若则的最⼩值是__________.2.若,且则的最⼤值为______________.3.已知,且,则的最⼩值为______.4.已知正数满⾜,则的最⼩值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最⼩值是______.6.设正实数满⾜,则的最⼩值为________7.已知,且,则的最⼩值是________8.已知正实数x,y满⾜,则的最⼩值是______9.已知,函数的值域为,则的最⼩值为________.10.已知,,且,则的最⼩值为__________.11.若正数x,y满⾜,则的最⼩值是______.12.已知正实数x,y满⾜,则的最⼩值为______.13.若,,,则的最⼩值为______.14.若,则的最⼩值为________.15.已知a,b都是正数,满⾜,则的最⼩值为______.16.已知,且,则的最⼩值为______.17.已知点在圆上运动,则的最⼩值为___________.18.若函数的单调递增区间为,则的最⼩值为____.19.已知正实数,满⾜,则的最⼤值为______.20.已知,,则的最⼩值为____.参考答案1.【解析】【分析】根据对数相等得到,利⽤基本不等式求解的最⼩值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题考查基本不等式求解和的最⼩值问题,关键是能够利⽤对数相等得到的关系,从⽽构造出符合基本不等式的形式. 2.【解析】【分析】先平⽅,再消元,最后利⽤基本不等式求最值.【详解】当时,,,所以最⼤值为1,当时,因为,当且仅当时取等号,所以,即最⼤值为,综上的最⼤值为【点睛】本题考查利⽤基本不等式求最值,考查基本分析求解能⼒,属中档题.3.4.【解析】【分析】直接利⽤代数式的恒等变换和利⽤均值不等式的应⽤求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应⽤,主要考查学⽣的运算能⼒和转化能⼒,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满⾜,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】由题意可得经过圆⼼,可得,再+利⽤基本不等式求得它的最⼩值.【详解】圆,即,表⽰以为圆⼼、半径等于2的圆.再根据弦长为4,可得经过圆⼼,故有,求得,则,当且仅当时,取等号,故则的最⼩值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应⽤,属于基础题.6.8【解析】【分析】根据基本不等式求最⼩值.【详解】令,则当且仅当时取等号.即的最⼩值为8.【点睛】在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.7.【解析】【分析】根据基本不等式求最⼩值.【详解】因为,当且仅当时取等号,所以的最⼩值是【点睛】由已知分离,然后进⾏1的代换后利⽤基本不等式即可求解.【详解】正实数x,y满⾜,则当且仅当且即,时取得最⼩值是故答案为:【点睛】本题主要考查了利⽤基本不等式求解最值,解题的关键是进⾏分离后利⽤1的代换,在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利⽤基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成⽴,所以的最⼩值为,故答案为.【点睛】本题主要考查⼆次函数的图象与性质,以及基本不等式的应⽤,属于中档题. 在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.10.【解析】【分析】因为,所以,=(当且仅当,即,时取等号),所以的最⼩值为,故答案为.【点睛】本题考查基本不等式及利⽤基本不等式求最值,将所求式运⽤“1”的变换,化为积为常数的形式是关键,属于中档题. 11.【解析】【分析】利⽤乘“1”法,借助基本不等式即可求出.【详解】正数x,y满⾜,则,,当且仅当时取等号,故的最⼩值是12,故答案为:12【点睛】本题考查了基本不等式及其应⽤属基础题.12.2【解析】【分析】利⽤“1”的代换,求得最值,再对直接利⽤基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满⾜,,,当且仅当,即,时,取等号,的最⼩值为2.故答案为:2.【点睛】本题考查基本不等式的应⽤,熟记不等式应⽤条件,多次运⽤基本不等式要注意“=”是否同时取到,是中档题【分析】由条件可得,即有,由基本不等式可得所求最⼩值.【详解】若,,,即,则,当且仅当取得最⼩值9,故答案为:9.【点睛】本题考查基本不等式的运⽤,注意运⽤“1”的代换,考查化简运算能⼒,属于基础题.【解析】【分析】由基本不等式,可得到,然后利⽤,可得到最⼩值,要注意等号取得的条件。
