六年级下册数学试题- 数论特殊数博览会(ABC级)(解析版)全国通用
- 格式:doc
- 大小:2.05 MB
- 文档页数:18
数的整除知识框架一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a.二、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除;6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
8.若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
第七讲 一题多解学奥数的本意是开发智力,整合知识。
我们通过一题多解的训练形式,要努力形成举一反三、融会贯通的能力,常见的解题方法主要是算术方法和方程等,算术方法是我们解小学奥数题的主力,方程作为一种数学工具也是我们解题时经常依赖的,除了这些以外,我们还有很多非常规、非典型的解题方法,如(1) 特殊值法;(2) 利用图形解题;(3) 取特殊情形、极限考虑.分析:转动小三角形使小三角形和大三角形相反方向,容易看出小三角形的 面积是大三角形的四分之一.Ⅰ 考虑特殊情况与特殊值特殊情况与特殊值的方法一般只适合用于巧解填空题,利用特殊情况和特殊值的原则,主要有:1)不违背题目条件;2)特殊情况或特殊值代入原题后不会产生逻辑或数值上的矛盾; 3)特殊情况或特殊值有利于题目的解决.由于特殊情况和特殊值的特殊性,建议大家不要在解答题或证明题中使用这种方法,这种方法仅仅作为一种应试技巧和参考.教学目标专题精讲想挑战吗 ?一个正三角形中内接一个圆, 圆中又内接一个小三角形,问小 三角形的面积是大三角形面积的 几分之几?【例1】 如图,在一个边长为6正方形中,放入一个边长为2的正方形,保持与原长正形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为 .分析:(方法一)对于任意一个梯形(如图),上底和下底分别为a 和b 时,阴影部分的面积可以表示为bs1、s2、s3的和,而s3:s4=s1:s2=(s1+s3):(s2+s4)=a :b ,同理s1:s3=s2:s4=a :b ,所以:s1:s2:s3:s4=a2:ab :ab :b2,所以阴影部分的面积等于22222a ab a ab b +++.连接两个正方形的对应顶点,则可以得到四个梯形,运用这条结论,每个梯形中阴影部分的面积都占到了222222672226616+⨯⨯=+⨯⨯+,所以阴影部分面积是两个正方形之间的面积的716,阴影部分的面积为227(62)1416⨯-=,(方法二)取特殊情况,使得两个正方形的中心相互重合,由上右图可知,A 、B 、C 、D 均为相邻两格点的中点,则图中四个空白处的三角形的高为1.5,因此空白处的总面积为5.16⨯ 222242=⨯+⨯÷,阴影部分的面积是142266=-⨯.【例2】 (★★★★人大附中入学测试题)如图,有三个正方形ABCD 、BEFG 和CHIJ ,其中正方形ABCDDFI 的面积是 .S EHIF-21(6+a)(4+a)=20。
小升初专项练习题数论1.【★】连续7个偶数的和是196.这7个数中最大的一个偶数是多少?【分析】 2468101242+++++=(19642)722-÷=这七个数分别是22,24,26,28,30,32,34最大是342.【★★】一个三位数除以43,商是a ,余数是b (a 、b 都是正数).求a +b 的最大值.【分析】 999432310÷= 那么一个三位数÷43=2242为余数最大.这个数432242988=⨯+= 最大值224264=+=.3.【★★】(1)把17分成两个自然数的和,使它们的乘积最大,应该怎样分?(2)把17分成若干个自然数的和,要是这几个数的乘积最大,应该怎样分?【分析】 (1)8和9(2)3,3,3,3,3,24.【★★】有四个不同的自然数,它们的和是1111,则它们的最大公约数最大是( ).【分析】 111111101=⨯, 111235=+++∴四个数分别1011101,⨯= 1012202,⨯=1013303,⨯= 1015505⨯=最大公约数为101.5.【★★】(2003年一零一培训学校期末考试题(2003年12月)第7题)一个整数m (m ≠1),除219,270,338得到的余数相同,则这个整数m =__________。
【分析】 219,270,338除以m 得到的余数相同,那么他们两两的差就能被m 整除。
270-219=51,33827068-=,338219119-=,m =[51,68,119]=17。
6.【★★】(北京市一零一中学计算机培训班六年级04~05学年一学期第三次随堂测试第10题)① 222(101)(1011)(11011)⨯-=___________② 852567(((=== ) ) );③ 2222(11000111(10101(11(-÷=))) );④ 473021605+=()() ( )10;⑤若(1030)140n =,则n =____________。
一、选择题(每题2分,共30分)1. 一个数的6倍是另一个数的3倍,那么这两个数的比是()。
A. 1:2B. 2:1C. 1:6D. 6:12. 下列各数中,与3.14相等的数是()。
A. 3.140B. 3.1400C. 3.1D. 3.140003. 下列各数中,最小的数是()。
A. 3B. 2C. 0D. 14. 下列各式中,属于整式的是()。
A. 3x+5yB. 3x÷5yC. 3x×5yD. 3x5y5. 下列各式中,属于同类项的是()。
A. 3x和5yB. 3x和5xC. 3x²和5xD. 3x和5二、判断题(每题1分,共20分)1. 任何两个同类项都可以合并。
()2. 互为相反数的两个数的和为0。
