微量润滑的优势及深孔钻耐用度分析
- 格式:pdf
- 大小:2.88 MB
- 文档页数:2
西京学院本科毕业设计(论文) 题目:内排屑深孔钻削机床运动系统设计教学单位:机电工程系专业:机械设计制造及其自动化学号: ***********名:***指导教师:***2012年 3月摘要针对传统浇注式内排屑深孔钻削系统(BTA系统或DF系统)存在着切削液消耗量大、生产成本高、污染环境及危害操作者身体健康等问题。
本文是在传统的BTA内排屑深孔钻削系统基础上,增加喷雾装置,建立了亚于式内排屑深孔钻削系统。
亚干式深孔钻削系统是将亚干式切削技术与深孔加工技术相结合,在BTA 内排屑深孔加工系统的基础上,采用风冷雾化排屑系统代替BTA系统中的切削液排屑系统而形成的。
从而实现风冷雾化切削液对刀具进行冷却润滑和排屑的功能,以减少切削液的使用及环境污染。
本次设计以亚干式内排屑深孔钻削系统为研究对象,主要设计内容有低温冷风雾化装置的设计、授油器设计以及负压抽屑装置的设计。
亚干式深孔钻削系统有以下优点:系统加工过程稳定,冷却、润滑、排屑效果良好,可获得较好的刀具耐用度和内孔表面质量,同时极大地减少了切削液的用量并降低环境污染,是一种较为理想的绿色钻削工艺系。
该设计可以节约能源、降低生产成本、减少环境污染,具有良好的经济效益和社会效益。
关键词:内排屑深孔钻削亚干式切削雾化装置授油器负压抽屑ABSTRACTThe traditional cast-type method of inner-chip removal deep hole drilling system (such as BTA system or DF system) has the problems of the high cutting fluid consumption,high production costs,pollution of the environment and endangering the health of the operator and so on. In this paper,in traditional BTA escape of chips deep drilling process system foundation,increases the atomizing device,has established near-dry type deep hole drilling system. The near-dry deep hole drilling system is that the use of compressed air atomized cutting fluid cooling and lubrication cutters in the deep hole processing with combined near-dry cutting technology and deep hole processing technology,based on the BTA inner-chips deep hole processing system,by using the air-cooled liquid escape of chips system instead of the BTA escape of chips system. Finally the air-cooled liquid with cooling and lubricating function for the cutting tool is achieved,and reduce the use of cutting fluid and environmental pollution.The near-dry deep hole drilling system was taken as object in this study,the design of the main contents of the low temperature cold wind atomization device design,coolant supply device design and suction chip removal device design. The result show that the near-dry system drill stability and have better effort in cooling lubrication,chip removal effective. The tool life and surface quality within the hole are better,at the same time,it can greatly reducing the amount of cutting fluid,the