均值不等式知识点:二、习题讲解:例1: (1)求y = x+Z(x>O)的最小值(2)求y = x + 2(x ≥ 2)的最小值X(3)己知x>2,求y = x+ —的最小值x-2变式训练:41.已知x>o,求y = 2- X -一的最大值X2.当x>-l时,求f(x)= x+ —的最小值x + 13•已知xv-∙求函数y=4x-2+—-一的最上值4 4x-54•己知JU b. c ∈ R »求证:a2 +b2 + c2≥ ab+bc+ acy= 2-3x--(x>0)的最大值是2-4石5・X6.y = ZxH—-—,x>3x-37.y = 2sinx÷-—,xu(O,τr)Sin X例2: (1)已知OVXV丄,求y =ZX(I-2x)的最衣值2 2(2)已知:a、b都是正数,Ka + b = l, α=a÷i, β = b+-f求a+β的最小值a b变式训练:1.己知OVXV 求函数y =x(l - 3x)的最大值2.当0 Cx <4时,求y =χ(8 - 2x)的最人值。
3.设0 <xv扌,求函数y = 4x(3-2x)的最人值。
4已知Ovxvl,求函数y =Jx(I-X)的最大值.:o<x<-,求怖数y = Jx(2-3x)5. 36若x+2y = l,则2x + 4y的最小值是_______7.已知x,yeRJ且满足- + ∑ = 1,则Xy的绘大值为__________2.设x ∈f θ,-1,则函数y = 2血x + 1的最小值为2 丿 sin2x5 Z X Y - — 4x+ S3.己知Xnz 则f(x)=-~~ 的最小值2 2x-4 y=手宀的最小值是4. √X 2 + 2IK X 2 + 7x+10 “ 一… 求y= (x>-l)的值域。
χ- + 56求函数y =-==的值域。
7•设x ,y,z 为正实数.且满足x-2y+3z = 0 •则的最小值例 4:己知a,b,cwR+,且a + b+c = l∙求证:丄 + —+ - ≥9变式训练:1 41.己知a >0,b >0,a +b= 2 >则y = — +二的最小值是 2正数x 5y 满足X +2y = l,求l∕x+l∕ y 的最小值。
高三数学均值不等式试题1.不等式对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是()A.(-2,0)B.(-∞,-2)U(0,+∞)C.(-4,2)D.(-∞,-4)U(2,+∞)【答案】C【解析】,所以,所以,解得.【考点】基本不等式、一元二次不等式解法2.已知,则的最小值为()A.B.C.D.【答案】D【解析】因为且,所以=【考点】基本不等式。
点评:本题中给出a,b为正数使人较容易联想到基本不等式,但关键是基本不等式的灵活应用,此题我们通过1的代换把转化为,从而达到了应用基本不等式的条件。
1的代换是这个地方常用的一种做题技巧,我们应熟练掌握。
3.某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产件,则平均仓储时间为,且每件产品每天的仓储费用为1元. 为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【答案】B【解析】每件产品的生产准备费用与仓储费用之和为,当且仅当,即时取到最小值4.在平面内,已知直线,点是之间的定点,点到的距离分别为和,点是上的一个动点,若,且与交于点,则面积的最小值为____.【答案】6【解析】如图所示,设,由题意知与相似,所以,所以,所以,当且仅当,即时,等号成立,所以面积的最小值为6.5.已知,且,则的最大值为▲.【答案】8【解析】设,因为所以因为所以当且仅当即时取等号所以因为所以,解得,即所以的最大值为86.设x>0,则的最小值为()A.3B.C.D.-3【答案】B【解析】,,当且仅当,即时等号成立,的最小值为。
7.设x、y满足约束条件若目标函数的最大值1,则的最小值为()A.B.C.D.4【答案】D【解析】满足条件的点的可行域如下:因为,所以目标函数在点处取到最大值,故,所以当且仅当时取等号,故选D8.已知两个正数满足,则取最小值时的值分别为A.B.C.D.【答案】B【解析】,当且仅当时等号成立;,即。