()3. 两个数的积为0,则这两个数中至少有一个数为0。
()4. 任何数乘以1都等于它本身。
()5. 任何数除以0都等于0。
()三、填空题(每空1分,共10分)1. 一个数的8倍是24,这个数是______。
2. 5.8和5.80是______数。
3. 任何数与0相乘的积是______。
4. 任何数与1相乘的积是______。
5. 3x+5x=______。
四、简答题(每题10分,共10分)1. 简述整式和分式的区别。
2. 简述同类项和合并同类项的概念。
五、综合题(1和2两题7分,3和4两题8分,共30分)1. 已知一个数的3倍是15,求这个数的5倍是多少。
2. 已知一个数的4倍比另一个数的2倍少6,求这两个数的差。
3. 已知一个数的2倍比另一个数的3倍多4,求这两个数的和。
4. 已知一个数的5倍比另一个数的4倍少3,求这两个数的积。
(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个数是合数?()A. 2B. 3C. 4D. 52. 下列哪个数是质数?()A. 15B. 17C. 18D. 203. 下列哪个图形是平行四边形?()A. 正方形B. 长方形C. 梯形D. 圆形4. 下列哪个图形是三角形?()A. 矩形B. 梯形C. 正方形D. 圆形5. 下列哪个图形是圆形?()A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共20分)1. 任何两个质数的和都是偶数。
一、带余除法的定义及性质1、 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、 余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数.二、三大余数定理:1. 余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2 2. 余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3知识框架余数问题-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
第十一讲数字谜与数阵图1.回顾常用的数字谜的解题技巧。
2.精讲经典数字谜、及数阵数表。
【解题技巧】(一)解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异。
(二)要根据不同的情况逐步缩小范围,并进行恰当的估算。
(三)当题目中涉及多个字母或汉字时,要注意利用不同符号代表不同数字这一条件来排除若干可能性。
(四)注意结合进位及退位来考虑。
(五)有时可运用到数论中的分解质因数等方法。
【例1】★★★(小学数学ABC)从12,13,14,16,18中选出四个填入下式的中,使得等式成立.那么A有种可能的值.÷ = ÷ =A【解】考虑五个分数的分母2,3,4,6,8.因为2×6=3×4,所以11112634⨯=⨯,由此得到1 2÷14=13÷16=2;12÷13=14÷16=32;1 6÷14=13÷12=23;16÷13=14÷12=12.同理,由3×8=4×6得到1 3÷14=16÷18=43;13÷16=14÷18=2;1 8÷14=16÷13=12;18÷16=14÷13=34.所以,A有6种可能值,分别是2,12,32,23,43,34.有人把数字谜问题叫做思维锻炼的体操,这一部分问题可以很好的培养学生的观察力、判断及推理能力。
数字谜是一类非常有趣的数学问题,在小学数学竞赛中经常出现.解这类问题必须认真审题,根据题目的特点,找出突破口,从而逐步简化题目直至问题完全解决.教学目标专题回顾【例2】★★★请在下式中填入+和×,使等式成立(不要求每两个数之间都填入符号,但不能填+和×以外的符号):1 2 3 4 5 6 7 8 9 9=1998 。
【解】:1234+5+678+9×9=1998【例3】★★★(小学数学奥林匹克决赛民族卷第4题) 在下面三个算式中,三个方框内都填同一个数.口一0.07=1950 口×0.75=9280.375÷口=56如果在这三个算式中,恰好有两个算式是正确的,那么方框中所填的数是_______.【解】:如果三个算式都是正确的,那么三个方框依次应其中9209出现两次,所以方框中填的数是20【例4】★★★(101中学选拔试题)()()()11112=++(括号内必须填不同的自然数)【解】: 11111123637421111112444520=+=++=+=++或等等 答案并不唯一.【例5】★★★★(清华附中入学真题) 在47152口中的“口”内,可以填写的整数只有_________. ①10、11、12、13; ②9、10、11、12、13; ③8、9、10、11、12、13; ④无数个.199359007075=0375********+=÷÷=9、,、,、28【解】: 由71714214=,得口口又47749101112135985=,而,所以口,,,,,应选○2.数字谜【例1】★★★(北京市“迎春杯”决赛第一题第7题)下面乘法的算式1 A B C D E × 3 A B C D E 1则ABCDE 是____________. 【解】:从乘法算式最后一位看起,由于积E ×3的禾位数字是l ,我们可以断定E=7.于是,再根据积D × 3的末位数字是7—2=5,可以断定D=5;同样,根据积C ×3的末位数字是5一l=4,可以断定C=8;根据积B ×3的末位数字是8—2=6,可以断定B=2;根据积A ×3的末位数字是6,从而断定A=4. 答:ABCDE 是42857.【例2】★★★(南京市“兴趣杯”少年数学邀请赛预赛C 卷笫3题)在算式131abcde abcde ⨯=中,不同的字母代表不同的数字,相同的字母代表相同的数字,那么_______abcde =. 