costs and the pollution of the environment. So we can get a conclusion that it is an ideal system in green drilling process.The results of research can save energy,lower production costs,reduce environmental pollution,and have good economic and social benefits.Key word:The inner-chip removal deep hole drilling,The near-dry cutting,Atomization device,Coolant supply,Suction chip removal目录摘要 (I)ABSTRACT .......................................................................................................................................... I I 1绪论 (1)1.1深孔加工的特点 (2)1.2内排屑深孔钻削加工系统的发展状况 (2)1.2.1国内相关研究发展状况 (2)1.2.2国外相关研究发展状况 (3)1.3本毕业设计的主要内容 (4)2系统总体方案的布局与设计 (5)2.1总体方案的设计 (5)2.2可行性分析 (6)3低温冷风雾化装置的设计 (9)3.1低温冷风雾化装置的组成及工作原理 (9)3.2雾化装置的组成及零件设计 (11)3.2.1空气供给装置及冷却装置 (11)3.2.2雾化器的设计 (11)3.3冷却液的选择 (13)4授油器的设计 (15)4.1不旋转式授油器结构及其原理 (15)4.2伸缩轴的设计 (16)4.2.1加工材料的选择 (16)4.2.2伸缩轴的结构设计 (17)5负压抽屑装置的设计 (19)5.1DF系统负压抽屑机理 (19)5.2旋转式负压式钻杆联结器 (20)5.3DF深孔钻削中影响抽屑的因素 (21)5.4负压系统的参数计算 (22)5.5负压衬套和前后锥套的设计 (25)6运动控制系统的设计 (28)6.1深孔钻床运动系统的控制要求 (28)6.2运动控制系统的硬件设计 (28)6.3运动控制系统的软件设计 (31)7亚干式深孔钻削系统参数的分析计算 (32)7.1亚干式深孔加工切削参数计算 (32)7.1.1切削力的计算 (32)7.1.2深孔钻头各处速度的计算 (34)7.2剪切面平均温度的计算 (35)8结论 (38)致谢 (39)参考文献 (40)1绪论近年来,随着机械制造行业的不断发展,机械制造业对全球经济的发展做出重大的贡献,但是也在一定程度上对环境造成了污染。
设备润滑知识点总结1. 润滑的基本原理润滑是通过在摩擦表面形成一层润滑膜,减少摩擦,并使得摩擦表面之间的相对运动更加顺畅和平稳。
润滑的基本原理是通过在摩擦表面形成一层润滑膜,减少摩擦,并使得摩擦表面之间的相对运动更加顺畅和平稳。
润滑膜一般由润滑油或润滑脂形成,润滑油和润滑脂的作用是填充和防止表面间的凹陷和间隙,使摩擦表面之间形成一层连续的润滑膜,从而减少摩擦和磨损,延长设备的使用寿命。
2. 润滑的作用润滑的作用主要有三个方面:减少摩擦和磨损、冷却和密封。
润滑可以减少摩擦,降低摩擦系数,减少能量损失;减少磨损,延长设备的使用寿命;冷却,通过润滑油或润滑脂带走摩擦带来的热量,保持设备的正常运行温度;密封,填充和防止表面间的凹陷和间隙,防止外部杂质和水分侵入,提高设备的密封性。
3. 润滑的基本方式润滑的基本方式是干摩擦、油润滑和脂润滑。
干摩擦是摩擦表面直接接触,没有任何润滑剂的情况,容易造成严重的摩擦和磨损;油润滑是指在摩擦表面之间注入润滑油,在摩擦表面形成一层连续的润滑膜,减少摩擦和磨损;脂润滑是指在摩擦表面之间涂抹润滑脂,在摩擦表面形成一层连续的润滑膜,减少摩擦和磨损。
4. 润滑脂的种类润滑脂的种类有很多,按照成分的不同可以分为矿物油基润滑脂、合成润滑脂和脂肪基润滑脂。
矿物油基润滑脂主要由矿物油和稠化剂组成,具有优良的耐磨性和极压性能,适用于普通摩擦工况;合成润滑脂主要由合成油和稠化剂组成,具有优良的耐高温性能和低温性能,适用于高温、低温和特殊环境下的摩擦工况;脂肪基润滑脂主要由植物油和动植物脂肪酸组成,具有优良的环保性能和生物降解性能,适用于食品、医药和环保等行业。
5. 润滑脂的选择在选择润滑脂时,需要考虑设备的工作条件、摩擦工况和负载情况等因素。
一般来说,矿物油基润滑脂适用于一般工况下的滚动摩擦和滑动摩擦部位;合成润滑脂适用于高温、低温和特殊环境下的摩擦工况,如电机轴承、风扇轴承、冷却风机轴承;脂肪基润滑脂适用于食品、医药和环保等行业,对环保要求高。