2.2 均值定理1.下列不等式中一定成立的是 ( )A .m +1m ≥2B .n m +m n≥2 C .m 2+n 2≥2 n ·m D .m +n ≥2mn 2.已知m >0,则16m m +取得最小值时,当且仅当( )A .2B .4C .8D .163.若x ≠0,则6x 2+2x 2 的最小值是 ( )A .2 3B .3 2C .4 2D .4 34.已知x >0,则3x +3x 取最小值时,当且仅当x = ( )A .1B .3C .6D .95.设0<x <1,0<y <1且x ≠y ,则x +y ,2xy ,x 2+y 2,2xy 中,最大的一个是( )A .2xyB .x 2+y 2C .2xyD .x +y6.若x >0,则4-x -1x 的最大值是 ( )A .6B .4C .3D .27.如果,a b R +∈,且1a b +=,那么a b 有( )A .最小值14B .最大值14C .最小值12 D .最大值128. 已知0,0a b >>,则b aa b +的最小值是____________________9.已知010x <<,则(10)x x -的最大值是________10.若0,0m n >>,且21m n +=,则m n ⋅的最大值为______________11.若1a >则当a =________ 时,451a a ++-能取得最小值。
12.已知x >0,则27x +13x 的最小值是____________13.若x >0,则当x =______时,y =10-2x -32x 的最大值是___________14.已知0<x <8,则x (8-x )的最大值是____________15.当x >1时,121x x ++-的最小值是:_________,此时x =_________.16若,a b R +∈,且3a b ab ++=,求a b 的取值范围。
利用一、求最值之杨若古兰创作直接求 例1、若x,y 是负数,则(x +1)2+(y +1)2的最小值是【】2y LXA.3B.7C .4D .922例2、设X ,”R ,a >1,b >1,若a x -b y -3,a +b =23,则1+1的最大值为【】xyA.2B.3C.1D.122练习1.若x >0,则x +2的最小值为.x练习2.设x ,y 为负数,则(x +y )(1+4)的最小值为【】xyA.6B.9C.12D 15练习3.若a >0,b >0,且函数f (x )-4x 3一ax 2-2bx +2在x -1处有极值,则ab 的最大值等于【】A.2B.3C.6D.9练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,贝1J x -吨. 练习5.求以下函数的值域:(a +b )2的最小值是【】cd A.0B.4C.2D.1 例3、已知a>0,b >0,c >0且a +b +c —1,则(1一1)(1一1)(1一1)最小值为【】abcA.5B.6C.7D.8凑系数例4、若x ,y e R +,且x +4y -1,则x .y 的最大值是. 练习1.已知x ,y E R +,且满足x +y =1,则孙的最大值为. 34练习2.当0<x <4时,求y -x (8-2x )的最大值.凑项例5、若函数f (x )-x +1(x >2)在x -a 处取最小值,则a -【】x -2⑴y-3x 2+2:2⑵ 练习6.已知x >0,y >0, 1 y -x + x x ,a ,b ,y 成等差数列,x , d ,y 成等比数列,则A-1+2B-1+3C-3D-4练习1.已知x <5,求函数尸4,一2+,的最大值.44%—5 练习2.函数,+%(%>3)的最小值为【】%—3A.2B.3C.4D.5练习3.函数2%2+3(%>0)的最小值为【】% A-艰BYCWD-微 两次用不等式例6、已知抽a +log b >1,贝I3a +9b 的最小值为 22例7、已知a >0,b >0,则1+1+2%a 的最小值是【】ab A-2B-2R C-4D-5例8、设a >b >c >0,则2a 2+L -10ac +25c 2的最小值是【aba (a -b ) A-2B-4C-2V 5D-5练习1.设a >b >0,A-1B-2C-3D-4 练习2.设a >b >0,则a 2+1的最小值是【】b (a —b )A-2B-3C-4D-5练习3.设a >b >0,则a +1的最小值是【】 十b (2a -b )A-33/2B-3<3C-232D-33/4222 练习4.设a >2b >0,则(a -b )2+9的最小值是-b (a-2b ) 换元例9、若%2+y 2二4,则%-y 的最大值是-练习1.设a ,b G R ,a 2+2b 2=6,则a +b 的最小值是【】 A--22B--52C--3D--732 例10、设%,y 是实数,且%2+y 2=4,则S =2%y 的最小值是【】%+y -2A --2B--、2C-2-2k D-2(<2+1)练习1.若%2+y2T 盯则最大值是%y —±,%+y -1 练习2.若0<a <1,0<%<y <1,且(log x )(log y )二1则冲【】aa 消元例11、设x ,y ,z 为正实数,满足%.2y +3z =0,则竺的最小值是. xz练习1.