【解】:令,abcde x =则(100000+z)×3=x ×10+1,即 7x =299999, 解得 x =42857.【例4】★★(《小数报》数学竞赛初赛填空题第5题)在右边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可以推算出: △□□〇 +〇□□△ □□☆☆口+○+△+☆=_________. 【解】: 比较竖式中个位与千位的加法,推知口比☆大1.由十位于百位数的加法可知 口+口=10+☆专题精讲并且口=☆+1将后一式代入上一式得口+口=10+口一1,从而口=9,☆=8.再由个位加法,推知○+△=8.从而口+○+△+☆=9+8+8=25【例5】★★★(小学“希望杯”全国数学邀请赛)右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
一、选择题(每题3分,共15分)1. 下列各数中,哪个数是质数?A. 25B. 17C. 22D. 14答案:B2. 一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?A. 13厘米B. 20厘米C. 23厘米D. 33厘米答案:B3. 下列哪个图形的面积可以用长方形的面积公式计算?A. 圆形B. 三角形C. 正方形D. 梯形答案:C4. 一个数既是2的倍数,又是3的倍数,那么这个数一定是以下哪个数的倍数?A. 4B. 6C. 8D. 10答案:B5. 小明有12个苹果,他平均分给他的3个朋友,每人可以得到多少个苹果?A. 4个B. 5个C. 6个D. 7个答案:A二、填空题(每题5分,共25分)6. 5的7倍是多少?答案:357. 12减去7等于多少?答案:58. 一个数的5倍是20,这个数是多少?答案:49. 一个长方形的面积是24平方厘米,长是6厘米,宽是多少厘米?答案:4厘米10. 一个圆的半径是3厘米,它的周长是多少厘米?答案:18.84厘米三、解答题(每题10分,共30分)11. 小华有15个气球,他要把这些气球平均分给他的4个同学,每人可以分到多少个气球?解答:15个气球平均分给4个同学,即15÷4=3余3,所以每人可以分到3个气球,还剩下3个气球没有分配。
答案:每人可以分到3个气球。
12. 一个正方形的边长是8厘米,求这个正方形的面积。
解答:正方形的面积公式是边长的平方,所以面积=8×8=64平方厘米。
答案:这个正方形的面积是64平方厘米。
13. 一个长方形的长是12厘米,宽是4厘米,求这个长方形的周长。
解答:长方形的周长公式是(长+宽)×2,所以周长=(12+4)×2=16×2=32厘米。
答案:这个长方形的周长是32厘米。
四、应用题(每题10分,共20分)14. 小明去商店买书,每本书的价格是8元,他买了3本书,一共花了多少钱?解答:每本书8元,买3本书就是8×3=24元。
第05讲 数论综合——余数问题【一】了解“除法算式——a b qr b r ÷=> ()” 及应用1:一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是 .1010989108=910898÷=⇒∴÷=∴⨯+=最小的两位数是两位数一位数余数 求最大值一位数最大是,余数最大是 两位数 两位数2:用某自然数a 去除1707,得到商是37,余数是r ,求a 和r.17073717073717073746546461707463755375424545451707453742424645542a r a r a ra a r a a r a a r r =+⎧÷=⇒⎨>⎩÷==⎧∴=⇒÷=⇒⎨=⎩+=<=⎧∴=⇒÷=⇒⎨=⎩==⎧⎧⎨⎨==⎩⎩综上:或3:523除以一个数得到的商是10,并且除数与余数的差是5,求除数与余数.带 余 除 法52310523105555523(5)105231152310(5)x x x x x x ÷=÷=+∴÷+=∴÷=∴=++法一: 法二:除数余数 除数余数余数与除数的差是 余数与除数的差是 若设余数为,则除数为 若给余数加上 除数 =52311=48=43434348x ∴÷=∴ 除数,余数 余数是,除数是4:两数相除,商4余8,被除数、除数、商、余数四数之和等于415,则被除数是 .484848484841532448794848415794798324A B A B A B A B A B A B x A x B x x x A =+⎧÷=⇒=+÷=⇒⎨+++=⎩=⎧+∴⎨=⎩++++===⨯+=法一: 法二: 若设为,则为 则5:某个除法算式的被除数、除数、商与余数之和为115,如果被除数和除数都扩大为原来的2倍,得到的除法算式中被除数、除数、商与余数之和为223,那么原来的算式中商是 .11522222222311522237A B CD A B C D A B C D A B C D C ÷=⇒+++=÷=⇒+++=∴=⨯-=22222(22)22222a b q r a bq r a bq ra b bq r b q r a b q r a b q r÷=⇒=+⇒=+÷=+÷=∴÷=⇒÷=证明:6:某个整数除36,商和余数相等,那么这个整数可能是 .3636(1)136=8111735b c c bc c c b b b cb ÷=⇒=+=++>是的因数,但是枚举:、、、7:在大于2015的自然数中,被57除后,商与余数相等的数共有多少个?5758575756201558=3443355635122a c c c a c c c c c =+=⎧÷=⇒⎨<⎩÷⇒∴=-+= 的最大值是 的最小值是 个数(个)【二】余数性质(余数特征+余数可加可减可乘性+余数周期性)251425281253393999100001000100109999(91)99999a b c d e abcde a b c