第33卷第5期中国机械工程V o l .33㊀N o .52022年3月C H I N A M E C HA N I C A LE N G I N E E R I N Gp p.529G550低温微量润滑加工技术研究进展与应用刘明政1㊀李长河1㊀曹华军2㊀张㊀松3㊀陈㊀云4㊀刘㊀波5㊀张乃庆6㊀周宗明71.青岛理工大学机械与汽车工程学院,青岛,2665202.重庆大学机械与运载工程学院,重庆,4000443.山东大学机械工程学院,济南,2500614.成都工具研究所有限公司,成都,6100005.四川明日宇航工业有限责任公司,什邡,6184006.上海金兆节能科技有限公司,上海,2004367.汉能(青岛)润滑科技有限公司,青岛,266100摘要:综述了低温微量润滑技术的最新进展,阐明了研究成果中的关键科学问题.首先,系统分析了从传统设置到创新设计的低温微量润滑装备在切削中的应用形式和工艺特点.其次,揭示了低温微量润滑的冷却润滑机理及其对切削热力演变和工件表面质量的影响机制.然后,基于低温微量润滑的作用机理和应用形式,系统分析了低温微量润滑在车削㊁铣削㊁磨削中针对典型难加工金属的应用性能,发现低温微量润滑技术对抑制热力耦合损伤及提高表面质量的效果优于低温或微量润滑单独使用.最后,分析了该技术的局限性并展望了其发展方向,为低温微量润滑技术的工程应用提供了参考.关键词:切削;低温微量润滑;应用;机理;性能中图分类号:T H 16D O I :10.3969/j .i s s n .1004 132X.2022.05.002开放科学(资源服务)标识码(O S I D ):R e s e a r c hP r o g r e s s e s a n dA p p l i c a t i o n s o fC M Q L M a c h i n i n g T e c h n o l o g yL I U M i n g z h e n g 1㊀L IC h a n g h e 1㊀C A O H u a j u n 2㊀Z H A N GS o n g 3㊀C H EN Y u n 4㊀L I U B o 5Z H A N G N a i q i n g 6㊀Z HO UZ o n g m i n g71.C o l l e g e o fM e c h a n i c a l a n dA u t o m o t i v eE n g i n e e r i n g ,Q i n g d a oT e c h n o l o g i c a lU n i v e r s i t y ,Q i n g d a o ,S h a n d o n g ,2665202.C o l l e g e o fM e c h a n i c a l a n dV e h i c l eE n g i n e e r i n g ,C h o n g q i n g U n i v e r s i t y ,C h o n g q i n g ,4000443.S c h o o l o fM e c h a n i c a l E n g i n e e r i n g ,S h a n d o n g U n i v e r s i t y,J i n a n ,2500614.C h e n g d uT o o lR e s e a r c h I n s t i t u t eC o .,L t d .,C h e n g d u ,6100005.S i c h u a nT o m o r r o w A e r o s p a c e I n d u s t r y C o .,L t d .,S h i f a n g,S i c h u a n ,6184006.S h a n g h a i J i n z h a oE n e r g y S a v i n g T e c h n o l o g y C o .,L t d .,S h a n gh a i ,2004367.H a n n e n g (Q i n g d a o )L u b r i c a t i o nT e c h n o l o g y C o .,L t d .,Q i n g d a o ,S h a n d o n g,266100A b s t r a c t :T h e l a t e s t d e v e l o p m e n t o f C MQ L t e c h n o l o g y w a s r e v i e w e d ,a n d t h e k e y sc i e n t i f i c p r o b Gl e m s i n t h e r e s e a r c h r e s u l t sw e r e c l a r i f i ed .F i r s t l y ,t he a p p l i c a