B3解直角三角形单元检测题(稍难)
- 格式:doc
- 大小:328.50 KB
- 文档页数:8
《解直角三角形》单元测试卷一、填空题:1、如下图,表示甲、乙两山坡的情况, _____坡更陡。
(填“甲”“乙”)αβ1213 34甲乙2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。
3、在Rt △ABC 中,∠C=90°.若sinA=22,则sinB= 。
4、计算:tan 245°-1= 。
5、在△ABC 中,AB=AC=10,BC=16,则tanB=_____。
6、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。
7、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。
8、如图2是固定电线杆的示意图。
已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是__________m 。
9、升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。
(用含根号的式子表示)10、如图3,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m ,取2 1.414=,3 1.732=)11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos 15°=624+)二、选择题:12、在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、14513、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( ) A.40° B.30° C.20° D.10°14、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高 15、在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是一般锐角三角形16、如图5,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )A.1.8tan80°mB.1.8cos80°mC.︒80sin 8.1 m D.︒80tan 8.1 m17、如图6,四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积是( ) A.42B.43C.4D.6三、解答题:18、计算:(1)3cos30°+2sin45° (2)6tan 2 30°-3sin 60°-2sin 45°19、根据下列条件,求出Rt △ABC(∠C=90°)中未知的边和锐角. (1)BC=8,∠B=60°; (2)AC=2,AB=2.20、如图7,在Rt △ABC 中,∠C=90°,AC=8,∠A 的平分线AD=3316,求∠B 的度数及边BC 、AB 的长.21、等腰三角形的底边长20 cm ,面积为33100c m 2,求它的各内角.22、同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC =2m ,滑梯着地点B 与梯架之间的距离BC =4m 。
《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
九年级数学下册《解直角三角形》试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)在△ABC 中,∠C= 90°,AB = 2,AC= 1,则sinB 的值是()A.12B.2C.3D.22.(2分)在Rt△ABC中,∠C=90°,下列式子不一定成立的是()A.sinA=cosB B.sinB=cosA C.tanA=tanB D.sin2A+sin2B=1 3.(2分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB 的值是()A.23B.32C.34D.434.(2分)tan30°的值等于()A.12B.3C.3D.35.(2分)如图所示,已知一渔船上的渔民在A处看见灯塔 M 在北偏东 60°方向,若这艘渔船以 28 海里/小时的速度向正东航行,半小时到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A.72海里B.142C.7 海里D. 14 海里6.(2分)如图所示,CD 是平面镑,光线从A点出发经 CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为 C.D,且 AC= 3,BD=6,CD= 11,则tanα的值为()A.113B.311C.911D.1197.(2分)如图所示,为了测量河两岸A 、B 两点之间的距离,在与 AB 垂直方向上取点 C ,测得 ∠ACB=θ,AC=a ,则AB 的长为( ) A .tan a θB .sin a θC .cos a θD .tan a θ8.(2分) 如图所示,在△ABC 中,∠C= 90°,AC =25,∠BAC 的平分线交 BC 于 D ,且 AD=4153, 则 cos ∠BAC 的值是( ) A .12B .2 C .3 D .39.(2分)在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦值( ) A .都扩大2倍B .都扩大4倍C .没有变化D .都缩小一半10.(2分)如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备的水管的长为( ) A .17.5m B .35mC .335mD .70m评卷人 得分二、填空题11.(3分)如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为 厘米. 12.(3分)在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = . 13.(3分)如图,一束光线照在坡度为1:3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是 度.14.(3分)若锐角 ∠A 满足02sin(15)3A -=,则∠A= .15.(3分)一斜坡的坡比为 1:2,其最高点的垂直距离为 50m ,则该斜坡的长为 m . 16.(3分)如图所示,机器人从A 点沿着西南方向行进了 8个单位,到达 B 点后观察到原点 0 在它的南偏东60°的方向上,则原来A 的坐标为 (结果保留根号).17.(3分)在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE=6,sinA=35,则菱形ABCD 的周长是_____.18.(3分)已知α为锐角,且tan α3= .19.(3分)在Rt △ABC 中,∠C=90°,已知a 边及∠A ,则斜边c 为 .20.(3分),计算:22339b ba a a÷⋅= . 21.(3分)若θ=60°,则cos θ= . 评卷人 得分三、解答题22.(6分)《中华人民共和国道路交通管理条理》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时.”如图所示,已知测速站M 到公路l 的距离MN 为30米,一辆小汽车在公路l 上由东向西行驶,测得此车从点A 行驶到点B 所用的时间为2秒,并测得60AMN ∠=,30BMN ∠=.计算此车从A 到B 的平均速度为每秒多少米(结果保留3 1.732≈2 1.414≈)Ml23.(6分)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)24.(6分)如图,在△ABC 中,∠C =90°,∠BAC=30°,AB=AD,求 tanD.25.(6分)如图,在△ABC 中,∠A=105°,∠B =45°,AB=4,求 AC 的长.BCDA4226.(6分)在△ABC 中,∠C=90°,a+b=14,c=10,求cosA,ABC S ∆.27.(6分)如图,为测河宽,小丽在河对岸岸边任意选取一点A ,再在河这边B 处观察A ,此时视线BA 与河岸BD 所成的夹角为600;小丽沿河岸BD 向前走了50米到CA 与河岸BD 所成的夹角为450.