d ea b c d abcde a ⎧⎪⎨⎪⎩⎧⎨⎩=⨯+⨯+⨯+⨯+++++=⨯+⨯+⨯+⨯+=⨯被和整除:末位尾系被和整除:末位被和整除:末位被、整除:各位数字和是、的倍数和系被整除:两位一段,求和 证明: [弃9法 整特征]除0000100999999711131110001001()10000100010010()bc dea bc abcde ab cde ab cde ab abc a bc de a bd c de e +⨯+=⨯+⨯+⎧⎨⎩=⨯+=⨯+-=⨯+⨯+++⨯+⨯+ 被、和整除:三位一段,奇数段偶段和差系被整除:奇位和偶位和 证明: [()(999)910019911999910019911(]a a b b c c d e c a d e a b c d a c m e a mc e b c nf b nc f a b mc e nc f m n d b ++-+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪=⨯++⨯-+⨯++⨯-+⎪=⨯+⨯+⨯+⨯+⎩÷==+⎧⎧⇒⎨⎨÷==+⎩⎩+=+++=+ 对于(1) 余数可加可减可乘2)()()()()()()()()()()()1192329c e f a b ce f a b mc e nc f m n c e f a b ce f a b mc e nc f mnc mcf nec ef a b ce f ++⇒+÷+⇒-=+-+=-+-⇒-÷-⇒⨯=+⨯+=+++⇒⨯÷⨯⇒÷÷ (2) (3) 余数可加 举性余数可减性余数可乘性例259753295⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪÷⎧⎧⎪⎨⎨⎪÷⎩⎩⎩或者(一)余数特征+余数可加可减可乘性的“基础练习”1:将假分数5051525354557⨯⨯⨯⨯⨯化成带分数后,真分数部分是多少?5051525354557505152535455123456(24)(35)681561166(mod 7)⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯≡⨯⨯⨯⨯⨯≡⨯⨯⨯⨯=⨯⨯≡⨯⨯≡只要计算除以的余数即可(二)余数特征+余数可加可减可乘性的“拓展练习”71310010100101010110101100101001010110101101010110ABCDABCDABCD BCD DAB B C D D A B A B C D ABC DAB CDA BCD CDA ABC C D A A B C A B C D A B ⎧=+=+++++⎪=+++⎪⎨=+=+++++⎪⎪=+++⎩-=++证明:判断能被和整除奇段和 偶段和 奇偶10110110101109191919191()91713713C D A B C D B A D C B A D C ABCDABCDABCD +----=-+-=-+-=⨯∴ 能被和整除1:(1)求20172017201720172017个除以9的余数. (2)求20146666个除以7的余数.201712017201720172017201711120171(mod 9)≡≡≡个个 20146666666666100120146335466666666666660302(mod 7)=⨯÷=∴≡≡-≡≡≡个2:求1020162017201620162016个除以7的余数.9201620163603603602016201620167020162016201670201720162016201620172016000(mod 7)1428577110000001000000711000712017201600020172016(mod 7)20÷∴÷⇒≡⨯+=∴÷∴÷⇒≡个10个个个个172016201710000201620177110000742016701404=⨯+÷÷÷∴=⨯+=余数可乘,余数3:求15!除以17的余数.15!4!(56)(71113)(89)(10121415)243010017225210015!7131541415916021069654636181(mod 7)15!(29)(36)(413)(57)(815)(1012)(1114)171=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⇒≡⨯⨯⨯⨯⨯≡⨯⨯≡⨯⨯≡⨯≡⨯≡≡=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯法一:法二:每个括号内两数之积都是除以 余 15!171∴÷ 的(2)!1(mod )p p p ⇔-≡延伸说明:上一题的(2)是威尔逊原理内容: 是质数(三)余数周期性的“基础练习”1:兔子数列:1、1、2、3、5、8、13、……,第2017项除以5的余数.5112303314044320224101123033020201720100172÷=兔子数列每一项除以的余数如下:周期是, ,即余2:分别求出23456789103333333333、 、 、 、 、 、 、 、 、 除以7的余数.发现规律,并求出1003除以7的余数. 