已知实数a ,b ,c 〉0满足a +b +c =9,ab +b c +ca=24,,则b 的取值范围为 两次用 11 a 2+—+j aba (a —b ) 的最小值是【例12、已知负数x,y,z满足x2+y2+z2=1,则S=上z的最小值是【】2xyzA.3B.3a+;")C.4D.2(v2+1)练习1.已知负数x,y,z满足x2+y2+z2=1,则S=上的最小值是【】2xyz2A.3B.9C.4D.2c2练习2.已知x,y,z均为负数,则盯+y z的最大值是【】x2+y2+z2A.q初C.2,/2D.2V3练习3.已知实数x,y,z满足x2+y2+z2=1,则尤xy+yz的最大值是全体代换例13、已知〃>0,b>0,a+b=2,贝y=1+4的最小值是【】abA.7B.4C.9D.5例14、函数y=a-(a>0,a01)的图象恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则I—+—的最小值为.mn例15、设a>0,b>0,若4万是3a与3b的等比中项,则1+1的最小值为abA.8B.4C.1D.14、例16、已知a,b,c都是正实数,且满足log(9a+b)=log abb,则使4a+b>c恒成93立的c的取值范围是A.[4,2)B.[0,22)C.[2,23)D.(0,25]练习1.函数klogG+3)」(〃>0且a=1)的图象恒过定点A,若点A在直线a mx+ny+1=0上,其中mn>0,则1+2的最小值为.mn练习2.若x,y e R+,且2x+y=1,则L1的最小值为.xy练习3.已知x>0,y>0,且1+9=1,求x+y的最小值.xy练习4.若x,y e R+且2x+y=1,求11的最小值.+xy练习5.已知a,b,x,y e R+且ab[,求x+y的最小值.+=1xy练习6.已知x>1,x>1,xx2=1000,则上+▲的最小值等于【I1212lg x lg x12A.4B,4<6C,7+2、落D.7—261-33练习7.若0<x<1,a,b为常数,则竺+上的最小值是x 1一x练习8.已知a >b >也,+'>与恒成立,则m 的取值范围是a -bb -ca 一c 练习9.a ,b e(0,+8),a +3b =1,则+_L 最小值为aa33b分离法【分式】例17、已知t >0,则函数y ='2一4t +1的最小值为.t例18、已知x >5,则f (x )=x 2一4x +5有【】 22x -4A.£大值58.最小值50最大值1口.最小值1 练习1.求y =x 2+7x +10(x >_1)的值域.x +1练习2.若x >1,则函数y =x +1+上的最小值为.'xx 2+1放缩法——解不等式例19、设x ,y 为实数,若4x 2+y 2+町=1,则2x +y 的最大值 是.例20已知2+1=2(x >0,y >0),则xy 的最小值是.xy 例21、若a 是1+2b 与1_2b 的等比中项,则2ab 的最大值为【】a +2bA.空B.,翔C.V5D.\;215丁"5"万 练习1.若实数x ,y 满足x 2+y 2+町=1,则x +y 的最大值是. 练习2.若正实数X ,Y 满足2X +Y +6=XY ,则XY 的最小值是 练习3.已知x >0,y >0,x +2y +2町=8,则X +2y 的最小值是【】A.3B.4C.£D.q练习4.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值.练习5:已知5+2=2(X >0,y >0)恒成立,则xy 的最小值是. Xy 练习6.若直角三角形周长为1,求它的面积最大值. 练习7.若实数X ,y 满足4X +4y =2X +1+2y +1则t=2X +2y 的取值范围是 取平方例22、若a ,b ,c >0且a 2+2ab +2ac +4bc =12,则a +b +c 的最小值是【】A.2x /3B .3C .2D .<3练习1.若a ,b ,c>0且a (a+b+c )+bc =4-2a ,则2a +b +c 的最小值为【】A -<3-1B .\;3+1C .2七3+2D.2,;3-2练习2.已知X ,y 为正实数,3X +2y =10,求函数w =3X +2y 的最值.取平方+解不等式 例23、已知a>0,b>0,c >0且a +b+c =1,则a 2+b 2+c 2最小值为【】A.1B.1C.1D.1结合2单3调性4——5与函数例24、若a ,b e R +,a +b=1,则ab+-1的最小值为【】abA.41B.41C.°1D,2 44224-练习1,求函数丫_%2+5的值域. y _E练习2.求以下函数的最小值,并求取得最小值时工的值. ⑴y _X 2+3X +1,(X >0)(2)y _2X +—,X >3X X -3(3)y _2sin X +—i —,X e (0,兀)sin X练习3.