t i o nf o r m s a n d t e c h n o l og y ch a r a c t e r i s Gt i c s o fC MQ Le q u i p m e n t i n c u t t i n gp r o c e s s e sw e r e s y s t e m a t i c a l l y a n a l y z e d f r o mt r a d i t i o n a l s e t t i n g to i n n o v a t i v ed e s i g n .S e c o n d l y ,t h e c o o l i n g an d l u b r i c a t i o nm e c h a n i s mo f C MQ La n d t h e i n f l u e n c em e c h Ga n i s mo nc u t t i n g t h e r m o Gf o r c ee v o l u t i o na n dw o r k p i e c es u r f a c e q u a l i t y we r er e v e a l e d .F u r t h e r m o r e ,C MQ La p p l i c a t i o n p e rf o r m a n c e s i n t u r n i ng ,m i l l i n g a n d g r i n d i n g f o r t y pi c a l d i f f i c u l t Gt o Gm a c h i n e dm e t Ga l sw e r es y s t e m a t i c a l l y a n a l y z e db a s e do nt h ea c t i o n m e c h a n i s ma n da p p l i c a t i o nf o r m.T h ee f f e c to f C MQ Lo n r e s t r a i n i n g t h e r m a l Gm e c h a n i c a l c o u p l i n g d a m a g e a n d i m p r o v i n g q u a l i t y wa sb e t t e r t h a n t h a t o fc r y o g e n i c a nd MQ La l o ne .F i n a l l y ,t h e l i m i t a t i o n s of t h e t e c h n o l og y a n d th e d e v e l o pm e n t d i r e c t i o n w e r e a n a l y z e d ,w h i c h p r o v i d e s t h e r e f e r e n c e f o r t h e e n g i n e e r i n g a p p l i c a t i o n s o fC MQ Lt e c h n o l o g y .K e y wo r d s :c u t t i n g ;c r y o g e n i cm i n i m u m q u a n t i t y l u b r i c a t i o n (C MQ L );a p p l i c a t i o n ;m e c h a n i s m ;pe rf o r m a n c e 收稿日期:20211027基金项目:国家重点研发计划(2020Y F B 2010500);国家自然科学基金(51975305,51905289);山东省自然科学基金重点项目(Z R 2020K E 027);山东省自然科学基金(Z R 2021Q E 116)0㊀引言目前,切削仍然是金属材料最重要的机械加工方式.切削加工过程中,改善切削界面的摩擦学性能是提高切削性能的关键要素.切削液的使925 Copyright ©博看网. All Rights Reserved.用已有数百年历史,在金属切削过程中发挥了显著的冷却润滑作用.在实际生产中,因刀具与工件之间剧烈摩擦,切削区长时间处于高温状态,导致切削液出现局部沸腾现象,大量微气泡形成的连续油气膜导致热阻大幅提高,严重降低热量传递效率[1].切削液使用量巨大且受热挥发形成的微颗粒严重危害工人身体健康,不符合清洁生产的标准.浇注式冷却需要复杂的切削液循环系统,成本高昂.据统计,在欧洲汽车制造业,刀具成本通常只占生产成本的2%~4%,而切削液相关成本已超过刀具成本,占到生产成本的7%~17%[2].因此,清洁低耗的冷却润滑工艺取代浇注式已成为必然.随着机械工业的发展,绿色清洁制造已成为未来机械制造领域必然的发展趋势.经过国内外学者大量的研究和实践,目前成熟应用的绿色切削技术主要有干切削和微量润滑辅助切削.