根据小丽提供的信息能测出河宽吗?若能,请写出求解过程;若不能,请说明理由.(结果精确到1米)28.(6分)如图,小明与小华爬山时遇到一条笔直的石阶路,路的一侧设有与坡面AB 平行的护栏MN (MN=AB ).小明量得每一级石阶的宽为32cm ,高为24cm ,爬到山顶后,小华数得石阶一共200级,如果每一级石阶的宽和高都一样,且构成直角,请你帮他们求出坡角∠BAC 的大小(精确到度)和护栏MN 的长度.以下数据供选用:tan 3652120.7500,tan 53748 1.3333,sin 3652120.6000,sin 537480.8000''''''''''''︒=︒=︒=︒=29.(6分)已知,如图所示,在 Rt△ACD 中,∠A= 60°,∠B=45°,AC=6,求BC的长.3630.(6分)如图,在Rt△ABC 中,∠C= 90°,AC=5,BC=12,求B的正弦、余弦和正切的值.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.C3.C4.C 5.A 6.D 7.A 8.A 9.C 10.D二、填空题11.12.45 13.3014.75°15.16. (0,8+8 17.40 18.60° 19.Acsin 20.2a b21.12三、解答题22.解:在Rt AMN △中,tan tan 6030AN MN AMN MN =⨯∠=⨯==在Rt BMN △中,tan tan 3030BN MN BMN MN =⨯∠=⨯==.AB AN BN ∴=-==则A 到B 的平均速度为:1722AB ==≈(米/秒). 70千米/时1759=米/秒19≈米/秒17>米/秒,∴此车没有超过限速. 23.解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD . 设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CD BD,∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD,∴CD =( 60+x ) ·tan21.3°.∴x·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近24.如图,Rt △ABC 中,∠ BAC=30°, 设 BC=x ,AB=2x ,∴AC =∵AB=AD ,∴AD=2x .在 Rt △BCD 中,tan 2BC D DC ==== 25.26.cosA=53或54,ABC S ∆=24.27.能测出河宽.过点A 作 AE ⊥BC ,垂足为E ,设河宽为X 米, 在Rt △AEB 中,tan ∠ABE=BEAE ,∴BE =ABE AE∠tan =x 33在Rt △AEC 中, ∵∠ACE=45°,∴EC=AE=x,∵ BE + EC =BC , ∴33x+x=50,∴ x ≈32(米) 答:河宽约为 32 米.28.解:由题意得BC=24×200=4800,AC=32×200=6400. 在Rt △ABC 中,48003tan 0.7564004BC BAC AC ∠====. ∴∠BAC ≈37°;MN=AB=80m.29.30.5sin 13AC B AB ==,1213BC sB AB ∞==,5tan 12AC B BC ==。
A 、5初三上学期数学--解直角三角形单元检测题(B )满分:100 分;考试时间:90 分钟 姓名: 学号: 成绩:一、填空题:(每小题 2 分,共 20 分) 1、△ABC 中,AB =AC =10cm ,BC =12cm ,则 cosB =,cotB = 。
2、计算:cot440·cot450·cot460= ;若sin α =3 ,00<α <900,则α =_______。
23、在 △Rt ABC 中,∠C =900,如果已知 a 和∠B ,则b =, c =。
(用锐角三角函数表示)4、如果α 是锐角,且 cos α = 4 5,那么 sin (90 0 - α ) = 。
A5、在 △Rt ABC 中,∠C =900, c =2, a = 3 ,则 tan =。
26、计算:1 - cos 60 0 sin 60 0⋅ cot 30 0 = 。
7、已知 △Rt ABC 中,∠C =900, 3a = 3b ,则∠B =。
8、计算 sin30°+9cos600=___________;若sin α = 3,则 cos α =____________。
59、比较大小:sin520_________cos46010、某人沿着山坡走到山顶共走了 1000 米,它上升的高度为 500 米,这个山坡的坡度为__________,坡角为__________。
二、选择题:(每小题 2 分,共 20 分) 11、下列各式中,正确的是( )A 、sin(300+600)=sin300+sin600B 、cot400=1tan 50 0C 、 cos 2 40 0 + cos 2 50 0 = 1D 、 tanA ·sinA =cosA12、利用投影仪把 △Rt ABC 各边的长度都扩大 5 倍,则锐角 A 的各三角函数值()A 、都扩大 5 倍B 、都缩小 5 倍C 、没有变化D 、不能确定 13、在 △Rt ABC 中,∠C =900,sinA =23,则 tanB 的值为( )2 5 51 B 、C 、D 、25 3 214、在 △Rt ABC 中,∠C =900,cosA = 3 2, b = 3 ,则 a 等于( )A 、 3B 、1C 、2D 、315、已知 tan600-cotA =0,A 是锐角,则 sinA 的值是()333A、32132B、C、D、23216、在△Rt ABC中,∠C=900,下列关系式一定不成立的是()A、a=c⋅sin AB、a=c⋅cos BC、a=b⋅tan AD、a=b⋅cot A17、在△Rt ABC中,∠C=900,a、b分别为∠A、∠B的对边,且满足a2-5ab+6b2=0则tanA的值为()A、5或6B、2C、3D、2或3△18、在ABC中,∠A∶∠B∶∠C=1∶2∶3,则cot B⋅tan A=()A、31B、1C、D、19、已知A、B两点,若由A看B的仰角为α,则由B看A的俯角为()A、900+αB、900-αC、αD、1800-α20、等腰三角形的顶角A=1200,底边BC的长为12cm,那么它的腰长是()A、23cmB、43cmC、3cmD、6cm三、计算下列各题:(每小题5分,共10分)21、sin30︒-3tan30︒+2cos30︒+cot45︒22、cos290︒-cos60︒1+sin30︒+tan245︒-cot230︒四、解答下列各题:(每小题8分,共40分)23、如图,在离铁塔93米的A处,用测角器测得塔顶的仰角为∠BAF,已知测角器高AD=1.55米,若∠BAF=30°,求铁塔高BE。
第23章《解直角三角形》章节测试卷一.选择题(共9小题,满分27分,每小题3分)1.在△ABC 中,∠A 、∠B 都是锐角,且sinA =32,cosB =12,则△ABC 是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形2.直角三角形纸片ABC ,两直角边BC =4,AC =8,现将△ABC 纸片按如图那样折叠,使A 与电B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .12B .34C .1D .433.如图,△ABC 的顶点分别在单位长度为1的正方形网格的格点上,则sin ∠BAC 的值为( )A .5B .55C .12D .2534.如图,在△ABC 中,∠C =90°,点D 、E 分别在BC 、AC 上,AD 、BE 交于F ,若BD=CD =CE ,AF =DF ,则tan ∠ABC 的值为( )A .12B .23C .34D .455.一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(−3,0),∠B =30°,则点B 的坐标为( )A. (−3−33,33)B .(−3+3,3)C .(−3+33,33)D .(−3−3,33)6.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6,若点P 在直线AC 上(不与点A 、C 重合),且∠ABP =30°,则CP 的长为( )A .6或23B .6或43C .23或43D .6或23或437.