并试求231001+3+3+3++3除以7的余数.234567891010043333333333326451326461006164334(mod 7)⇒÷=⇒≡≡、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是若为01231002+2+2+2++2除以7呢?61016165(132645)1613262116162(mod 7)⇒÷=⇒≡+++++⨯++++≡⨯+≡周期是 原式3:今天是周四,100010天之后将是周几?234567891010004101010101010101010103264513264610006166410104(mod 7)⇒÷=⇒≡≡⇒、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是周一(四)余数周期性的“拓展练习” 1:求3332除以31的余数.33133333231535334812228(mod 31)n ∴÷=⇒≡≡≡研究除以的余数容易发现周期是只要考虑除以的余数,容易发现周期是42:求332的末位数字.33133481333(mod10)÷=⇒≡≡寻找末位就是相当于除以10的余数周期现象:1、3、9、7、1、3、9、7、……,周期是4(1)(2)(3)x Nx N x N x x 以下是固定值,是变量对于,其个位数字是4个一循环 对于,其个位数字是10个一循环 对于,其个位数字是20个一循环3:求123420132014123420132014+++++除以10所得的余数是多少?12341920201234192014765636901636567490944,201420100141001004(14765636901636)=463463++++++++++++++++++++++++=÷=⨯++++++++++++++除以10的余数就是相当于寻找其个位数字,底数指数都是变化的,即周期为先计算的个位数字:为“”其个位数字是即个整周期还多出14个个位数字即为“”的个3位数字是 ,即答案就是34:求2007200720072007200712342006++++计算结果的个位数字是多少?200732007320073200720072007200720073333311(mod10)22(mod10)20072007(mod10)1234200612342006(mod10)≡≡≡+++++≡+++++首先,按规律,底数不变指数变化,其个位数字的周期是每4个一循环 即 、 、 得到: 然后,按规律,底数变化指数不变,其个位数字的周期是每10个一循环 33333333333333331234105(mod10)1234200652001234561(mod10)+++++≡+++++≡⨯++++++≡ 又因为, 所以,【一】化余数为整除(余数相同) (一)余数已知1:某个整数除41,余数是5,那么这个整数可能是几? 415(415)03603636181296b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、、、2:某个整数除31,余数是7,那么这个整数可能是几? 317(317)024********b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、同 余 问 题3:某个整数除67、151得到的余数都是11,那么这个整数可能是几?(6711)05606711(15111)01400561408415111(15167)0840(56,140,84)28112814b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⇒⇒⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩=>∴=是、、的公因数是最大公因数的因数,且、4:某个额整数除229、337得到的余数都是13,这个整数最大是几?最小是几? (22913)021*******(33713)0324033713(337229)01080216324108(216,324,108)1081310818b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩⇒⇒=>∴是、、的公因数是最大公因数的因数,且最大为,最小为(二)余数未知1:某个大于1的整数除41、11得到的余数相等,那么这个整数可能是几? 41(4111)030030302153105611b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、、2:某个大于1的整数除89、71得到的余数相同,那么这个整数可能是几?89(8971)01801818293671b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、3:某个大于1的整数除17、53、113得到的余数相同,那么这个整数可能是几? 17(5317)036053(11317)0960369660113(11353)0600(36,96,60)12122634b r b bb r b b b b b r b b b ÷-÷÷⎧⎧⎧⎪⎪⎪÷⇒-÷⇒÷⇒⇒⎨⎨⎨⎪⎪⎪÷-÷÷⎩⎩⎩=∴=是、、的公因数是最大公因数的因数、、、、【二】化余数为整除(余数不同) (一)余数已知1:某个整数除47余5,除65余2,那么这个整数可能是几? 475(475)04204263652(652)0630(42,63)215217b bbb b b bbb b ÷-÷÷⎧⎧⎧⇒⇒⇒⇒⎨⎨⎨÷-÷÷⎩⎩⎩=>∴=是、的公因数是最大公因数的因数,且、2:(拓展)用一个数除200余5,除300余1,除400余10,这个数是多少? 13(二)余数未知1:某个整数除29、56的余数分别是a 、3a +,这个数可能是几? 