中考复习学案 第4课时 分式与分式方程
- 格式:doc
- 大小:172.50 KB
- 文档页数:5
分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
2013中考数学分式与分式方程复习教案-分式方程及应用教学目标掌握分式方程的解法及分式方程的综合应用。
重点、难点重点:分式方程求解;难点:利用分式方程解决实际问题。
考点及考试要求解分式方程和列分式方程解应用题是中考的重要考点,有时与函数、其他知识综合考察。
常以填空、选择、解答题的形式出现。
教学内容一、分式方程:分母中含有未知数的方程叫做分式方程。
1解分式方程:分式方程整式方程①去分母:方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。
不要忘了改变符号;②按解整式方程的步骤:移项,若有括号应去括号,注意变号,合并同类项,系数化为1,求出未知数的值;③验根:求出未知数的值后必须验根。
因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。
方法A:直接代入原方程,看其是否成立。
方法B:代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。
若解出的根是增根,则原方程无解。
增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根。
2分式方程的应用列分式方程解应用题的一般步骤为:(1)设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;(2)列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;(3)列出方程:根据题目中明显的或者隐含的相等关系列出方程;(4)解方程并检验;(5)写出答案。
在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验它是否符合题意。
一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。
第二章分式与分式方程课型:复习主备人:审核人:初三数学组一、教学目标(1)知识与技能1.进一步掌握分式方程的定义、解法、增根及应用。
2.熟练利用分式方程分析问题、解决问题。
(2)过程与方法1.通过“互学、独学、对学、合学、群学”等环节,“合作、交流、展示、点评、质疑”等方式促进学生对知识的掌握。
2.体会“转化”、“方程”的数学思想解决问题。
(3)情感与态度1.进一步体会数学与生活的联系,了解数学的价值。
2.增强学生合作与交流的意识,培养学习的兴趣。
二、教学重点和难点重点:进一步掌握分式方程的定义、解法、增根及应用。
难点:进一步理解增根的条件,灵活应用分式方程解决实际问题。
三、教学方法1.在教学中,给学生提前配发导学案进行预习,在课堂中我采用了引导式、探究式的教学方法,以“问题串”的形式,“学生为主体,老师为主导,练习为主线”的思路贯穿整个课堂,并结合了多媒体辅助教学。
2.在学法中,通过“互学、独学、对学、合学、群学”等环节,“合作、交流、展示、点评、质疑”等方式促进学生对知识的掌握。
四、教具教师:教学设计、电子白板、幻灯片若干张、小组评价表、彩色粉笔、激光灯。
学生:课本、导学案、学生分成8个小组(每组4人,有1号、2号、3号、4号,每人答对或答错都有不同的加分)根据分数评出本节课的优秀小组和优秀个人以资鼓励。
五、教学过程(一)梳理知识知识框架图:(边出示幻灯片边设计板书)【设计意图】老师提问学生,以框架图的形式梳理本节课知识点,并重点性的板书,提问主要针对3号、4号学生,让他们都积极参与课堂。
本环节设计的主要目的是:使学生对本节课的知识有个整体的认识,形成清晰的思路,以便更好地完成学习目标。
本节复习课共设计了十个教学环节:第一环节:定义跟踪;第二环节:巩固练习;第三环节:拓展延伸;第四环节:直击难点;第五环节:中考衔接;第六环节:回顾与反思;第七环节:当堂检测;第八环节:小组评价结果;第九环节:布置作业;第十环节:课外思考题(随机题)。
专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。
【注意】A 、B 都是整式,B 中含有字母,且B ≠0。
2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。
3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。
(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。
(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。
(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。
【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。
【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。
4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nn aa-=。
5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。
【注意】不论是分式的哪种运算,都要先进行因式分解。