如图,延长等腰Rt ΔABC 斜边AB 到D ,使BD =2AB ,连接CD ,则tan ∠BCD 的值为( )A .23B .1C .13D .128.如图,在△ABC 中,∠ACB =90∘,分别以AB ,AC ,BC 为边向外作正方形,连结CD ,若sin∠BCD=35,则tan ∠CDB 的值为( )A .23B .34C .710D .9139.如图1是由四个全等的直角三角形组成的“风车”图案,其中∠AOB =90°,延长直角三角形的斜边恰好交于另一直角三角形的斜边中点,得到如图2,若IJ =2,则该“风车”的面积为( )A .2+1B .22C .4−2D .42二.填空题(共6小题,满分18分,每小题3分)10.如图,在Rt △ABC 中,∠C =90°,点D ,E 分别在AC ,BC 边上,且AD =3,BE =4,连接AE ,BD ,交于点F ,BD=10,cos ∠AFD=32,则AE 的长为 .11.如图,在菱形ABCD 中,tan ∠ABC =43,AE ⊥BC 于点E ,AE 的延长线与DC 的延长线交于点F ,则S △ECF :S 四边形ADCE = .(S 表示面积)12.如图,在矩形ABCD中,AB=3,AD=4,E是对角线BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,DE=.13.如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠ABC=120°,AB=6,则PE−PF的值为.14.如图,在正方形ABCD中,M,N分别是AB,CD的中点,P是线段MN上的一点,BP的延长线交4D 于点E,连接PD,PC,将△DEP绕点P顺时针旋转90°得△GFP,则下列结论:①CP=GP,②tan∠CGF=1;③BC垂直平分FG;④若AB=4,点E在AD边上运动,则D,F两点之间距离的2.其中结论正确的序号有.最小值是3215.如图,△A B1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=33x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则线段B2022B2023的长度是.16.如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若AH=2,AD=5+3,则四边形EFGH的周长为.三.解答题(共7小题,满分52分)17.(6分)计算:(1)2sin60°−tan45°2−tan30°⋅tan60°−2cos30°+6sin245°. (2)(π−1)0+4sin45°−8+|−3|.18.(6分)如图,在△ABC中,AD⊥BC于点D,若AD=6,BC=12,tan∠ACD=32.求:(1)CD的长;(2)sin∠ABC的值.19.(8分)(2023春·河南南阳·九年级统考期中)如图,已知点A(7,8)、C(0,6),AB⊥x轴,垂足为点B,点D在线段OB上,DE∥AC,交AB于点E,EF∥CD,交AC于点F.(1)求经过A、C两点的直线的表达式;(2)设OD=t,BE=s,求s与t的函数关系式;(3)是否存在点D,使四边形CDEF为矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.20.(8分)(1)在如图1的正方形网格图中,每个小正方形的边长为1,A,B,C,D均为格点(小正方形的顶点).求证:∠ABC=∠D.(2)在如图2所示的正方形网格图中,每个小正方形的边长为1,A,B,C均为格点,请你仅用无刻度的直尺在线段AC上求作一点P,使得∠PBA=∠C,并简要说明理由.21.(9分)如图,小明为测量宣传牌AB的高度,他站在距离建筑楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°.同时测得建筑楼窗户D处的仰角为30°(A、B、D、E在同一直线上.)然后,小明沿坡度为i=1:2.5的斜坡从C走到F处,此时DF正好与地面CE平行,小明在F处又测得宣传牌顶部A的仰角为45°.(1)填空:∠DAF=__________度,∠BDC=__________度;(2)求F距离地面CE的高度(结果保留根号);(3)求宣传牌AB的高度(结果保留根号).22.(9分)我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边腰=BCAB.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad90°=________.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是________.(3)如图②,已知sinA=35,其中∠A为锐角,试求sadA的值.23.(9分)已知:△ABC 中,AB =AC ,D 为直线BC 上一点.(1)如图1,BH ⊥AD 于点H ,若AD =BD ,求证:BC =2AH .(2)如图2,∠BAC =120°,点D 在CB 延长线上,点E 在BC 上且∠DAE=120°,若AB =6,DB=23,求CE 的值.(3)如图3,D 在CB 延长线上,E 为AB 上一点,且满足:∠BAD=∠BCE ,AE BE=23,若tan ∠ABC =34,BD =5,求BC 的长.答案解析一.选择题1.B【分析】根据特殊角的三角函数值求出∠A=60°,∠B=60°,然后利用三角形内角和定理求出∠C的度数,即可解答.【详解】解:∵sinA=32,cosB=12,∴∠A=60°,∠B=60°,∴∠C=180°−∠A−∠B=60°,∴△ABC是等边三角形,故选:B.2.B【分析】根据折叠的性质得出BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理得出B C2+C E2=B E2,列出方程求出x的值,最后根据正切的定义,即可解答.【详解】解:∵△ADE沿DE折叠得到△BDE,∴BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理可得:B C2+C E2=B E2,即42+x2=(8−x)2,解得:x=3,∴tan∠CBE=CEBC =34,故选:B.3.B【分析】过B作BD⊥AC于点D,根据勾股定理得出AB,AC的值,再利用面积公式求出BD的值,由sin∠BAC=BDBA可得角的正弦值.【详解】解:如图,过B作BD⊥AC于点D根据勾股定理得:AB =32+42=5,AC =32+62=35∴S ΔABC =12AC ⋅BD =4×6−12×3×1−12×3×4−12×6×3=152, ∴BD =5∴sin ∠CAB=BD AB =55故选:B .4.C 【分析】如图,过A 作AG ∥BC ,交BE 的延长线于G ,证明△AGF ≌△DBF (AAS ),则AG =BD =12BC ,证明△AEG ∽△CEB ,则AE CE =AG BC =12,解得AE =12CE ,AC =32CE ,根据tan ∠ABC =ACBC,计算求解即可.【详解】解:如图,过A 作AG ∥BC ,交BE 的延长线于G ,∴∠G =∠DBF ,在△AGF 和△DBF 中,∵{∠G =∠DBF∠AFG =∠DFB AF =DF,∴△AGF ≌△DBF (AAS ),∴AG =BD =12BC ,∵∠G =∠CBE ,∠AEG =∠CEB ,∴△AEG ∽△CEB ,∴AE CE =AG BC=12,解得AE =12CE ,∴AC =32CE ,∴tan ∠ABC=AC BC =32CE 2CE =34,故选:C .5.D【分析】过点B 作BE ⊥OC 于点E ,根据ΔABC 为直角三角形可证明ΔBCE ∽ΔCAO ,求出AC =10,求出BC ,再由比例线段可求出BE ,CE 长,则答案可求出.【详解】解:过点B 作BE ⊥OC 于点E ,∵△ABC 为直角三角形,∴∠BCE +∠ACO =90°,∴ΔBCE ∽ΔCAO ,∴ BE OC =BC AC =EC OA ,在Rt △ACO 中,AC =A O 2+C O 2=12+32=10,在Rt △ABC 中,∠CBA=30°,∴ tan ∠CBA=CA BC ,∴ BC =CA tan ∠CBA =10tan30°=30,∴ BE3=3010=EC1,解得BE =33,EC =3,∴ EO =EC +CO =3+3,∴点B 的坐标为(−3−3,33).