2929(5329)0240245635333324128462924529125298524,12,8()56248561285680294129654(),6()56405662b aba bbb ba baa b b b b b b b ÷÷⎧⎧⇒⇒-÷⇒÷⇒⎨⎨÷+÷⎩⎩+≥⇒>∴=÷÷÷⎧⎧⎧===⎨⎨⎨÷÷÷⎩⎩⎩÷÷⎧⎧==⎨⎨÷÷⎩⎩是的因数、、、、验证:舍去舍去舍去综上2412b =,、2:某个整数除47、121、232的余数分别是a 、2a +、5a +,这个数可能是几?4747(11947)07201212119(22747)018002325227(227119)0108072180108(72,180,108)36536181296473636b a b a b b b a b a b b b a b a b b b b b b b ÷÷-÷÷⎧⎧⎧⎧⎪⎪⎪⎪÷+⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎪⎪⎪⎪÷+÷-÷÷⎩⎩⎩⎩⇒⇒=>∴=÷=是、、的公因数是最大公因数的因数,且、、、、验证:114718114712111213613,181211813,12121121(),2323616232181623212447924765912194(),612161()23297232643618b b b b b ÷÷⎧⎧⎧⎪⎪⎪÷=÷=÷⎨⎨⎨⎪⎪⎪÷÷÷⎩⎩⎩÷÷⎧⎧⎪⎪=÷=÷⎨⎨⎪⎪÷÷⎩⎩=舍去舍去舍去综上,、3:一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数的和a 的值.429+54248482(848791)0570791279127912(1000791)0209050050010002(1000848)0152057209152(57,209,15b a ba b a b b b a ba b a b b b a b a b a b b b b ÷÷÷-÷÷⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪÷⇒÷⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪÷÷÷-÷÷⎩⎩⎩⎩⎩⇒⇒是、、的公因数是最大公因数的因数2)19519571911192091912152196196b b b b a =>∴=÷⎧⎪=÷⎨⎪÷⎩==,且验证:综上,,4:已知60、154、200被某数除所得的余数分别是1a -、2a 、31a -,求这个自然数的值. 22222333361(3721154)03567060161154154154(61154)2001201(9394201)09193020135679193(3567,9193)b a b b b a b a b a b a b a b ab a b a b b b a b b ⎧⎛÷⇒-÷⇒÷÷-÷⎪ ⎧⎧ ÷⎪⎪⎪⎝÷⇒÷⇒⎨⎨⎨⎛⨯÷⎪⎪⎪÷-÷⇒-÷⇒÷ ⎩⎩⎪ ÷⎝⎩⇒⇒=是、的公因数是最大公因数的因数29296029229154299200292629b b b ∴=÷⎧⎪=÷⎨⎪÷⎩=验证:综上,5:(拓展)糖果254粒,饼干210块,水果186个. 某幼儿园人数超过40人,平均分给学生,余下糖果、饼干、水果比是1:3:2,求共有多少人?没人每种各分多少个?5082(508186)032202541862210321031862(440210)02300(254186)3322230(322,230)4640223254202210201862b ab b b a b a b a b a b a b b b a b b b b b ⎧÷⎧⇒-÷⇒÷÷⎧⎨⎪÷⎪⎪⎩÷⇒⎨⎨÷⎧⎪⎪÷⇒-÷⇒÷⎨⎩⎪+÷⎩⎩⇒⇒=<∴=÷=÷÷是、的公因数是最大公因数的因数,且、验证:254231()23210233018623223b b ÷⎧⎧⎪⎪=÷⎨⎨⎪⎪÷⎩⎩=舍去,综上,6:有一个整数,用它除70、110、160所得到的3个余数之和是50,那么这个整数是多少?121233111221233370110(70110160)()340502900290160707070121101333531718316011b r b r b r r r bb b b rbr b b r b r b r b r b r r r b b b b r b r b ÷⎧⎪÷⇒++÷++⇒÷⇒÷⇒⎨⎪÷⎩÷≤÷≥+⎧⎧⎪⎪÷⇒≥+⇒≥+++⇒≥⇒≥⇒≥⎨⎨⎪⎪÷≥+⎩⎩∴=是的因数现在讨论的就是范围对来说,其中,290,2,145,5,58,10,29581105815229b b =÷==对于, ,不成立综上,【三】同余方程 1:(铺垫)(1)解同余方程:45(mod11)x ≡45(mod11)41151(45)110451144(mod11)5115245(mod11)4511(mod11)416(mod11)(4,7)14(mod 7)x x x x x x x x x x ≡÷⎧⇒-÷⇒-=⇒=⇒≡⎨÷⎩≡≡+≡=∴≡ 转化: 试除:(mod )(,)1(mod )(mod )()()0()()()()(,)1(mod )ac bc m c m a b m ac m x pac bc m ac bc m x y c a b m x y bc m y p c a b m x y c m m a b a b m a m b m a b a b m m m ≡=≡÷=⎧≡⇒-÷=-⇒-=-⎨÷=⎩-=-=-≡÷÷--=证明:若,当 时,有开始:对“”,有对“”,若,为的因数若想让“”,即让“的余数等于的余数”,即“化为分数相减为整数”同时,确实为整数,得证.(2)解同余方程:729(mod13)x x ≡+729(mod13)7131(729)130(29)135913()(59)130592677(mod13)2729(mod13)59(mod13)59132(mod13)5x x x r x x x rx x x x xx x x x x ≡+÷⎧⇒--÷⎨+÷⎩-=⨯⎧⇒-÷⇒⎨-=⇒=⇒≡⎩-≡≡≡+⨯ 转化: 试除: 35(mod13)(5,13)17(mod13)x ≡=∴≡2:用枚举法检验的方法,找出有那些整数x 满足:35(mod 7)x ≡,用一个同余式来表示结果.135(mod 7)411184(mod 7)235(mod 7)357(mod 7)312(mod 7)(4,7)14(mod 7)x x x x x x x ≡=≡≡≡+≡=∴≡ ,枚举得到、、、,表示为3:求解同余方程:3843(1)(mod13)x x +≡+. 