6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。
第4讲分式及分式方程陕西《中考说明》陕西2012~2014年中考试题分析考点归纳考试要求年份题型题号分值考查内容分值比重考点1分式的概念及性质了解分式的概念,会利用分式的基本性质进行约分和通分————————————考点2分式的运算会进行简单的分式加、减、乘、除运算2014 解答题17 5分式化简求值2012 解答题17 5分式化简(减法与除法)2.8%考点3分式方程的解法会解可化为一元一次方程的分式方程(方程中的分式不超过两个)2013 解答题17 5解分式方程1.4%二是分式化简求值;三是解分式方程,题型为解答题,且稳定在第17题,分值为5分,一般分式化简题会与分式化简求值题或解分式方程题轮换考查,试题也较为简单,难度不大,切记解分式方程后要验根.由近几年的陕西中考考情分析可得,分式化简、分式化简求值或解分式方程在2015年仍有可能考查,且仍会稳定在第17题,分值为5分,故对本节的知识在复习中应多加练习,做到不失分.1.分式的基本概念(1)形如__AB(A,B是整式,且B中含有字母,B≠0)__的式子叫分式;(2)当__B≠0__时,分式AB有意义;当__B=0__时,分式AB无意义;当__A=0且B≠0__时,分式AB的值为零.2.分式的基本性质分式的分子与分母都乘(或除以)__同一个不等于零的整式__,分式的值不变,用式子表示为__AB=A×MB×M,AB=A÷MB÷M(M是不等于零的整式)__.3.分式的运算法则(1)符号法则:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.用式子表示:a b =-a -b =-a -b =--a b ;-a b =a -b =-ab.(2)分式的加减法:同分母加减法:__a c ±b c =a±bc __;异分母加减法:__b a ±d c =bc±adac__.(3)分式的乘除法: a b ·c d =__acbd __; a b ÷c d =__adbc__. (4)分式的乘方:(a b )n =__anb n (n 为正整数)__. 4.最简分式(1)概念:如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式. (2)寻找最简公分母的方法:①取各分式的分母中系数的最小公倍数;②各分式的分母中所有字母或因式都要取到;③相同字母(或因式)的幂取指数最大的;④所得的系数的最小公倍数与各分母(或因式)的最高次幂的积即为最简公分母.5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质. 把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.分式方程(1)定义:分母中含有__未知数__ 的方程;(2)解法:分式方程――→转化去分母__整式方程__――→解方程求出解――→代入最简公分母检验得出分式方程的解;(3)增根:使最简公分母为0的根. 规律总结:(1)如何由增根求参数的值: a .将原方程化为整式方程;b .将增根代入变形后的整式方程,求出参数的值. (2)检验分式方程的根是否为增根的方法: a .利用方程的解的定义进行检验;b .将解得的整式方程的根代入最简公分母,看计算结果是否为0,若不为0就是原方程的根;若为0则为增根,必须舍去.一个思想类比是一种在不同对象之间,或者在事物与事物之间,根据它们某些相似之处进行比较,通过联想和预测,推出它们在其他方面也可能相似,从而去建立猜想和发现规律的方法.通过类比可以发现新旧知识的相同点,利用已有的知识来认识新知识,分式与分数有许多类似的地方,因此在分式的学习中,要注意与分数进行类比学习理解.两个技巧(1)分式运算中的常用技巧分式运算题型多,方法活,要根据特点灵活求解.如:①分组通分;②分步通分;③先“分”后“通”;④重新排序;⑤整体通分;⑥化积为差,裂项相消.(2)分式求值中的常用技巧分式求值可根据所给条件和求值式的特征进行适当的变形、转化.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.三个防范(1)“分母中含有未知数”是分式方程与整式方程的根本区别,也是判断一个方程是否为分式方程的依据.(2)去分母时,不要漏乘没有分母的项;解分式方程的重要步骤是检验.(3)分式方程的增根与无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解.分式方程的增根是去分母后的整式方程的根,也是使分式方程的分母为0的根.1.(2014·陕西)先化简,再求值:2x 2x 2-1-x x +1,其中x =-12.解:原式=2x 2(x +1)(x -1)-x (x -1)(x +1)(x -1)=x (x +1)(x +1)(x -1)=x x -1,当x =-12时,原式=-12-12-1=132.(2013·陕西)解分式方程:2x 2-4+xx -2=1.解:去分母得:2+x(x +2)=x 2-4,整理得:2+x 2+2x =x 2-4,解得:x =-3,经检验得,x =-3是原分式方程的根3.(2012·陕西)化简:(2a -b a +b -b a -b )÷a -2ba +b.