故选:D .6.D【分析】根据点P在直线AC上的不同位置,∠ABP=30°,利用特殊角的三角函数进行求解.【详解】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°−30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=3cos30°=332=23如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BCcos30°=632=43故选:D7.A【分析】过点D作DE垂直于CB的延长线于点E,设AC=BC=a,根据勾股定理得AB=2a,由等腰直角三角形的性质得∠ABC=∠BAC=45°,从而得BD=2AB=22a,在Rt△BDE中,解直角三角形得DE=2a,BE=2a,进而求得CE=BC+BE=3a即可求得tan∠BCD.【详解】解:过点D作DE垂直于CB的延长线于点E,如下图,设AC=BC=a,∵AC⊥BC,AC=BC=a,∴AB=A C2+B C2=2a,∠ABC+∠BAC=90°,∠ABC=∠BAC,∴∠ABC=∠BAC=45°,BD=2AB=22a,∴∠DBE=∠ABC=45°,∵DE⊥CE,∴DE=BD·sin∠DBE=22a·sin45°=2a,BE=BD·cos∠DBE=22a·cos45°=2a,∴CE=BC+BE=3a,∴tan∠BCD=DECE =2a3a=23,故选:A.8.D【分析】过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,可得△ABC,△BED,△BEC,△BCF都是直角三角形,根据sin∠BCE=BEBC =35,设BE=3a,BC=5 a,得CE=B C2−B E2=4 a,过点C作DB延长线于点G,得矩形CFBG,设AC=x,AB=y,然后利用勾股定理和三角形的面积可得y2−9=133,进而利用锐角三角函数即可解决问题.【详解】解:如图,过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,∴△ABC,△BED,△BEC,△BCF都是直角三角形,∵sin∠BCD=35,∴sin∠BCE=BEBC =35,设BE=3a,BC=5a,∴CE=B C2−B E2=4a,过点C作DB延长线于点G,得矩形CFBG,∴BF=CG,设AC=x,AB=y,在Rt△ABC中,根据勾股定理,得AB2﹣AC2=BC2,∴y2﹣x2=25a2,∵S△ABC=12×AB•CF=12×AC•BC,∴y•CF=5ax,∴CF=5axy,在Rt△BCF中,根据勾股定理,得BF=B C2−C F2=25a2−(5axy )2=25ya,∴BF=CG=25ya,在正方形ABDH中,AB=BD=y,在Rt△BDE中,根据勾股定理,得DE=B D2−B E2=y2−9a2,∴CD=CE+ED=4a +y2−9a2,∵S△CBD=12×CD•BE=12×BD•CG,∴CD•BE=BD•CG,∴(4a +y2−9a2)×3=y×25ya,∴y2−9a2=133a,∴tan∠CDB=tan∠EDB=BEDE =3ay2−9a2=913.故选:D.9.B【分析】连接AC,由题意可得Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH,进而说明△OAC为等腰直角三角形,再说明分CD、GI垂直平分AB,进而说明∠OBH=∠OHB=45°,然后再运用解直角三角形求得AI,然后再求得三角形AOB的面积,最后求风车面积即可.【详解】解:如图:连接AC由题意可得:Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH∴OA=OC, ∠OAB= ∠OCD∵∠AOC=∠AOB=90°∴△OAC为等腰直角三角形又∵∠OAB= ∠OCD:∴∠AJD=180°-∠ADJ-∠OAB=180°-∠ODC-∠OCD=90°,即AJ⊥CD又∵CJ=DJ∴AJ垂直平分CD同理:GI垂直平分AB∴AC=AD,AJ是等腰三角形顶角∠CAD的角平分线即∠DAJ=12∠CAD=12×45°=22.5°易得IH=BJ,IJ=IB+BJ=IB+IH 又∵IB=IA∴IJ=IB+BJ=IH+IA= 2在Rt△ABO中,∠ABH=∠BAH=22.5°∴∠OBH=OHB=45°设OB=OH=a,即AH=BH=2OB=2a∴tan∠A=BOAO =aa+2a=2−1∴IHIA=tan∠A=2−1设IH=(2−1)x,AI=x ∴IH+IA=2x=2,即x=1∴S△ABH =12×AB×IH=2−1又∵SΔBOHSΔABH =OHAH=12∴S△BOH =1−22∴S△AOB =S△ABH+S△BOH=2−1+1−22=22∴S风车=4S△AOB=4×22=22.故选B.二.填空题10.53【分析】过点A作AG∥BE,BG∥AE交于点G,连接DG,勾股定理求得DG,过点D作DH⊥BG,证明G,H重合,进而勾股定理即可求解.【详解】解:如图所示,过点A作AG∥BE,BG∥AE交于点G,连接DG,则四边形AGBE是平行四边形,∴AG=BE=4,∵∠C=90°,则BC⊥AC∴AG⊥AC∴△ADG是直角三角形,∴DG=5∵cos∠AFD=32∴∠AFD=30°∵AE∥BG∴∠DBG=30°∵DG=5,DB=10过点D作DH⊥BG,∵sin∠DBG=12∴DH=12DB=5,∴G,H重合,∴AE=BG=BH=53故答案为:53.11.4:21【分析】设AE=4k,则BE=3k,根据勾股定理求出AB=5k,然后证明△CEF∽△DAF,最后根据相似三角形的性质求解即可.【详解】解∶∵tan∠ABC=43,AE⊥BC,∴tan∠ABC=43=AEBE,设AE=4k,则BE=3k,∴AB =A E 2+B E 2=5k ,∵四边形ABCD 是菱形,∴CB ∥AD ,AD =BC =AB =5k ,∴CE =BC −BE =2k ,∵CB ∥AD ,∴△CEF ∽△DAF ,∴S △CEF S△DAF =(CE DA )2=(2k 5k )2=425,∴S △CEFS 四边形ADCE =S △CEF S △DAF −S △CEF =425−4=421.故答案为:4:21.12.2或52或75【分析】分AB =AE,BE =BA,EA =EB 三种情况,分别画出图形,即可求解.【详解】解:在矩形ABCD 中,AB =3,AD =4,∴∠BAD=90°,∴BD =A B 2+A D 2=32+42=5,当AB =AE 时,过点A 作AF ⊥AD 于点F ,则AF ⊥BD ,∴cos ∠ABD=AB BD =BF AB ,∴BF =AB 2BD =95∴DE =BD −BE =BD −2BF =5−185=75,当BA =BE 时,DE =BD −BE =5−3=2,当EA =EB 时,过点E 作EG ⊥AB 于点G ,∴EG ∥AD ,AG =GB ,∴BE ED=BG AG =1,∴DE =12BD=52,综上所述DE = 2或52或75,故答案为:2或52或75.13.33【分析】如图,延长BC 交EP 于M ,由菱形的性质可知,CP 为∠BCD ,∠FCM 的平分线,则PF =PM ,PE −PF =PE −PM =EM ,由题意知,EM 为△ABD 底边AD 上的高,由菱形ABCD ,∠ABC=120°,AB =6,可得∠BAD=60°,根据EM=AB ⋅sin ∠BAD ,计算求解,进而可得结果.【详解】解:如图,延长BC 交EP 于M ,由菱形的性质可知,CP为∠BCD,∠FCM的平分线,∵PF⊥CF,PM⊥CM,∴PF=PM,∴PE−PF=PE−PM=EM,由题意知,EM为△ABD底边AD上的高,∵菱形ABCD,∠ABC=120°,AB=6,∴∠BAD=60°,∴EM=AB⋅sin∠BAD=33,∴PE−PF=33,故答案为:33.14.①②③【分析】延长GF交AD于点H,连接FC,FB,FA,由已知可得MN为AB,CD的垂直平分线,由垂直平分线的性质和图形旋转的性质可得①的结论正确;利用三角形的内角和定理和等腰三角形的性质计算可得∠BCG=45°,由四边形内角和定理通过计算可得∠EHF=90°;利用平行线的性质可得BC⊥FG,则∠CGF=45°,可说明②的结论正确;通过证明点A,B,E,F在以点P为圆心,PA为半径的同一个圆上,利用圆周角定理可得∠FAB=45°,得到A,F,C三点共线,得到△CGF为等腰直角三角形,则③的结论正确;由题意点F在对角线AC上运动,当EF⊥AC时,EF的值最小,连接AC,解直角三角形的知识可得④的结论不正确.