已知0<%<1,求函数y =\X E )的最大值. 练习4.0<X <2,求函数y _.X 2F 的最大值.3 练习5.设a ,b e R +且2a+b_1,S_2ab-4a 2-b 2的最大值是【】A.2-1B.2-1C.2+1D.2+122例25、已知0+b_1,则a 4+b 4的最小值是【】A.1B.£C.1D.1练习1.若实数a ,b ,c 满足2a +2b =2a +b ,2a +2b +2c =2a +b +c ,则c 的最大值是 用另一个公式例26、函数、3+4=7的最大值为.练习1.已知a ,b G R+,a 2+吃=1,,则a 、瓦的最大值是【】2 A.1B.1C.32D.三212例27、已知a 〉0,b >0,c >0且a+b+c =1,则工+_!+_!最小值为【】a 2b 2c 2A.12B.11C.21D.27直接取值【讨论】例28、a 2+b 2-1,b 2+c 2-2,c 2+a 2=2,则ab +bc +ca 的最小值【】A.右一1B.1_、,3C.-1_,运D.1+;32222利用二、恒成立成绩例1、若a ,b e R ,且ab>0,则以下不等式中,恒成立的是【】 A,a 2+b 2>2ab B-a +b>2、/abC 112ba 、C*-+->^=D--+->2ababbab 例2、设a ,b ,c 是互不相等的负数, A*|a -b 1<1a -c 1+1b -c I B,a 2+—>a +1a 2a0*I a -b I +>2D *a+3-a+1<a+2-aa -b例3、设a >0,b>0,则以下不等式中不恒成立的是【••••a 2+b 2+2>2a +2b *I a —b I >a —例4、已知不等式a+y )(i+a )>9对任意正实数羽》恒成立,则正实数a xy的最小值为【】 A.8B.6C.4D.2例5、若直线x +y =1通过点M (cos a ,sin 。
均值不等式练习题及答案解析一.均值不等式1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab2. 若a,b?R*,则a?b2?*?a?b222a?b时取“=”)ab 若a,b?R,则a?b?22aba?b?若a,b?R,则ab??) ?? ?2a?b2注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域y=3x解:y=3x+11y=x+xx13x =∴值域为[,+∞)2x1x· =2; x1x· =-2x1≥22x1当x>0时,y=x+≥x11当x<0时, y=x+= -≤-2xx∴值域为解题技巧:技巧一:凑项例1:已知x?54,求函数y?4x?2?14x?5的最大值。
1解:因4x?5?0,所以首先要“调整”符号,又?x?54,?5?4x?0,?y?4x?2?14x?5不是常数,所以对4x?2要进行拆、凑项,???2?3?1 ??3?1????5?4x?4x?55?4x?当且仅当5?4x?15?4x,即x?1时,上式等号成立,故当x?1时,ymax?1。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1. 当时,求y?x的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2x??8为定值,故只需将y?x凑上一个系数即可。
当,即x=2时取等号当x=2时,y?x的最大值为8。
32评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
变式:设0?x?,求函数y?4x的最大值。
322x?3?2x?9解:∵0?x?∴3?2x?0∴y?4x?2?2x?2????222??当且仅当2x?3?2x,即x?3?3???0,?时等号成立。
完整版)均值不等式测试题(含详解)解析:将不等式化简为x2-x+1/4+1/4≥1,即(x-1/2)2≥3/4,当x≤1/2-√3/2或x≥1/2+√3/2时,不等式成立,选项B符合条件。
3.C解析:2x+8y=2(x+4y),由于x+3y-1=0,所以2x+8y=2(x+4y)=(x+3y-1)+5y+1≥2√15,故最小值为2√15,选项C符合条件。
4.B解析:根据柯西-施瓦茨不等式,有|(mx+ny)|≤√(m2+n2)(x2+y2),代入已知条件得到|(mx+ny)|≤√3,故mx+ny的最大值为3,选项B符合条件。
5.B解析:将选项B化简为(a-b)2(a2+b2+ab)≥0,显然成立,其他选项均不成立。
6.A解析:将选项A化简为(x+1/x+2)2≥4,即(x2+1+2x/x)2≥4,由于x>0,故(x2+1+2x/x)2≥(2(x2+1))/x≥4,故选项A成立。