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a +ba -2b=2a 2-2ab -ab +b 2-ab -b 2(a -b )(a -2b )=2a 2-4ab(a -b )(a -2b )=2a (a -2b )(a -b )(a -2b )=2aa -b分式的概念,求字母的取值范围【例1】 (1)(2014·贺州)分式2x -1有意义,则x 的取值范围是( A )A .x ≠1B .x =1C .x ≠-1D .x =-1(2)(2014·毕节)若分式x 2-1x -1的值为零,则x 的值为( C )A .0B .1C .-1D .±1【点评】 (1)分式有意义就是使分母不为0,解不等式即可求出,有时还要考虑二次根式有意义;(2)首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值.1.(1)(2013·广州)若代数式xx -1有意义,则实数x 的取值范围是( D )A .x ≠1B .x ≥0C .x >0D .x ≥0且x≠1(2)当x =__-3__时,分式|x|-3x -3的值为0.分式的四则混合运算【例2】 (2014·深圳)先化简,再求值:(3x x -2-x x +2)÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.解:原式=3x (x +2)-x (x -2)(x +2)(x -2)·(x +2)(x -2)x=2x +8,当x =1时,原式=2+8=10【点评】 准确、灵活、简便地运用法则进行化简,注意在取x 的值时,要考虑分式有意义,不能取使分式无意义的0与±2.2.(1)(2014·十堰)已知a 2-3a +1=0,则a +1a-2的值为( B )A .5+1B .1C .-1D .-5(2)(2014·娄底)先化简x 2-4x 2-9÷(1-1x -3),再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解:原式=(x +2)(x -2)(x +3)(x -3)÷x -3-1x -3=(x +2)(x -2)(x +3)(x -3)·x -3x -4=(x +2)(x -2)(x +3)(x -4),不等式2x -3<7,解得x <5,其正整数解为1,2,3,4,当x =1时,原式=14分式方程的解法【例3】 (2014·舟山)解方程:x x +1-4x 2-1=1.解:去分母,得x(x -1)-4=x 2-1,去括号,得x 2-x -4=x 2-1,解得x =-3,经检验x =-3是分式方程的解【点评】 (1)按照基本步骤解分式方程,其关键是确定各分式的最简公分母.若分母为多项式时,应首先进行分解因式.将分式方程转化为整式方程,乘最简公分母时,应乘原分式方程的每一项,不要漏乘常数项;(2)检验是否产生增根:分式方程的增根是分式方程去分母后整式方程的某个根,但因为它使分式方程的某些分母为零,故应是原方程的增根,须舍去.3.(1)(2014·德州)分式方程x x -1-1=3(x -1)(x +2)的解是( D )A .x =1B .x =-1+ 5C .x =2D .无解(2)(2014·巴中)若分式方程x x -1-m1-x=2有增根,则这个增根是__x =1__.(3)(2014·新疆)解分式方程:3x 2-9+xx -3=1.解:方程两边都乘(x +3)(x -3),得3+x(x +3)=x 2-9,3+x 2+3x =x 2-9,解得x =-4,检验:把x =-4代入(x +3)(x -3)≠0,∴x =-4是原分式方程的解试题 当a 取什么值时,方程x -1x -2-x -2x +1=2x +a(x -2)(x +1)的解是负数?错解解:原方程两边同乘以(x -2)(x +1),得x 2-1-x 2+4x -4=2x +a ,2x =a +5,∴x =a +52.由a +52<0,得a <-5.故当a <-5时,原方程的解是负数. 剖析(1)分式中的分母不能为零,这是同学们熟知的,但在解题时,往往忽略题目中的这一隐含条件,从而导致解题错误;(2)利用分式的基本性质进行恒等变形时,应注意分子与分母同乘或同除以的整式的值不能是零;(3)解分式方程为什么要检验?因为用各分母的最简公分母去乘方程的两边时,不能肯定所得方程与原方程同解.如果最后x 取值使这个最简公分母不为零,则这个步骤符合方程同解原理,这个取值就是方程的解;否则,不能保证新方程与原方程同解.从另一角度看,既然使各分母的最简公分母为零,则必使某个分母为零,该分式则无意义,原方程不可能成立,这个取值就不是原方程的解.正解解:当x≠-1且x≠2时,原方程两边都乘以(x -2)(x +1),得 x 2-1-x 2+4x -4=2x +a ,2x =a +5,∴x =a +52.由a +52<0,得a <-5,又由a +52≠2,得a≠-1;a +52≠-1,得a≠-7,故当a <-5且a≠-7时,原方程的解是负数.。
人教版初中数学八年级下册《分式与分式方程》复习教案中考考点:了解分式的概念,会用分式基本性质进行约分和通分,熟练掌握简单的分式加减乘除运算和掌握解分式方程的基本方法.会利用分式方程解决实际问题. 应用.试题特点:对分式的有关概念、性质及运算的考查,以选择题、填空题居多,尤其对分式的化简求值考查较多.考查可化为一次方程的分式方程的解法及实际应用题多以解答题形式出现.题量约占总题量的4,.命题趋势:分式化简求证及具有鲜活的时代背景列可化为一元一次方程的分式方程的运用,将仍会在2010中考题中出现. 分式作为初中数学的重点内容之一,也是每年中考的热门考点,考查题型也是多种多样,分值一般在6-9分左右。
一(知识回顾:1、下列各式是分式的是( )a161B. C. D A.3,a2x,22、当x_______时,分式有意义。