【详解】解:延长GF交AD于点H,连接FC,FB,FA,如图,∵正方形ABCD中,M,N分别是AB,CD的中点,∴MN是线段BA,CD的垂直平分线.∴PD=PC,PA=PB.∵△FPG是△PED绕点P顺时针旋转90°得到,∴△FPG≌△PED,∴PD=PG.∴PC=PG.∴①的结论正确;∵PD=PC,∴∠PDC=∠PCD=1(180°−∠DPC).2∵PC=PG,∴∠PCG=∠PGC=1(180°−∠CPG).2∴∠PCD+∠PCG=1[360°−(∠DPC+∠CPG)].2∵∠DPC+∠CPG=90°,∴∠PCD+∠PCG=135°.∵∠BCD=90°,∴∠BCG=45°.∵△FPG≌△PED,∴∠DEP=∠GFP.∵∠HFP+∠PFG=180°,∴∠DEP+∠HFP=180°.∵∠DEP+∠HFP+∠EHF+∠EPF=360°,∴∠EHF+∠EPF=180°.∴∠EPF=90°,∴∠EHF=90°.即GH⊥AD.∵AD//BC,∴GF⊥BC.∴∠CGF=45°.∴tan∠CGF=1.∴②的结论正确;∵PA=PB,PM⊥AB,∴∠APM=∠BPM,∵PM//AE,∴∠PEA=∠BPM,∠PAE=APM.∴∠PEA=∠PAE.∴PA=PE.∵PE=PF,∴PA=PB=PE=PF.∴点A,B,E,F在以点P为圆心,PA为半径的同一个圆上.∴∠FAB=12∠FPB=12×90°=45°.∴点F在对角线AC上,∴∠FCB=45°.∵∠BCG=∠CGF=45°,∴△FCG为等腰直角三角形.∵BC平分∠FCG,∴BC垂直平分FG.∴③的结论正确;由以上可知:点F在正方形的对角线AC上运动,∴当EF⊥AC时,EF的值最小.此时点E与点D重合,∴DF=AD⋅sin45°=4×22=22.∴④的结论不正确.综上,结论正确的序号有:①②③,故答案为:①②③.15.220233【分析】设直线y=33x+2与x轴交于点C,求出点A、C的坐标,可得OA=2,OC=23,推出∠C B1A1=90°,∠C B1A=30°,然后求出C B1=2O B1=43=22×3,C B2=2C B1=83=23×3,C B3=2C B2=163=24×3,…,进而可得C B2022=22023×3,C B2023=22024×3,再求出B2022B2023即可.【详解】解:如图所示,设直线y =33x +2与x 轴交于点C ,当x =0时,y =2;当y =0时,x =−23,∴ A (0,2),C (−23,0),∴ OA=2,OC =23,∴ tan ∠ACO =OA OC=223=33,∴ ∠ACO=30°,∵ △A B 1A 1是等边三角形,∴ ∠A A 1B 1=∠A B 1A 1=60°,∴ ∠C B 1A 1=90°,∠C B 1A =30°,∴ AC =A B 1,∵ AO⊥C B 1,∴ O B 1=OC =23,∴ C B 1=2O B 1=43=22×3,同理,C B 2=2C B 1=83=23×3,C B 3=2C B 2=163=24×3,……,∴ C B 2022=22023×3,C B 2023=22024×3,∴ B 2022B 2023=22024×3−22023×3=220233,故答案为:220233.16.8+46【分析】先构造15° 的直角三角形,求得15° 的余弦和正切值;作EK ⊥FH ,可求得EH:EF =2:6;作∠ARH=∠BFT =15°,分别交直线AB 于R 和T ,构造“一线三等角”,先求得FT 的长,进而根据相似三角形求得ER ,进而求得AE ,于是得出∠AEH =30°,进一步求得结果.【详解】解:如图1,Rt △PMN 中,∠P =15°,NQ =PQ ,∠MQN =30°,设MN=1,则PQ =NQ =2,MQ=3,PN =6+2,∴cos15°=6+24,tan15°=2−3,如图2,作EK ⊥FH 于K ,作∠AHR =∠BFT =15°,分别交直线AB 于R 和T ,∵四边形ABCD 是矩形,∴∠A =∠C ,在△AEH 与△CGF 中,{AE =CG ∠A =∠C AH =CF,∴△AEH ≌△CGF(SAS),∴EH =GF ,同理证得△EBF ≌△GDH ,则EF =GH ,∴四边形EFGH 是平行四边形,设HK=a ,则EH=2a ,EK =3a ,∴EF =2EK =6a ,∵∠EAH =∠EBF =90°,∴∠R=∠T =75°,∴∠R=∠T=∠HEF=75°,可得:FT=BFcos15°=3+36+24=26,AR=AH⋅tan15°=4−23,△FTE∽△ERH,∴FTER =EFEH,∴26ER =62,∴ER=4,∴AE=ER−AR=23,∴tan∠AEH=223=33,∴∠AEH=30°,∴HG=2AH=4,∵∠BEF=180°−∠AEH−∠HEF=75°,∴∠BEF=∠T,∴EF=FT=26,∴EH+EF=4+26=2(2+6),∴2(EH+EF)=4(2+6),∴四边形EFGH的周长为:8+46,故答案为:8+46.三.解答题17.(1)原式=2×32−12−33×3−2×32+6×(22)2=3−12−1−3+6×12=3−1−3+3=2.(2)原式=1+4×22−22+3 =1+22−22+3=4.18.(1)解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADC中,tan∠ACD=ADCD =32,AD=6,∴CD=4;(2)解:由(2)得CD=4,∴BD=BC−CD=8,∴AB=A D2+B D2=10,在Rt△ABD中,sin∠ABD=ADAB =35,即sin∠ABC=35.19.解:(1)设直线AC的表达式为y=kx+b 将点A、C的坐标代入,得得:{7k+b=8b=6,解得:{k=27b=6,故直线AC的表达式为:y=27x+6;(2)∵OD=t,BE=s,AB⊥x轴∴则点D(t,0),点E(7,s)∵DE∥AC可设直线DE的解析式为y=27x+c将点D的坐标代入0=27t+c解得:c=﹣27t∴直线的表达式为:y=27x﹣27t,将点E的坐标代入,得s=2﹣27t(根据点D在线段OB上,可得0<t<7);(3)存在,理由:设点D(t,0),由(2)BE=2﹣27t,四边形CDEF为矩形,则∠CDE=90°,∵∠EDB +∠CDO =90°,∠CDO +∠OCD =90°,∴∠OCD =∠BDE ,∴tan ∠OCD =tan ∠BDE ,∴ODOC =BE BD即t 6=2−27t 7−t,解得:t =127或7(因为0<t <7,故舍去7),故点D 的坐标为(127,0).20.(1)如图所示,取格点E ,F ,连接BF,AF ,AE,CE ,∵BF =12+12=2,DF =32+32=32,∴tan ∠D =BF DF=232=13,∵CE =1,BE =3,∴tan ∠ABC=CE BE=13,∴tan ∠D =tan ∠ABC ,∴∠ABC=∠D ;(2)解:如图,取格点D ,E ,同理(1)可得,在Rt△AEC中,tan∠ACE=1,2,在Rt△ABD中,tan∠ABD=12∴tan∠ACE=tan∠ABD,∴∠ACE=∠ABD,直线BD与AC的交点为所求的点P.21.(1)解:由题意,得AD⊥DF,∴∠ADF=90°∴∠DAF=90°−∠AFD=90°−45°=45°,由题意,得FD∥CE,∴∠CDF=∠ECD=30°∴∠BDC=∠ADF+∠CDF=90°+30°=120°.(2)解:如图,过点F作FG⊥EC于G,由题意得,FG∥DE,DF∥GE,∠FGE=90°,∴四边形DEGF是矩形.∴FG=DE.在Rt △CDE 中,DE =CE ⋅tan ∠DCE=6×tan30°=23(米),∴FG =23(米).答:F 距离地面CE 的高度为23米;(3)解:∵斜坡CF 的坡度为i =1:2.5,∴Rt △CFG 中,CG = 2.5FG =23× 2.5=53(米),∴FD =EG =(53+6)(米).∴在Rt △AFD 中,∠AFD=45°,∴AD =FD =(53+6)米.在Rt △BCE 中,BE =CE ⋅tan ∠BCE =6×tan60°=63(米),∴AB =AD +DE −BE =53+6+23−63=(6+3)(米).答:宣传牌AB 的高度约为(6+3)米.22.