典型金属晶体结构的堆剁模型分析
- 格式:ppt
- 大小:4.13 MB
- 文档页数:40
金属晶体的四种堆积模型
金属晶体是由金属原子按照一定的排列构成的固体,它们具有规则的晶体结构,其中最常见的是四种堆积模型:面心立方模型、面心六方模型、空心六方模型和空心八方模型。
面心立方模型是最常见的金属晶体堆积模型,它由八个原子组成,每个原子都位于晶体的八个顶点上,形成一个立方体。
这种模型的特点是,每个原子都与其他七个原子有相同的距离,因此它具有良好的稳定性。
面心六方模型是一种比面心立方模型更复杂的晶体堆积模型,它由十二个原子组成,每个原子都位于晶体的六个面上,形成一个六面体。
这种模型的特点是,每个原子都与其他五个原子有不同的距离,因此它具有较高的热稳定性。
空心六方模型是一种比面心六方模型更复杂的晶体堆积模型,它由十八个原子组成,每个原子都位于晶体的六个面上,形成一个空心六面体。
这种模型的特点是,每个原子都与其他十一个原子有不同的距离,因此它具有较高的热稳定性和机械稳定性。
空心八方模型是一种比空心六方模型更复杂的晶体堆积模型,它由二十四个原子组成,每个原子都位于晶体的八个面上,形成一个空心八面体。
这种模型的特点是,每个原子都与其他十七个原子有不同的距离,同样具有较高的热稳定性和机械稳定性。
总之,金属晶体的四种堆积模型是面心立方模型、面心六方模型、空心六方模型和空心八方模型,它们各自具有不同的特点,可以满足不同的应用需求。
金属晶体的四种堆积模型总结Metal crystals can be classified into four main stacking models: Close-packed cubic (FCC), Close-packed hexagonal (HCP), Body-centered cubic (BCC), and Simple cubic (SC). These models represent different ways in which metal atoms arrange themselves in a crystal lattice. Close-packed cubic structures have atoms arranged in layers of repeating ABCABC... pattern, giving them high packing efficiency.金属晶体可以分为四种主要的堆积模型:密堆立方(FCC)、密堆六方(HCP)、体心立方(BCC)和简单立方(SC)。
这些模型代表了金属原子在晶格中排列的不同方式。
密堆立方结构中,原子按照重复ABCABC...模式排列在不同层中,使得具有较高的填充效率。
Close-packed hexagonal structures, on the other hand, consist of layers with an ABAB... stacking sequence. This type of arrangement gives rise to a compact structure with a hexagonal unit cell. Body-centered cubic structures have atoms arranged in a simple cubic lattice with an additional atom at the center of the cube. This arrangement provides good mechanical properties due to thepresence of the central atom, which enhances the strength of the crystal lattice.另一方面,密堆六方结构由具有ABAB...堆叠序列的层组成。
学生版:典型晶体模型晶体晶体结构晶体详解原子晶体金刚石(1)每个碳与相邻个碳以共价键结合,形成体结构(2)键角均为(3)最小碳环由个C组成且六个原子不在同一个平面内(4)每个C参与条C—C键的形成,C原子数与C—C键数之比为SiO2(1)每个Si与个O以共价键结合,形成正四面体结构(2)每个正四面体占有1个Si,4个“12O”,n(Si)∶n(O)=(3)最小环上有个原子,即个O,个Si分子晶体干冰(1)8个CO2分子构成立方体且在6个面心又各占据1个CO2分子(2)每个CO2分子周围等距紧邻的CO2分子有个冰每个水分子与相邻的个水分子,以相连接,含1 mol H2O的冰中,最多可形成mol“氢键”。
NaCl(型)离子晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有个。
每个Na+周围等距且紧邻的Na+有个(2)每个晶胞中含个Na+和个Cl-CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs+、个Cl-金属晶体简单六方堆积典型代表Po,配位数为,空间利用率52%面心立方最密堆积又称为A1型或铜型,典型代表,配位数为,空间利用率74%体心立方堆积又称为A2型或钾型,典型代表,配位数为,空间利用率68%六方最密堆积又称为A3型或镁型,典型代表,配位数为,空间利用率74%混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是(2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是(3)每层中存在σ键和π键,还有金属键(4)C—C的键长比金刚石的C—C键长,熔点比金刚石的(5)硬度不大、有滑腻感、能导电教师版典型晶体模型晶体晶体结构晶体详解原子晶体金刚石(1)每个碳与相邻4个碳以共价键结合,形成正四面体结构(2)键角均为109°28′(3)最小碳环由6个C组成且六个原子不在同一个平面内(4)每个C参与4条C—C键的形成,C原子数与C—C键数之比为1∶2SiO2(1)每个Si与4个O以共价键结合,形成正四面体结构(2)每个正四面体占有1个Si,4个“12O”,n(Si)∶n(O)=1∶2(3)最小环上有12个原子,即6个O,6个Si分子晶体干冰(1)8个CO2分子构成立方体且在6个面心又各占据1个CO2分子(2)每个CO2分子周围等距紧邻的CO2分子有12个冰每个水分子与相邻的4个水分子,以氢键相连接,含1 mol H2O的冰中,最多可形成2 mol“氢键”。
典型金属晶体结构的钢球堆垛模型分析实验报告1)熟悉面心立方、体心立方和密排六方晶体结构中常用晶面、晶向的几何位置、原子排列和密度;2)熟悉三种晶体结构中的四面体间隙和八面体间隙的位置和分布;3)熟悉面心立方和密排六方晶体结构中,最密排面的堆垛顺序;4)进一步练习晶面和晶向指数的确定方法。
二、原理概述1、晶体原子、分子或它们的集团,按一定规则呈周期性重复排列,即构成晶体。
自然界中迈80种金属元素,其中大多数属于面心立方、体心立方和窑排六方三种典型晶阵结构。
其结构特点如图4-1所示。
2、晶面同处于一个平面中的原子构成晶面。
任一晶面指数表示晶体中险乎平行的所有晶面。
不同指数的晶面空间方位、原子排列方式和原子面密度不同。
立方晶体结构中常用晶面的方位和原子排列如图4-2所示。
3、晶向晶体中任一原子列均构成一晶向。
任一晶向指数代表晶体中险乎平行并同向的所有原子列。
不同指数的晶向有不同的空间方位和原子问距。
面心立方和体心立方晶体的最密排晶向如图4-3所示。
4、面心立方和密排六方晶体结构最密排面的堆垛顺序面心立方和密排六方晶体结构均为等径原子最密排结构,二者致密度均为0.74,配位数均为12,它们的区别在于最密排面的堆垛顺序不同。
面心立方晶你的最密排面{111}按ABCABC……顺序堆垛,而密徘六方晶体的最密排面{0001}按ABABAB……顺序堆垛。
A、B、C 均表示堆垛时原子所占据的相应位置,如图4-4所示。
5、晶体中间隙的意义、位置、大小和数量从原子排列刚球模型可见,除最近邻原子外,球间都有空隙,就是这些空隙构成了晶体中的间隙(又称空腔)。
尺寸较大的间隙,因具备溶入其它小原子的可能而被人们所重视。
按周围原子的分布可将间隙分为两种,即四面体间隙和八面体间隙。
其位置如图4-5至图4-7所示。
间隙的大小和数量如表4-1所示。
表4-1间隙的大小和数量注:r B为间隙半径,r A为原子半径。
6、晶面上原子面密度的计算晶面上原子排列的紧密程度可以用h表示。