x,53、当x_______时,分式的值为零4、下列分式是最简分式的是( ) 222a,a26xyx,1x,1A. B. C. D. ab3ax,1x,1 224x,y5. 若将分式中的x、y的值都扩大2倍,则分式的值( ) 2x,3yA、扩大2倍B、不变C、扩大3倍D、扩大4倍 2a,a,16. 化简得( ) a,1112a,1B、,C、A、 D、 2 a,1a,1a,1m,1x,,07、关于x的方程有增根,则m的值是( ) x,1x,1A.,2B.2C.1D.,18、解方程746124 (1),,(2),,2222x,xx,xx,1x,1x,1x,1知识点一 :22xx,1. 分式的概念注意:(1)除外 ;(2)分式是形式定义,如化简之后为x,但是分xx式2.分式有意义的条件:分式成立的条件即分母不能为03分式的值为零的条件:同时具备两个条件:(1)分式的分子为零(2)分式的分母不为零 4分式的基本性质用式子表示为:(其中M?0).5. 约分和最简分式(1) 分式的约分:把一个分式的分子与分母中的公因式约去叫约分.(2) 最简分式:分式的分子和分母已没有公因式,这样的分式我们称为最简分式. 规律总结:要使分式有意义,只要分式的分母不为零即可,与分式的分子无关;若要求分式的值何时为零,就应该两个条件:一是分式的分子为零;二是确保分式的分母不为零.在解题时应注意检验分母的值是否为零.知识点二分式的运算:本类题主要考查分式的化简和代数式的值。
中考数学专题复习四--分式方程和不等式(组)(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。
中考数学复习课《分式方程》说课稿尊敬的各位评委、各位老师:大家好!我今天说课的内容是《分式方程》,下面我将从说教材、说学情分析、说教学策略、说教学过程这四个方面对本节课的教学设计进行说明.一、说教材1.教材的地位和作用本节课复习的主要内容是分式方程的概念、解法及应用,是对分式方程单元学习的梳理、归纳、深化和巩固.解分式方程的基本思想是通过“转化”,将分式方程转化为整式方程. 通过复习强化数学与生活的密切关系,因此本节复习可起到巩固基础,提升认识的作用.2.教学目标(1)知识目标:①理解分式方程的概念、会解分式方程,能列分式方程解决实际问题.②掌握解分式方程的验根方法.(2)能力目标:会用去分母法解分式方程,体会化归思想.(3)情感目标:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心.3.教学重点:分式方程的解法和列分式方程解决实际问题.4.教学难点:列分式方程解决实际问题以及解分式方程过程中产生增根的原因及如何验根.二、学情分析学生是在前面复习分式的意义、分式的混合运算和熟练解一元一次方程的基础上复习本节内容的.但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根.三、教学策略1、说教法教法:本节课采用启发式、引导式教学方法.特别注重“精讲多练”,真正体现以学生为主体.针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决.教学手段:为了更有效地突出重点,突破难点,提高课堂效率,本节课采用多媒体辅助教学.2.说学法本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,使学生积极主动地参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥.四、说教学过程。
一元一次方程和分式方程1 内容分析及学情说明方程是表示现实世界中一类具有等量关系问题的重要的数学模型,是解决问题的重要工具之一,它既与现实生活密切联系,又贯穿于整个初中阶段数学的学习,它在义务教育阶段的数学课程中占重要地位.解一元一次方程和分式方程是解方程中最基本而且重要的初步知识.这些知识是今后学习其他方程、不等式及函数的重要基础.同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具.因此,一元一次方程和分式方程为中考必考知识点.本节课的设计注重对基本概念、基本方法、常见问题的复习,让学生进一步巩固解一元一次方程和分式方程的基本步骤,体会和反思自己平时在解此类方程时存在的问题,及时纠正自己的错误,达到复习巩固、纠正提高的目的,适宜基础不太扎实、班级学生整体水平一般或班级整体水平较好、但“功夫”还不够“细腻”的学生较多的班级在中考复习时使用.2 教学目标(1)理解一元一次方程的概念,会解一元一次方程;(2)理解分式方程概念,会解可化为一元一次方程的分式方程;(3)了解分式方程增根的定义;(4)纠正学生在解一元一次方程和分式方程过程中常犯的各种错误.3 教学过程3.1复习一元一次方程引入提问:什么是一元一次方程?什么是一元一次方程的解?3.1.1一元一次方程解的定义例1 ①(2011邵阳)请写出一个解为x=2的一元一次方程:_____________.②(2011江津)已知3是关于x的方程2x-a=1的解,则a的值是( ).A.-5 B.5 C.7 D.2功能分析:通过本例的讲练,使学生进一步理解方程解的定义.第①题让学生自由设计,虽然问题比较简单,但学生乐于接受对这种题型的探究,具有一定的开放性和激趣性;第②题在理解方程解的基础上,让学生领悟方程实际上就是解的“娘家”,要让解常“回家”看看,进一步体会代入的思想方法.教法设计:对第①题进行教学时,应多给学生发言的机会,针对不同层次的学生,教师可以追问:“你能设计怎样的一元一次方程?”“你还能设计怎样的一元一次方程?”使不同水平的学生都能得到充分的发展;针对第②题教师可以设问:什么是方程的解?