7.A解析:将2a+b+c表示为a+(a+b+c),代入已知条件得到a(a+b+c)+bc=4-2(a+b+c),化简得到(a+b+c-2)2=4-23,故a+b+c的最小值为3-1,选项A符合条件。
填空题:8.最大值为2,当x=1时取得。
9.最小值为2,当x=2时取得。
10.最小值为2,当x=1时取得。
11.最大值为4,当x=2时取得。
解答题:12.由于点A在直线mx+ny+1=0上,所以loga(3)-1=-(mx+ny)/a,化简得到mx+ny=-a(loga(3)-1),代入mn>0得到a>1/3,且mn=a2>0,故m=n=a/√2,所以m+n=√2a,最小值为2√2.13.设购买次数为n,则每次购买x=400/n吨,总运费为4n万元,总存储费用为4x=1600/n万元,总花费为4n+1600/n,根据均值不等式,有4n+1600/n≥2√(4n×1600/n)=80,即n≥4,故购买次数至少为4,每次购买100吨。
一、选择题1.若0≥x ,0≥y 且,那么232y x +的最小值为( ) A. 2 B.D. 0 2.设若的最小值 ( )A. 2B.C. 4D. 83.若c b a >>集合{|},{|}2a b M x b x N x x a +=<<=<<,则集合M N 等于( )A.{|x b x <B.{|}x b x a <<C.{}2a b x x +<<D.{|}2a b x x a +<< 4.对于函数)(x f y =(I x ∈),)(x g y =(I x ∈),若对任意I x ∈,存在0x 使得)()(0x f x f ≥,)()(0x g x g ≥且)()(00x g x f =,则称)(x f ,)(x g 为“兄弟函数”,已知q px x x f +++=2)(,,那么函数)(x f 在区间 B. 2 C. 4 D.5.若0x >,则 ) A. 2 B. 4 C. 6 D. 86.若实数,x y 满足 )A.[)2,+∞B.()2,6C.[]2,6D.[]4,0- 7.设0,0a b >>,若1a b +=,则 )A .8B .4C .1D 8.正数,x y 满足21x y +=,则xy 的最大值为A .18B .14C .1D .329.已知,则的最小值是( ) A. 4 B. 3 C. 2 D. 110.已知关于x 的不等式在),(+∞∈a x 上恒成立,则实数a 的最小值为 ( ) A. 1 B. 32 C. 2 D. 11.设A B C D 、、、是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,用123S S S 、、分别表示△ABC 、△ACD 、△ABD 的面积,则123S S S ++的最大值是. B. 2 C. 4 D. 8 12.在实数集R 中定义一种运算“*”,对任意,R a b ∈,a b *为唯一确定的实数,且具有性质:(1)对任意R a ∈,0a a *=;(2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.) A .2 B .3 C .6 D .813.若直线01=+-by ax 平分圆C :014222=+-++y x y x 的周长,则ab 的取值范围是14.已知关于x 的不等式022>++b x ax (0≠a ),且b a >,则A .2 C..115.在R 上定义运算:对R y x ∈,,有y x y x +=⊕2,如果1=⊕b a (0>ab )的最小值是()A .10 B .9 C 16.若0>>b a ,则代数式( ) A.2 B. 3 C.4 D. 517.若0>a ,0>b ,且2=+b a ,则下列不等式恒成立的是( )D. 222≥+b a 18.设正实数z y x ,,满足04322=-+-z y xy x ,则当取得最大值时,z y x -+2的最大值为 A. 0 B. C. 2 D.19.已知0>a ,0>b ,2=+b a ,则( ) B. 4 C. D. 5 20.已知1x >-,则函数 ) A.1- B.0 C.1 D.221.已知直线l 过点(2,1)P ),且与x 轴y 轴的正半轴分别交于,A B 两点,O 为坐标原点,则OAB ∆面积的最小值为( )C. 4D. 3 22.若函数)(x f 满足:,则|)(|x f 的最小值为23.24.已知R a b ∈、,且0ab ≠,则下列结论恒成立的是 ( ).A .222a b ab +> 25.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于()A.3B.4C.5D.626.如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为A.6B.C.4D.27.