(1)解:如图,∠BAC=90°,AB =AC ,sad90°=BC AB ,∵cos45°=AB BC=22,∴sad90°=BCAB = 2.(2)解:如图,点A 在BC 的中垂线上,当点A 向BC 靠近时,∠A 增大,逐渐接近180°,腰长AB 接近12BC ,AB >12BC 相应的sadA =BC AB <2;当点A 远离BC 时,∠A 减小,逐渐接近0°,腰长AB 逐渐增大,相应的sadA =BCAB 逐渐接近0,sad A =BCAB >0;∴0<sadA <2(3)解:如图,在AB 上截取AH=AC ,过H 作HD ⊥AC 于D ,sinA =35=DH AH ,设HD =3x,AH =AC =5x ,则,AD =A H 2−H D 2=4x ,∴DC =AC −AD =5x −4x =x .Rt △HDC 中,HC =C D 2+H D 2=10x ,∴sadA =CH AH =10x 5x =105.23.(1)解:证明:如图1,过点A 作AN ⊥BC 于N ,∵AB =AC ,∴BN =12BC ,∵AD =BD ,∴∠ABD =∠BAD ,在△ABN 和△BAH 中,{∠ANB=∠BHA=90°∠ABD=∠DABAB=BA,∴△ABN≌△BAH(AAS),∴BN=AH,∴12BC=AH,∴BC=2AH;(2)如图2,在AC上取一点F,使EF=EC,连接EF,∵∠BAC=∠DAE=120°,∴∠DAB=∠EAC,∵AB=AC,∴∠ABE=∠C=∠CFE=30°,∴∠ABD=∠AFE=150°,∴△ABD∽△AFE,∴ABAF =BDEF,即6AF=23EF,∴AFEF=3,设EF=a,则AF=3a,∵EF=CE=a,∠C=30°,∴CF=2EF·cos30°=3a,∴6−3a=3a,∴a=3,∴CE=EF=3;(3)如图3,过点A作AP⊥BC于P,作AG∥CE交BC的延长线于G,设AE=2m,BE=3m,则AB=AC=5m,∵tan∠ABC=34=AP BP ,∴ BP AB =45,∴BP =CP =4m ,BC =8m ,∵∠BAD =∠BCE =∠G ,∠ABD =∠GCA ,∴△ABD ∽△GCA ,∴ CG AB =AC BD ,即CG 5m =5m 5,∴CG =5m 2,∵AG ∥CE ,∴ BE AE =BC CG ,∴ 3m 2m =8m5m 2,∴m =1615,∴BC =8m =12815.。
九年级上册数学第26章解直角三角形单元测试卷一.选择题(共10小题).1.△ABC中,∠C=90°,sin A=,则tan A的值是()A.B.C.D.2.已知α为锐角,那么sinα+cosα的值是()A.大于1B.小于1C.等于1D.不能确定3.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.4.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.105.计算1﹣2sin245°的结果是()A.﹣1B.0C.D.16.如图,在Rt△ABC中,∠C=90°,AB=13,cos A=,则AC的长为()A.5B.8C.12D.137.若α,β都是锐角,下列说法正确的是()A.若sinα=cosβ,则α=β=45°B.若sinα=cosβ,则α+β=90°C.若sinα>cosβ,则α>βD.若sinα<cosβ,则α<β8.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9B.5:3C.:D.5:39.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D.10.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD=()A.B.3C.D.2二.填空题11.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为.12.计算:sin45°=.13.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC =.14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A =.15.比较大小:tan40°tan70°(填“>”或“<”)16.已知:∠A为锐角,且sin A=,则tan A的值为.17.α为锐角,且tanα=1,则α=,sinα=.18.已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为.19.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,则AB的长为.20.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)三.解答题(共7小题)21.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.23.在△ABC中,∠C=90°,BC=24cm,cos A=,求这个三角形的周长.24.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)求tan∠BOA的值;(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,﹣2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标.25.如图,在所示的直角坐标系中,P是第一象限的点,其坐标是(6,y),且OP与x轴的正半轴的夹角α的正切值是,求角α的正弦值.26.在锐角△ABC中,AB=15,BC=14,S=84,求:△ABC(1)tan C的值;(2)sin A的值.27.(1)如图,锐角的正弦和余弦都随着锐角的确定而确定,也随着其变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值的变化规律;(2)根据你探索到的规律,试比较18°,34°,52°,65°,88°,这些角的正弦值的大小和余弦值的大小;(3)比较大小:(在空格处填写“<”或“>”或“=”)若∠α=45°,则sinαcosα;若∠α<45°,则sinαcosα;若∠α>45°,则sinαcosα;(4)利用互余的两个角的正弦和余弦的关系,比较下列正弦值和余弦值的大小:sin10°,cos30°,sin50°,cos70°.参考答案与试题解析一.选择题.1.解:如图,∵sin A==,∴设BC=4x,AB=5x,∴AC==3x,∴tan A===.故选:A.2.解:因为α为锐角,∴sinαcosα>0,∴(sinα+cosα)2=sin2α+cos2α+2sinαcosα=1+2sinαcosα>1,∴sinα+cosα>1.故选:A.3.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.4.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.5.解:原式=1﹣2×()2=1﹣2×=1﹣1=0.故选:B.6.解:∵cos A=,即=,AB=13,∴AC=AB•cos A=5,故选:A.7.解:根据一个角的正弦值等于余角的余弦值,判断A错误,B正确.根据锐角三角函数的变化规律,则C,D错误.故选:B.8.解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sin B,A′D′=A′B′•sin B′,BC=2BD=2AB•cos B,B′C′=2B′D′=2A′B′•cos B′,∵∠B+∠B′=90°,∴sin B=cos B′,sin B′=cos B,∵S△BAC=AD•BC=AB•sin B•2AB•cos B=25sin B•cos B,S△A′B′C′=A′D′•B′C′=A′B′•cos B′•2A′B′•sin B′=9sin B′•cos B′,∴S△BAC :S△A′B′C′=25:9.解法二:证明△ADB∽△B′D′A′,推出△ABC与△A′B′C′的面积比=()2=.故选:A.9.解:sin A===0.25,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A.10.解:设小正方形的边长为1,由图形可知,,∴△ADC是等腰直角三角形,∴AD⊥DC.