方程的解意味着什么?让学生进一步理解方程解的含义.解答要点:①答案不唯一,只要符合题目要求即可;②B.3.1.2一元一次方程解法步骤例2 ①(2011滨州)依据下列解方程0.30.5210.23x x+-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为352123x x+-=,( )去分母,得3(3x+5)=2(2x-1),( ) 去括号,得9x+15=4x-2,( ) ( ),得9x-4x=-15-2,( ) 合并,得5x=-17,(合并同类项)( ),得175x=-.( )②(2009江西)方程0.25x=1的解是_____________.功能分析:解方程的基本思想是转化,而转化的依据是等式的基本性质,要正确解一元一次方程,必须掌握解一元一次方程的一般步骤(即每一步的推理依据).通过对第①题的分析,复习解一元一次方程的一般步骤及依据.必须指出的是:这些步骤不一定全部用到,也不一定要按照顺序进行,解题时要根据方程的特点灵活运用,如第②题。
分式与分式方程
【知识梳理】
1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式B
A
叫做分式.
2.分式的基本性质:(1)基本性质:(2)约分:(3)通分:
3.分式运算
4.分式方程的意义,会把分式方程转化为一元一次方程.
5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程
的增根.
【思想方法】
1.类比(分式类比分数)、转化(分式化为整式)
2.检验
【例题精讲】
1.化简:2222111x x x x x x
-+-÷-+
2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.
3.先化简
1
1112-÷-+x x x )(,然后请你给x 选取一个合适值,再求此时原式的值.
4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-x
x x x x
5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千
米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )
A. B.
C. D.
【当堂检测】
1.当99a =时,分式211a a --的值是 .
2.当x 时,分式1
12--x x 有意义;当x 时,该式的值为0. 3.计算2
2()ab ab 的结果为 .
4. .若分式方程
x
x k x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-2
5.若分式3
2-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x 6.已知x =2008,y =2009,求x y x 4y 5x y x 4xy
5x y 2xy x 2222-+-+÷-++的值
7.先化简,再求值:4x
x 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x
8.解分式方程. (1)22011
x x x -=+- (2) x 2)3(x 22x x -=--;
(3) 11322x x x -=--- (4)11
-x 1x 1x 22=+--
【课后作业】
一、选择题
1.化简分式2
b ab b +的结果为( ) A .1a b
+ B .11a b + C .21a b + D .1ab b + 2.要使22969
m m m --+的值为0,则m 的值为( ) A .m=3 B .m=-3 C .m=±3 D.不存在
3.若解方程3
33-=-x m x x 出现增根,则m 的值为( ) A . 0 B .-1 C .3 D .1
4.如果04422=+-y xy x ,那么y x y x +-的值等于( )
A .31-
B . y 31-
C . 31
D .y 31
二、填空题.
5.当x = 时,分式6
422---x x x 的值为0. 6.若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 .(写出一个..
即可) 7.已知432z y x ==,求分式y
x z y x 32534++-= 8.若分式方程12552=-+-x
a x x 的解为x =0,则a 的值为 .
9.已知分式方程k x k =++1
31无解,则k 的值
是 .
三、解答题
10.化简:
(1)211()(1)11x x x ---+ (2)24142
x x +-+
11.先化简,再求值:224242
x x x +---,其中22x =-.
12.当a=2时,求
1
121422-÷+--a a a a 的值.
13.先化简,再求值:2224124422a a a a a a
⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程
2310x x ++=的根.
三、解分式方程.
(1)01221=---x x (2) 1
23514-+=--+x x x x
(3)
163104245--+=--x x x x (4)4)25.01(11=++x x
(5)
52742316--=+-x x x x (6) 141112-=--+-x x x x x
四、当m 为何值时,分式方程
x
x x m --=+-2142无解?。