虽然这两种技术应用效果良好,但依然存在不可忽视的缺陷.(1)干切削的优点是不使用切削液,避免了急冷现象,减少了工件表面微裂纹的产生,且无需废液处理,降低了生产成本,清洁无污染;缺点是需在特殊工艺条件下针对非难加工材料才会体现出理想效果,局限性强.对于难加工金属材料,切削区高温导致切屑严重黏附在刀具上,加剧刀具磨损和工件表面质量恶化,因此,干切削不适用于难加工金属材料.(2)准干式微量润滑(m i n i m u m q u a n t i t y l uGb r i c a t i o n,MQ L)技术是通过高速气体将雾化微液滴喷入切削区,减轻刀具与工件间的摩擦.基于绿色加工要求,植物油替代传统矿物油作为基础油,同样具有良好的润滑性能,还因可生物降解而对环境无污染[3].但MQ L冷却性能不足,高温易导致油膜破裂㊁解吸附甚至氧化失效,切削区域不能形成连续的油膜润滑.纳米流体微量润滑(n a n o f l u i d s m i n i m u m q u a n t i t y l u b r i c a t i o n, NMQ L)技术是以MQ L技术为基础发展起来的新型冷却润滑方式.通过在润滑油中添加高热导率的纳米粒子,实现强化换热,改善界面的摩擦性能[4].但在切削区高温环境(600~1000ħ)下,纳米粒子的换热能力依然有限,与MQ L相比温度下降比例仅为10%~15%.实际生产中, MQ L或NMQ L用于非难加工材料,如中低碳钢[5]㊁铝合金[6]㊁镁合金[7]等,且已取得了良好的效果;对于难加工材料切削的极端环境,如钛合金[8]㊁镍基合金[9]㊁高强度钢[10]等,虽有增益,但降温上限值低,工件表面仍存在黏附点㊁烧伤点等缺陷,热耗散难题依旧无法被有效解决.切削过程中热耗散困难已成为制约工件表面质量提高的技术瓶颈,亟需一种高效㊁显著㊁环保的冷却工艺.经过多年的实践应用,低温加工技术展现出优异的冷却性能[11].低温技术具有0~-196ħ的温度域,所应用的介质及其温度范围如下:①低温冷风(c r y o g e n i ca i r,C A),-50~0ħ;②液态二氧化碳(l i q u i dc a r b o n d i o x i d e, L C O2),-78.5~-25ħ;③液氮(l i q u i dn i t r oGg e n,L N2),-196~-80ħ[12G13].通过将低温介质喷射到切削区,基于低温介质的物理特性(如剧烈气化吸热㊁高流速等),利用巨大温差和增大换热面积进行强化换热,有效降低切削区温度.低温可以抑制工件热软化,适度增加工件表面硬度和减弱切屑对刀具的黏附作用,改善切削性能,既能提高工件表面质量,又能显著延长刀具寿命,实现增益效果.进一步,通过采用不同温度域值的低温介质以适应不同加工形式及对应参数,实现切削区温度维持在合理的低温区间,防止冷却不足或工件过度冷却硬化.但低温技术缺乏润滑性能,抗磨减摩能力有待提高.随着技术进步,将低温和MQ L(NMQ L)进行有机结合的低温微量润滑(c r y o g e n i cm i n i m u m q u a n t i t y l u b r i c a t i o n,C MQ L)技术实现了两种技术之间优势互补,既可大幅降低切削区温度,也可使油膜保持有效润滑能力,对提高工件质量起到关键作用,体现出独特优势.本文综述了典型金属材料的低温微量润滑加工技术的研究进展和应用,归纳了C MQ L装置在不同加工方式下的应用形式及工艺特点,分析了C MQ L技术的作用机理,对比分析了C MQ L技术在车削㊁铣削及磨削加工中相对于微量润滑技术或低温技术在降低切削热㊁力及提高表面质量方面的效果,通过综述分析得出结论并展望C MQ L加工技术的发展前景,旨在为C MQ L技术基础研究和工程应用提供参考.1㊀低温微量润滑应用形式研究C MQ L技术在各种加工工艺(如车削㊁铣削㊁钻削㊁磨削)中的供给形式不同,所产生的效果也不相同.一般来说,切削加工中的低温/润滑介质是通过不同类型输运管道及其喷嘴以射流的方式喷射到切削区.介质供给形式主要分为两种:①介质通过外置刀具或工件附近的输运管道及喷嘴喷射(简称 外喷式 );②介质通过内置在035中国机械工程第33卷第5期2022年3月上半月Copyright©博看网. All Rights Reserved.刀具或刀柄中的输运管道及喷嘴喷射(简称 内喷式 ).目前,关于不同加工方式低温和润滑介质供给的研究集中在外喷式,因为不用改造机床就能实现.随着技术的发展,在铣削和钻削过程中,通过对机床主轴㊁刀柄和刀具进行内部结构改造,已实现低温或润滑介质内部供给,精确输送到切削区.对于车削,通过在刀柄内部设置通道,将低温介质引流至加工区域,进而实现集成化加工.1.1㊀C M Q L外喷式外喷式冷却是指低温和润滑介质通过外置输运管道及其喷嘴,在高压及一定距离和角度条件下,以射流的形式喷射到切削区域.