设,0,0>>b a 则以下不等式中不恒成立....的是 ( )A .2332ab b a ≥+C .b a b a 22222+≥++D 28.设,0,0>>b a 则以下不等式中不恒成立....的是( )A .2332ab b a ≥+C .b a b a 22222+≥++D 29.若,则的最小值为( ) A. 1 B. 2 C. 3 D. 430.下列命题正确的是( )A .若Z k k x ∈≠,π,则.若0<a ,则C .若0,0>>b a ,则.若0,0<<b a ,则31.已知)2(log )(2-=x x f ,若实数n m ,满足3)2()(=+n f m f ,则n m +的最小值为 A. 5 B. 7 C. 8 D. 932对任意),0(,+∞∈b a 恒成立,则实数x 的取值范围是( ) A .)0,2(- B .),0()2,(+∞--∞ C .)2,4(- D .),2()4,(+∞--∞二、填空题33.已知,a R b R ++∈∈,函数2x y ae b =+的图象过(0,1______. 34.若关于x 的不等式(组)恒成立,则所有这样的解x 构成的集合是____________. 35.对于实数a 和b ,定义运算“*”:22,,a a b a b a b b ab a b⎧-≤⎪*=⎨->⎪⎩,设()()()211f x x x =-*-,且关于x 的方程为()()f x m m R =∈恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是___________.36. (0,0>>b a )的4个顶点的四边形面积为1S ,连接其4个焦点的四边形面积为2S ,则的最大值为 . 37.已知0a b >>,且2a b +=,则的最小值为 . 38.已知实数,a b 满足,则22b a +的最小值是 . 39.已知向量)2,1(-=x a ,),4(y b =,若b a ⊥,则y x 416+的最小值为 .40.已知0,0x y >>,,则2x y +的最小值为 . 41.已知b a ,是正数,且3ab a b =++,则ab 的最小值为 .42.M 是△ABC 内的一点(不含边界),且AB ·AC =, 30=∠BAC ,若△MBC ,△MCA ,△MAB 的面积分别为z y x ,,,记,则),,(z y x f 的最小值是________. 43.已知函数9)(22-+=x a x x f 的定义域为{}0,≠∈x R x x ,则实数a 的取值范为 .44.(1成立当且仅当b a ,均为正数.(2(34成立当且仅当0≠a . 以上命题是真命题的是45.设M 是△ABC 内一点,且AB ·AC =, 30=∠BAC ,定义),,()(p n m M f =,其中p n m ,,分别是△MBC 、△MCA 、△MAB 的面积,若是 .46.若实数c b a ,,满足b a b a +=+222,c b a c b a ++=++2222,则c 的最大值是 .47.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数的图像交于Q P ,两点,则线段PQ 长的最小值是____48.现要用一段长为l 的篱笆围成一边靠墙的矩形菜园(如图所示),则围成的菜园最大面积是___________________.49.设b a ,为两个正数,且1=+b a ,则使得恒成立的μ的取值范围是________. 50.若2x >,则的最小值为 ;51.已知正实数z y x ,,满足________. 52.设常数0>a ,若对一切正实数x 成立,则a 的取值范围为________. 53的图象过点)7,3(A ,则函数)(x f 的最小值是________. 54.设R y x ∈,,且5=+y x ,则y x 33+的最小值是________.55.设0<x ,则________. 56的值为 57.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于_.58.一艘轮船在匀速行驶过程中每小时的燃料费与它速度的平方成正比,除燃料费外其它费用为每小时96元. 当速度为10海里/小时时,每小时的燃料费是6元. 若匀速行驶10海里,当这艘轮船的速度为___________海里/小时时,费用总和最小.59.已知正数,x y 满足22x y +=,则的最小值为 . 60.已知正数y x ,满足则y x +的最大值为 . 62.设y x ,均为正实数,且,则xy 的最小值为____________.65.函数log 1(0,1)a y x a a =+>≠的图象恒过定点A ,若点A 在直线10mx ny +-=上,其中0mn >,最小值为_______. 