∵AC∥BD,∴,∴PC=2DP,∴AD=DC=3DP,∴.故选:B.二.填空题11.解:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为.故答案为:.12.解:根据特殊角的三角函数值得:sin45°=.13.解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.14.解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC•AD=AB•CE,即CE==,sin A===,故答案为:.15.解:∵tanα的值随着α的增大而增大,且40°<70°,∴tan40°<tan70°,故答案为:<.16.解:由sin A==知,如果设a=8x,则c=17x,结合a2+b2=c2得b=15x.∴tan A==.17.解:∵tanα=1,∴α=45°.∴sinα=.18.解:∵sin A=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故答案为:.19.解:过A作AD⊥BC,在Rt△ACD中,∠C=45°,AC=2,∴AD=CD=2,在Rt△ABD中,∠B=30°,AD=2,∴AB=2AD=4,故答案为:4.20.解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.三.解答题(共7小题)21.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245=(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.22.解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=23.解:可设AC=5xcm,AB=13xcm,则BC=12xcm,由12x=24得x=2,∴AB=26,AC=10,∴△ABC的周长为:10+24+26=60cm.24.解:(1)∵点B(4,2),BA⊥x轴于A,∴OA=4,BA=2,∴tan∠BOA===.(2)如图,由旋转可知:CD=BA=2,OD=OA=4,∴点C的坐标是(﹣2,4).(3)△O′A′B′如图所示,O′(﹣2,﹣4),A′(2,﹣4).25.解:作PC⊥x轴于C.∵tanα=,OC=6∴PC=8.则OP=10.则sinα=.26.解:(1)过A作AD⊥BC于点D.=BC•AD=84,∵S△ABC∴×14×AD=84,∴AD=12.又∵AB=15,∴BD==9.∴CD=14﹣9=5.在Rt△ADC中,AC==13,∴tan C==;(2)过B作BE⊥AC于点E.=AC•EB=84,∵S△ABC∴BE=,∴sin∠BAC===.27.解:(1)在图(1)中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>.∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图(2)中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3<AB2<AB1,∴>>.即cos∠B3AC>cos∠B2AC>cos∠B1AC.(2)sin88°>sin65°>sin52°>sin34°>sin18°;cos88°<cos65°<cos52°<cos34°<cos18°.(3)若∠α=45°,则sinα=cosα;若∠α<45°,则sinα<cosα;若∠α>45°,则sinα>cosα.(4)cos30°>sin50°>cos70°>sin10°.。
解直角三角形 单元测试 (时间:100分钟 满分:150分)一、填空题(每题3分,共30分)1.若直角三角形两条直角边长分别为5和12,则斜边上的中线长为________. 2.若等腰直角三角形的一边长是2,则它的面积为___________. 3.△ABC 中,∠C =90°,a =6,b =8,则sinA =_____________. 4.在△ABC 中,∠C =90°,135sin =B ,则cosB =___________. 5.若23sin =a ,则锐角a =__________度. 6.Rt △ABC 中,∠C =90°,220,20==c a ,则∠B =_________度. 7.△ABC 中,∠C =90°,10,54sin ==AB A ,则AC =_________. 8.在离大楼15m 的地面上看大楼顶部仰角为60°,则大楼高约__________m(精确到lm). 9.在电线杆离地面8m 的地方向地面拉一条缆绳以固定电线杆,如果缆绳与地面成 60°角,那么需要缆绳__________m(忽略打结部分).10.一个斜坡的坡度是1:3,高度是4m ,则他从坡底到坡顶部所走的路程大约是___________m .二、选择题(每题4分,共20分)11.直角三角形的两条边长分别为3、4,则第三条边长为 ( ) A .5 B .7 C .7 D .5或712.如图,菱形ABCD 的对角线AC =6,BD =8,∠ABD =a ,则下列结论正确的是 ( ) A .54sin =a B .53cos =a C .34tan =a D .34cot =a第12题 第13题13.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,CD ⊥AB 于D ,设∠ACD =a ,则cos a 的值为 ( )A .54B .43C .34D .5314.△ABC 中,∠C =90°,且a ≠b ,则下列式子中,不能表示△ABC 面积的是 ( )A .ab 21B .B ac sin 21C .A b tan 212D .B A c cos sin 212⋅15.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长23m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到C A '的位置,此时露在水面上的鱼线C B ''为33,则鱼竿转过的角度是 ( )A .60°B .45°C .15°D .90°三、解答题(每题10分,共50分)16.计算(1)2cos30°+cot60°-2tan45°·tan60°(2)()︒-︒-︒⋅︒︒+︒30sin 60sin 330cot 30tan 45cos 45sin 2217.如图,求下列各直角三角形中字母的值.18.如图是直线y =-2x+5的图象,求锐角a 的四个三角函数值.19.如图,梯形ABCD 中,AB ⊥BC ,∠BAC =60°,∠ADC =135°,312 BC ,求梯形的面积和周长.20.身高相同的甲、乙、丙三人放风筝,各人放出的线长分别为300m、250m、200m,线与地平面所成的角分别为30°、45°、60°(假设风筝线是拉直的),问三人所放的风筝谁的最高?21.(本题15分)分别以直角三角形的三边为边长向外作图形,如图,甲是作三个正方形,乙是作三个正三角形,丙是作三个半圆,丁是作三个等腰直角三角形.分别探索这四个图形工、Ⅱ、Ⅲ的面积之间的关系,并证明。
解直角三角形单元检测题一、填空题:(每空1分,共20分)1、旗杆的上一段BC 被风吹断,顶端着地与地面成30°角,顶端着地处B 与旗杆底端相距4米,则原旗杆高为_________米。
2、在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=7,BD=5,则sinB= ,cosA= ,sinA= ,tanA= ,cotA= 。
3、在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AC=4,BD=59,则sinA= ,tanB= 。
4、若α为锐角,cot α=21,则sin α= ,cos α= 。
5、在Rt △ABC 中,∠C=90°,sinA=53,a+b+c=36,则a=__ __,b=____ _,c=___ __,cotA=_______6、计算:(1)02256cos 34cos 1--= ;(2)069sin 21cos 69cos 21sin += 。
7、计算:300310)30cot 31()30tan 3(⋅= 。
8、当x = 时,xx x x cos sin cos sin -+无意义。