每种加工方式均可使用L N2㊁L C O2和C A三种低温介质,典型应用如图1所示[14G16].外喷式冷却系统的优点在于结构简单㊁操作简便,只需将低温和润滑介质输运装置固定在机床相应位置,无需改造机床结构.常规单喷嘴存在冷却润滑介质难以完整覆盖刀具实际工作面的问题,为解决这一问题,P UGS A V E C等[17]设计了 多喷头指向式 射流喷射的结构,通过改变喷嘴数量和位置实现介质覆盖刀具有效工作面.目前新型供给装置是通过优化刀架结构实现,B I E R MA N N等[18]在刀架上安装了输送低温润滑介质的多管道嵌套装置,低温介质出口位于喷管尖端,MQ L出口位于喷管本体的中部,润滑油雾化微液滴到达喷管尖端后,受到低温射流的携带作用而混合,有效覆盖前后刀面.图1㊀三种低温介质典型加工应用形式[14G16]F i g.1㊀T h r e e t y p i c a l p r o c e s s i n g a p p l i c a t i o n s o f c r y o g e n i cm e d i u m[14G16]㊀㊀鉴于不同加工形式的特征,外喷式冷却更适用于车削和磨削.对于车削,内喷需在刀具体内设置通道,如在车刀刀刃附近开设通道,这会降低刀体强度,缩短刀具寿命,且车刀固定在刀架,外喷有利于低温介质有效覆盖刀面及切削刃.对于磨削,虽然已有内供液式砂轮,但不适合超低温介质,且内部结构改造复杂,成本高昂,没有实用价值,而砂轮高速旋转,外喷有利于将低温介质带入磨削界面,有效发挥换热作用.对于铣削,铣刀(立铣刀或盘铣刀)的切削刃或刀片均是间隔排布,高速旋转过程将产生气流场,显著降低外部介质的射流速度,导致进入切削区的有效流量率下降.对于钻削,钻孔空间封闭性强,低温射流难以有效进入,无法有效发挥冷却效果[19].铣削或钻削的加工特性及刀具的特殊结构决定了内喷式是最佳冷却方式.1.2㊀C M Q L内喷式内喷式冷却已逐渐成为铣削或钻削加工过程中冷却介质的主流供给形式.通过刀具㊁刀柄和机床主轴的内部结构改造,可以实现将低温润滑介质由内腔通道精确喷射到切削区,提高了介质利用率,实现定点定量冷却.以铣削为例,立铣刀中间设有内部供给通道,通道充分考虑了介质流动条件㊁切削刃与通道间的热阻以及刀体机械结构强度,如图2a所示.除了单直通道,内喷式立铣刀内通道结构还有双直通道(d o u b l es t r a i g h t c h a n n e l,D S C)和双螺旋通道(d o u b l e h e l i c a l c h a n n e l,D H C)两种[20],如图2b所示,其中,钻削过程常用双螺旋通道结构的钻头.内通道结构会对微液滴粒径分布产生明显影响,出口可以设置在不同的位置,以适应不同加工条件.例如,针对非难加工材料,出口可引导低温介质(L N2㊁L C O2)离开工件,以防止过度冷却而引起尺寸变化[21],如图2c所示;针对难加工材料,出口可引导低温介质喷到加工表面,增大降温幅度,保证零件表面完整性[20],如图2d所示;针对大切深加工,出口可设在铣刀端部,确保低温介质有效喷到切削界面[22],如图2e所示.对于L N2,润滑油无法溶于L N2并且在-196ħ下会凝结成固体,导致喷嘴堵塞,因此无法将冷却介质和润滑介质混合后通过一个喷嘴喷出.L N2通常通过内通道供给,微量润滑油通过外通道供给.L C O2或C A也可采用内外供给的形式.L C O2,尤其是超临界二氧化碳(s u p e r c r i t iGc a l c a r b o nd i o x i d e,s c C O2),相比于L N2的最大优势是对润滑油具有良好的溶解性,这使得135低温微量润滑加工技术研究进展与应用 刘明政㊀李长河㊀曹华军等Copyright©博看网. All Rights Reserved.(a)单直通道(b)双直通道和双螺旋通道㊀(c)背向喷射㊀㊀㊀(d)前向喷射㊀㊀(e)底部喷射图2㊀内喷式铣刀通道结构及喷射方式[21G22]F i g.2㊀T u n n e l s t r u c t u r e a n d j e tm o d e o f i n t e r n a lGj e tm i l l i n g c u t t e r[21G22]L C O2或s c C O2与微量润滑油混合后喷射到切削区成为可能.此外,L C O2和MQ L之间没有负相互作用.与s c C O2相比,L C O2更容易处理和获得,在机械加工领域应用更加广泛.G R G UGR A S等[23]对不同极性润滑油在L C O2中的溶解度㊁射流雾化后液滴粒径分布及刀具寿命进行了对比研究,结果表明非极性润滑油溶解度高,雾化后粒径均匀且相同切削参数下刀具寿命更长.B E R G S等[24]比较了两种输运方式下铣刀寿命,结果表明LC O2和微量润滑油混合后通过单通道喷射能够有效到达切削区起到冷却润滑作用,大幅延长铣刀寿命,如图3所示.