8343(1)(mod13)83433(mod13)83334(mod13)5334313(mod13)58(mod13)58x x x x x x x x x +≡++≡+-≡-≡-+⨯≡≡+第一步:化简 第二步:(试除法) 134(mod13)XX 5383(mod13)560(mod13)1524(mod13)(5,13)112(mod13)211(mod13)(XX ) 5x x x x x x ⨯⨯≡⨯≡≡=∴≡≡⨯ (法) 法888(mod13)21113(mod13)4064(mod13)224(mod13)12(mod13)12(mod13)x x x x x ≡⨯≡+≡≡≡≡5:(拓展)老师选了一个两位数,然后讲这个数乘23,并且加上79,发现正好是111的倍数,你能猜出老师选的是什么数吗?23790(mod111)2311179(mod111)2332(mod111)235325(mod111)115160(mod111)x x x x x x +≡≡-≡⨯≡⨯≡设这个两位数为,得到 4160(mod111)40(mod111)40.x x ≡≡ 即这个两位数是一:余同加余,差同减差,和同加和 1:小强家有很多巧克力:。
1. 特殊数的尾数特征2. 位值原理的综合运用3. 约数倍数之间的关系特殊数是竞赛中经常遇到的,这些题目中我们要注意认真读题,仔细思考。
【例 1】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。
=美妙数学___________【巩固】 北京有一家餐馆,店号“天然居”,里面有一副著名对联:客上天然居,居然天上客。
巧的很,这副对联恰好能构成一个乘法算式(见右上式)。
相同的汉字代表相同的数字,不同的汉字代表不同的数字。
“天然居”表示成三位数是_______。
×客上天然居4居然天上客知识框架重难点例题精讲特殊数博览会【例 2】 如图所示的乘法竖式中,“学而思杯”分别代表0~9 中的一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么“学而思杯”代表的数字分别为________ ⨯学而思杯学而思杯【巩固】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变【例 3】 右图是一个分数等式:等式中的汉字代表数字1、2、3、4、5、6、7、8和9,不同的汉字代表不同的数字,如果“北”和“京”分别代表1和9,请写出“奥运会”所代表的所有三位整数,并且说明理由。
=北奥运会京心想事成【巩固】右面算式中的每个“奇”字代表1、3、5、7、9中的一个,每个“偶”字代表0、2、4、6、8中的一个,为使算式成立,求出它们所代表的值。
0偶偶奇奇奇偶偶偶偶偶偶偶偶【例 4】“迎杯×春杯=好好好”在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字。
那么“迎+春+杯+好”之和等于多少?【巩固】在下面的算式中,每一个汉字代表一个数字,不同的汉字表示不同的数字,当“开放的中国盼奥运”代表什么数时,算式成立?盼盼盼盼盼盼盼盼盼÷□=开放的中国盼奥运【例 5】下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字,团团×圆圆=大熊猫则“大熊猫”代表的三位数是______.【巩固】在如图所示的乘法算式中,汉字代表1至9这9个数字,不同汉字代表不同的数字.若“祝”字和“贺”字分别代表数字“4”和“8”,求出“华杯赛”所代表的整数.祝贺华杯赛第十四届⨯=【例 6】如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字.“美妙数学花园”代表的6位数最小为.2007美妙数学花园好好好好【巩固】下面算式由1~9中的8个组成,相同的汉字表示相同的数,不同的汉字表示不同的数.那么“数学解题”与“能力”的差的最小值是__________.【例 7】2008年奥运会在北京举行。
“奥”、“运”、“会”、“北”、“京”这五个汉字代表五个连续的自然数,将其分别填在五环图案的五个环内,满足“奥”+“运”+“会”=“北”+“京”。
这五个自然数的和最大是。
京北会运奥【巩固】“美妙的数学花园”这7个字各代表1~7中的一个数,并且每个圆中4个数的和都是15。
如果学比美大,美比园大,那么,园表示。
【例 8】右式中不同的汉字代表l一9中不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?+国京运8中北奥新新2【巩固】华杯赛网址是..wwwhuabeisai cn,将其中的字母组成如下算式:2008www hua bei sai cn++++=,如果每个字母分别代表0~9这十个数字中的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且8w=、6h=、9a=、7c=,则三位数bei的最小值是.【例 9】已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed=⨯),那么这个五位回文数最大的可能值是________.【巩固】如果一个数,将它的数字倒排后所得的数仍是这个数,我们称这个数为回文数.如年份数1991,具有如下两个性质:①1991是一个回文数.②1991可以分解成一个两位质数回文数和一个三位质数回文数的积.在1000年到2000年之间的一千年中,除了1991外,具有性质①和②的年份数,有哪些?【例 10】老师给前来参加“迎春晚会”的31位同学发放编号:1,2,……,31.如果有两位同学的编号的乘积是他们编号和的倍数,则称这两位同学是“好朋友”.从这31位同学中至少需要选出人,才能保证在选出的人中一定可以找到两位同学是“好朋友”.【巩固】在如图所示的九宫图中,不同的汉字代表不同的数,每行、每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希,望,杯的和是__________ 。