66.已知a b >,且1ab =,则. 67.一环保部门对某处的环境状况进行了实地测量,据测定,该处的污染指数等于附近污染源的污染强度与该处到污染源的距离之比.已知相距km 30的A ,B 两家化工厂(污染源)的污染强度分别为1和4,它们连线上任意一点处的污染指数等于两化工厂对该处的污染指数之和.现拟在它们之间的连线上建一个公园,为使两化工厂对其污染指数最小,则该公园应建在距A 化工厂 公里处. 68.设A B C D 、、、是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,用123S S S 、、分别表示△ABC 、△ACD 、△ABD 的面积,则123S S S ++的最大值是 .69.下列结论中 ①函数)0)(21(>-=x x x y 有(0<x )有最大值③若0>a ,则正确的序号是_____________.70.若不等式)(2222y x a xy x +≤+对于一切正数y x ,恒成立,则实数a 的最小值为________.三、解答题 71.某造纸厂拟建一座平面图形为矩形且面积为2162m 的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/2m ,中间两道隔墙建造单价为248元/2m ,池底建造单价为80元/2m ,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过m 16,试设计污水池的长和宽,使总造价最低,并求出最低总造价.72.已知函数)(x f =,),1[+∞∈x . (1)当4=a 时,求函数)(x f 的最小值;(2)若对任意),1[+∞∈x ,0)(>x f 恒成立,试求实数a 的取值范围.73.已知函数()|2|,*f x m x m R =--∈,且(2)0f x +≥的解集为[]1,1-.(1)求m 的值;(2)若,,a b c R +∈,且,求证:239a b c ++≥. 74.已知正实数a 、b 、c 满足条件3a b c ++=,(1(2)若c ab =,求c 的最大值.75.已知0,0x y >>,证明:22(1)(1)9x y x y xy ++++≥76.(1)(2),求正数a 的值.77.若对任意0>x ,恒成立,求a 的取值范围. 78.(本小题满分12分)我国发射的天宫一号飞行器需要建造隔热层.已知天宫一号建造的隔热层必须使用20年,每厘米厚的隔热层建造成本是6万元,天宫一号每年的能源消耗费用C (万元)与隔热层厚度x (厘米)若无隔热层,则每年能源消耗费用为8万元.设()x f 为隔热层建造费用与使用20年的能源消耗费用之和. (I )求)(x C 和()x f 的表达式;(II )当陋热层修建多少厘米厚时,总费用()x f 最小,并求出最小值.79.(14分)某公司在安装宽带网时,购买设备及安装共花费5万元.该公司每年需要向电信部门交纳宽带使用费都是5.0万元,公司用于宽带网的维护费每年各不同,第一年的维护费是1.0万元,以后每年比上一年增加1.0万元.(1)该公司使用宽带网满5年时,累计总费用(含购买设备及安装费用在内)是多少?(2)该公司使用宽带网多少年时,累计总费用的年平均值最小?80.某化工企业2016年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是5.0万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备x 年的年平均污水处理费用y (万元);(2)为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?81.已知0,0>>y x ,求证:82.设y x z +=2,式中变量满足下列条件:4335251x y x y x ≤⎧⎪≤⎨⎪≥⎩--,+,,求z 的最大值和最小值.83(1)若不等式1)(<x f 的解集为{}31|<<x x ,求a 的值;(2)若存在0x ∈R ,使3)(00<+x x f ,求a 的取值范围.84.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为x 米,钢筋网的总长度为y 米.(1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?(3)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?85.已知c b a ,,均为正数,并确定c b a ,,为何值时,等号成立.参考答案1.B 【解析】由得得,,所以,因为,所以当时,有最小值,选B. 2.C 【解析】由题意知,即,所以。