使用L C O2作为冷却介质的新型C r y o∙t e c T M 铣刀为盘式结构[25],其刀柄内部设有两个同心通道,内层通道(绿色)输送L C O2,外层通道(红色)输送MQ L,实现L C O2和润滑介质分离,如图4所示.同心通道在主轴末端分裂成多个通道,指向各个刀片.在主轴高速旋转过程中从内部将冷却润滑介质喷射到切削区,极大提高了渗透率.然而,该方法需要改造机床结构以匹配适合安装刀柄的主轴.为实现不改造机床结构就能将低温介质输运到工作界面,内喷式刀柄转接装置应运而生.以铣刀为例,内喷式刀柄转接装置主要由刀柄主体和转接器组成,如图5a所示.刀柄主体实现机床主轴与铣刀的连接.转接器固定于主轴箱体上,轴承实现L N2通道与主轴相对转动.L N2从接图3㊀L C O2+M Q L两种供给方式的应用效果对比[24] F i g.3㊀C o m p a r i s o no f a p p l i c a t i o n e f f e c t o f t w ok i n d s o fL C O2+M Q Ls u p p l y m e t h o d s[24]图4㊀新型C r y o∙t e c T M铣刀内部结构[25]F i g.4㊀I n t e r n a l s t r u c t u r e o f n e wC r y o∙t e c T Mm i l l i n g c u t t e r[25]口流入刀柄主体内部的环形空腔中,通过铣刀的内部通道,从铣刀端部或者侧面喷出[26].盘铣刀同样也可在不改动主轴结构的基础上应用转接刀柄实现低温介质的输运[27],如图5b所示.针对内喷式刀柄转接装置的性能,李宽等[28]仿真分析了输运L N2条件下刀柄主体的温度场,结果显示覆盖聚四氟乙烯隔热层能有效保证轴承㊁锥形夹235中国机械工程第33卷第5期2022年3月上半月Copyright©博看网. All Rights Reserved.(a)内喷式立铣刀刀柄转接装置(b)内喷式盘铣刀刀柄转接装置图5㊀内喷式铣削刀柄转接装置[26G28]F i g.5㊀I n t e r n a l j e tm i l l i n g t o o l h o l d e r a d a p t e r[26G28]头正常工作.T A HMA S E B I等[22]采用流体动力学的方法探究了L N2输运过程的流动特性以及空化效应㊁隔热性能㊁喷嘴形状对输运效率的影响,结果表明改善隔热性能有助于将L N2输送到铣刀出口,提高冷却性能.相较于外喷式冷却,内喷式冷却具有精准㊁直接㊁高效的特点,并且装置整体集成度高,但内喷式冷却对相关装备(刀具内通道结构㊁刀柄隔热/密封性能及机床集成性)与低温介质输运/调控技术的要求高,实施难度大.具体表现为高压强制流动的低温介质严重影响主轴内部关键部件的结构和材料性能,进而降低隔热和动密封作用,导致低温介质泄漏与热损失,且难以避免超低温对主轴精度的影响.另外,从容器中释放后的L N2或L C O2会发生剧烈的相变过程,输运过程中难以维持低含气率,难以稳定流量㊁压力和温度.因此,开发性能稳定的内喷式刀柄㊁集成化低温介质输运机床结构以及介质调控系统已成为内喷式冷却应用亟待解决的科学问题.基于此,王永青等[29G30]提出了局限空间内定向导引与热阻强化的隔热方法,研制了确保L N2稳定输运的中空隔热主轴和刀柄,并发明了国内首台L N2内喷式加工机床C VM600以及L N CG100型独立式L N2流量调控装置,如图6所示.试验结果表明主轴隔热㊁密封性能良好,L N2输运稳定且调控精准度高.进一步,王永青等[31]探究了L N2内喷式主轴迷宫密封件的结构变形对密封性能的影响规律,结果显示,超低温环境下,密封件收缩变形导致迷宫密封间隙明显增加,-188ħ条件下L N2泄漏量是原来的2倍,密封性能降低.熊伟强等[32]提出了新型s c C O2+MQ L技术,发明了s c C O2复合喷雾系统及其专用喷嘴,并应用于难加工材料切削试验研究中.(a)液氮流量调控装置(b)液氮内喷式超低温冷却加工机床图6㊀内喷式超低温冷却加工机床及L N2调控装置[31] F i g.6㊀I n t e r n a l j e t i n j e c t i o n t y p e u l t r aGl o wt e m p e r a t u r e c o o l i n gp r o c e s s i n g m a c h i n e a n dL N2c o n t r o l d e v i c e[31]1.3㊀C M Q L装置类型及适应性不同切削形式的工作特征存在差别,如刀具结构㊁刀具运动形式,这就导致C MQ L装置对不同切削类型产生不同的适应性和冷却润滑效果.对C MQ L装置适用性的归纳总结如表1所示.335低温微量润滑加工技术研究进展与应用 刘明政㊀李长河㊀曹华军等Copyright©博看网. All Rights Reserved.