迎受杯望希小中欢学【例 1】称一个两头(首位与末尾)都是1的数为“两头蛇数”。
一个四位数的“两头蛇数”去掉两头,得到一个两位数,它恰好是这个“两头蛇数”的约数。
这个“两头蛇数”。
(写出所有可能)【巩固】一个十位数,如果各位上的数字都不相同,那么就称为“十全数”,例如,3785942160就是一个十全数.现已知一个十全数能被1,2,3,…,18整除,并且它的前四位数是4876,那么这个十全数是多少?【例 2】算式“1希+1望+1杯=1”中,不同的汉字表示不同的自然数,则“希+望+杯”=。
【巩固】如果某整数同时具备如下三条性质:① 这个数与1的差是质数,②这个数除以2所得的商也是质数,③这个数除以9所得的余数是5,那么我们称这个整数为幸运数。
求出所有的两位幸运数【例 3】如果一个数不能表示为三个不同合数的和,那么我们称这样的数为智康数,那么最大的智康数是几?【巩固】如果一个至少两位的自然数N满足下列性质:在N的前面任意添加一些数字,使得得到的新数的数字和为N,但无论如何添加,这样得到的新数一定不能被N整除,则称N为“学而思数”。
那么最小的“学而思数”是。
>>,则称该三位数为“墨龙数”,【例 4】若三位数abc(其中a,b,c都是非零数字)满足ab bc ca那么共有___________个“墨龙数”.【巩固】“水仙花数”是指这样的数,其各位数字的立方和等于该数本身.求两位数中有没有水仙花数?【例 5】若某个三位数的三次方的末三位是888,则称这个三位是吉祥3位数,请你写出所有吉祥三位数?【巩固】若一个自然数的立方的末三位数字为999,则称这样的自然数为“千禧数”,求最小的“千禧数”。
课堂检测【随练1】如图是一个等式:等式中的汉字代表数字,不同的汉字代表不同的数字,每个汉字是1、2、3、4、5、6、7、8、9中的一个,问:“学而思五年级”所代表的六位整数是什么?学而思杯×5=五年级试题×4【随练2】称能表示成1+2+3+…+K的形式的自然数为三角数,有一个四位数N,它既是三角数,又是完全平方数,N= 。
【随练3】若一个自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身,这种数叫做完全数。
例如:6的约数有1、2、3、6,它的真因子之和1+2+3=6,则6是完美数,第二个完美数是几?【随练4】王老师在黑板上写了这样的乘法算式:12345679×()=_____________,然后说道:“只要同学们告诉我你喜欢1,2,3,4,5,6,7,8,9中的哪个数,我在括号里填上适当的乘数,右边的积一定全由你喜欢的数字组成.”小明抢着说:“我喜欢3.”王老师填上乘数“27”,结果积就出现九个3,12345679×(27)=333333333,小宇说:“我喜欢7.”只见王老师填上乘数“63”,积就出现九个7:12345679×(63)=777777777 小丽说:“我喜欢8.”那么算式中应填上的乘数是12345679×()=_____________【作业1】下页算式中不同的汉字表示不同的数字,相同的汉字表示相同的数字,则符合题意的数“华罗庚学校赞”是什么?学赞学庚赞校华罗庚×好校罗华【作业2】右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
家庭作业杯小9望99999×赛赛希学【作业3】三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”。
问所有的小于2008的“美妙数”的最大公约数是多少?【作业4】一个六位数abcdef,如果满足4abcdef fabcde⨯=,则称abcdef为“迎春数”(如4102564410256⨯=,则102564就是“迎春数”).请你求出所有“迎春数”的总和.【作业5】若用相同汉字表示相同的数字,不同汉字表示不同的数字,则下列算式中,学习好勤动脑勤动脑学习好“学习好勤动脑”所表示的六位数最小是多少?⨯⨯5=8【作业6】数列1,1,2,3,5,8,13,21,34,55,L的排列规律是前两个数是1,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列前2009个数中共有几个偶数?【作业7】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”。
例如,99就是一个巧数,因为9×9+(9+9)=99。
可以证明,所有的巧数都是两位数。
请你写出所有的巧数。
【作业8】在美洲的一个小镇中,对于200以下的数字读法都是采取20进制的。
如果十进制中的147在20进制中的读音是“seyth ha seyth ugens”,而十进制中的49在20进制中的读音是“naw ha dewugens”,那么20进制中读音是“dew ha naw ugens”的数指的是十进制中的数__________【作业9】人和人之间讲友情,有趣的是,数与数之间也有相类似的关系,数学家把一对存在特殊关系的数称为“亲和数”。
如果两个数a和b,a的所有真因数之和等于b,b的所有真因数之和等于a,则称a,b是一对亲和数。
请问220有亲和数吗?如果有是多少?【作业10】一个n位正整数,它由1、2...n这n个数字排列而成,如果它的前K个数字组成的k位数能被k整除,就称n为幸运数,问这样的六位幸运数有哪几个?。