(00<x <900)9、在△ABC 中,∠C=900,若sinA >cosA ,则∠A 的取值范围是 。
10、已知△ABC 中,AB=24,∠B=450,∠C=600,AH ⊥BC 于H ,则AH= ;CH= 。
二、选择题:(每小题2分,共20分) 11、已知cotA =3,求锐角A ( ) A 、32B 、30C 、60D 、50012、在Rt △ABC 中,如果一条直角边和斜边的长度都缩小至原来的51,那么锐角A 的各个三角函数值( ) A 、都缩小51B 、都不变C 、都扩大5倍D 、无法确定 13、若α是锐角,且054sin cos 0=-α,则α为( ) A 、54B 、36C 、30D 、60014、在△ABC 中,∠C =900,CD 是AB 边上的高,则CD ∶CB 等于( ) A 、sinA B 、cosA C 、tanA D 、cotA 15、在△ABC 中,∠C =900,CD ⊥AB 于D ,∠ACD =α,若tan α=23,则sinB =( ) A 、53 B 、52 C 、133 D 、13216、A 、B 、C 是△ABC 的三个内角,则2sinBA +等于( ) A 、2cos C B 、2sin C C 、C cos D 、2cos B A +17、若00<∠A <900,且5)90cot(0=-A ,则A cot 的值为( ) A 、5 B 、51 C 、34 D 、43 18、化简250tan 50cot 0202-+的结果是( )A 、0050tan 50cot -B 、0050cot 50tan -C 、250tan 50cot 00--D 、0050cot 50tan + 19、在Rt △ABC 中,∠C =900,32cos =B ,则a ∶b ∶c 为( ) A 、2∶5∶3 B 、2∶5∶3C 、2∶3∶13D 、1∶2∶3 20、在△ABC 中,若AB =AC ,则sinB 等于( ) A 、2sinA B 、2cos AC 、A sinD 、A cos 三、计算下列各题:(每小题5分,共10分) 21、00000245tan 45cos 230cos 60tan 45sin +⋅+ 22、100010000202)25tan 2()65tan 21(30cot 230tan ⋅-+-四、解答下列各题:(每小题8分,共40分)23、已知,如图:AB ∥DC ,∠D =90°,BC =10,AB =4,C tan =31,求梯形ABCD 的面积。
24、方程012sin )2(sin 2sin 2=+++-αααx x 有实数根,求锐角α的取值范围。
D CBAFEDCBA25、已知如图:正方形ABCD 中,E 、F 是AD 上的两点,EF=3,tan ∠ABE=41,tan ∠FBC=58,求FD 的长。
(FD=3)26、已知△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c (a >b),关于x 的方程x 2-2(a+b)x+2ab+c 2=0有两个相等的实数根。
若∠A 、∠B 的余弦是关于x 的方程(m+6)x 2-(2m-3)x+m=7的两个根;且△ABC 的周长为24。
(1)试判定△ABC 的形状,并证明你的结论; (2)试求△ABC 最大边的长度。
27、今年入夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位。
一条船在松花江某水段自西向东沿直线航行,如图,在A 处测得航标C 在北偏东600方向上,前进100米到达B 处,又测得航标C 在北偏东450方向上,在以航标C 为圆心,120米长为半径的圆形区域内有浅滩。
如果这条船继续前进,是否有被浅滩阻碍的危险?(参考的数据:3≈1.732) ≈136.6(米)图1CDEBAB A图二五、知识运用:(10分)28、为了测量校园内办公楼前一棵不可攀的树的高度,初三·六班数学兴趣小组做了如下的探索:实践一:根据《物理》教科书中光的反射定律,利用一面镜子和一根皮尺,设计如图1的测量方案:把镜子放在离树8.7米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里能看到树梢顶点A ,再用皮尺量得DE =2.9米,观测者身高CD =1.6米,请你计算树AB 的高度(精确到0.1米)AB=4.8实践二:提供选用的测量工具有:①皮尺一根;② 教学用三角板一副; ③高度为1.5米的测角仪(能测量仰角和俯角的仪器)一架,请用你所学的解直角三角形的有关知识,设计出求树高的方案,根据你所设计的测量方案,回答下面问题:(1)在你设计的方案中,选用的测量工具是(填序号) ; (2)在图2中画出你的设计方案和测量示意图;(3)你需要测量的数据和角度分别用a 、b 、c 、d 、α、β、γ表示; (4)写出求树高的表达式:AB = 。
参考答案一、填空题: 1、34;2、762,762,75,1265,562;3、53,34;4、552,55;5、0.9650,0.9652,51150';6、0,1;7、3;8、450;9、450<A <900;10、4,334 二、选择题:BBBBC ,ABBBB 三、计算下列各题: 21、21 22、1332- 四、解答下列各题:23、解:过B 作BE ⊥DC 于E ,∵tanC =31∴设BE =k ,则EC =k 3在Rt △BEC 中,由勾股定理得:222BC EC BE =+ 即222)10()3(=+k k 解得:k =1 ∴BE =1,EC =3∴ABCD S 梯形=17421⨯)+(=211 24、解:∵方程有实数根∴△=[])12(sin sin 4)2(sin 22+-+ααα≥0即αsin ≤21 ∴00<α≤30025、解:∵ABCD 是正方形 ∴∠FBC =∠AFB∴tan ∠FBC =tan ∠AFB =AF AB =58设AB =k 8,则AF =k 5又∵tan ∠ABE =AB AE =41=82 F EDA∴AE =k 2 又∵AF -AE =EF =3 ∴k 5-k 2=3 ∴k =1∴AF =5,AB =AD =8 ∴FD =AD -AF =326、(1)△ABC 是直角三角形。
证明:∵方程有两个相等的实数根 ∴△=)2(4)(422c ab b a +-+=0 ∴222c b a =+ ∴△ABC 是直角三角形。
(2)由韦达定理得:⎪⎪⎩⎪⎪⎨⎧+-=⋅+-=+67cos cos 632cos cos m m B A m m B A又∵A +B =900∴⎪⎪⎩⎪⎪⎨⎧+-=⋅+-=+67cos sin 632cos sin m m B B m m B B①平方并把②代入得:2)632(6)7(21+-=+-+m m m m整理得:057222=+-m m 0)19)(3(=--m m 1m =3,2m =19当m =3时,因B B cos sin +=63332+-⨯<1不符题意,故舍去。
∴m =19此时原方程为:01235252=+-x x0)45)(35(=--x x1x =53,2x =54又∵a >b ∴53cos ==c b A 54cos ==c a B 设a =k 4,那么b =k 3,c =k 5 ∵c b a ++=24 ∴k k k 534++=24 解得k =2∴△ABC 的最长边(斜边):c =52⨯=1027、解:过C 作CD ⊥AB 的延长线于D由题意知:∠CAD =300,∠CBD =450,AB =100米在Rt △ADC 中有:AD =CAD CD ∠⋅cot ,即AD =030cot ⋅CD ① 在Rt △BDC 中有:BD =CBD CD ∠⋅cot ,即BD =045cot ⋅CD ② ①-②得:AD -BD =)45cot 30(cot 00-CD 即100=)45cot 30(cot 00-CD ∴CD =045cot 30cot 100-=)13(50+≈136.6(米) ∵CD >120米∴如果这条船继续前进,没有被浅滩阻碍的危险。
28、实践一:由光的反射定律知:∠AEB =∠CED又∵∠CDE =∠B =900∴△CDE ∽△ABE∴BE DEAB CD = 即7.89.26.1=AB ∴AB =4.8米答:这棵树高4.8米。
实践二:(1)①③(2)如下图所示的两个方案baβα方案一GDFEC BAA方案一:AB =5.1cot cot +-βαa方案二:AB =5.1cot cot ++βαa注:只要求考生设计出一种测量方案。
其它方案略。