表1㊀C M Q L 装置在不同加工形式下的适应性和效果T a b .1㊀A d ap t a b i l i t y a n d e f f e c t o fC M Q Ld e v i c e i nd i f f e r e n tm a c h i n i n g fo r m s 介质输运形式原理图应用介质适用方式应用效果外喷式分别通过外置单喷嘴喷射供给分别通过外置多喷嘴喷射供给低温介质和润滑油混合,通过单喷嘴或多喷嘴喷射供给L N 2+MQ L L C O 2+MQ L C A+MQ LL C O 2+MQ L C A+MQ L车削(连续性)铣削(间隔性)磨削(随机磨粒)㊀三种C MQ L 介质均适用于车削,多组外置喷嘴更有利于提高介质覆盖率.㊀高速旋转铣刀的间隔切削刃阻止C MQ L 介质有效进入切削区.㊀L N 2和L C O 2会导致润滑油在砂轮表面严重结冰,堵塞磨粒间隙,影响润滑效果;C A 更适合于磨削.内喷式低温介质通过刀柄内通道㊁MQ L 通过外置喷嘴喷射供给L N 2+MQL L C O 2+MQL 低温介质通过刀具内通道㊁MQ L 通过外置喷嘴喷射供给L N 2+MQL L C O 2+MQL 低温介质和润滑油非混合,各自通过刀具内通道喷射供给L C O 2+MQ L C A+MQ L低温介质和润滑油混合,通过单喷嘴喷射供给L C O 2+MQ L s c C O 2+MQL 车削(连续性)铣削(间隔性)㊀有利于低温介质有效渗透刀具与工件的接触界面,增加介质的覆盖面积.㊀适用于立铣刀,极大提高了低温介质渗透效果;高速旋转的铣刀仍然影响润滑油的渗透性.㊀适用于盘铣刀,极大提高了C MQ L 介质的渗透效果.㊀适用于立铣刀,极大提高了C MQ L 介质的渗透效果.2㊀低温微量润滑作用机理由于难加工金属材料的高强度和低导热性,其切削过程中复杂的热力作用是影响工件表面质量的主要原因.低温技术和MQ L (NMQ L )技术的工作原理完全不同,两者结合之后的冷却润滑机制会发生变化.C MQ L 可以通过改变工件材料的本构关系来影响热软化效应.C MQ L 对切削热㊁力及工件表面质量的影响规律是需要解决的科学问题.2.1㊀C M Q L 润滑机理微量润滑油(植物油)在高压高速气体携带作用下以气雾形式渗入切削区,通过极性基团吸附在刀具与切屑界面以及刀具与工件界面形成边界润滑膜,在一定程度上隔阻了刀具前刀面与切屑以及后刀面与工件界面的直接干摩擦.但在切削区高速㊁高温㊁高压条件下,润滑油黏度降低,油膜变得稀薄并发生破裂,无法完全覆盖工件表面的微沟槽.另外,超过临界温度后,润滑膜会出现解吸附现象,吸附膜失效,润滑性能下降,导致刀具与工件界面仍出现干摩擦,直至再次渗透浸润才能形成油膜,降低了润滑效果,进而影响了工件加工质量.对于C MQ L ,低温状态下的润滑油黏度大,油膜厚度可使摩擦面保持完全隔开的有效状态,承载能力较高,如图7a 所示;同时,低温介质使切削区温度维持在相对较低水平,不仅使润滑膜保持较高吸附性,还可避免高温导致油膜氧化失效,如图7b 所示[33].然而,低温会使微液滴表面张力和接触角出现一定程度的增大,引起油膜铺展面积减小,导致润滑油对刀具与工件界面毛细通道的渗透能力降低,对润滑能力产生一定影响,如图7c 所示.435 中国机械工程第33卷第5期2022年3月上半月Copyright ©博看网. All Rights Reserved.㊀㊀㊀㊀㊀(a)C MQ L和MQ L对黏度影响㊀㊀㊀㊀㊀㊀㊀(b)C MQ L和MQ L 对油膜活性影响(c)C MQ L和MQ L对液滴润湿性影响图7㊀C M Q L润滑机制[33]F i g.7㊀L u b r i c a t i o nm e c h a n i s mo fC M Q L[33]㊀㊀MQ L的润滑性能并非绝对随着环境温度降低而升高.润滑油存在凝点,当环境温度高于凝点时,微液滴黏度在低温环境中逐渐升高,起到有效润滑和承载作用;当环境温度下降到润滑油凝点之下后,微液滴会凝固成冰粒,完全丧失流动性,难以有效在刀具与工件界面形成润滑膜.为保持MQ L的润滑性能,低温介质和润滑介质的供给顺序十分重要:在浅冷条件下(温度高于凝点),可同时喷射两种介质;在深冷条件下(温度低于或远低于凝点),可先喷射润滑油,使其形成油膜,再喷射低温介质.这样即使温度过低,切削区温度仍可使油膜处于高黏度液态,防止结冰.2.2㊀C M Q L冷却机理C MQ L介质以射流的形式喷射到切削区,冷却润滑介质耦合作用下的叠加降温机制如图8所示.(1)在切削过程中,冷却介质与切削区的刀具和工件进行换热时,遵循以下对流换热公式:Q=h AΔT(1)式中,Q为切削热量,J;h为传热系数,J/(m2 K);A为换热面积,m2;ΔT为温差,K.由式(1)可知,热量大小与切削区温差成正比,温差越大,交换热量越多,冷却效果越明显.从换热角度,L N2温度范围为-196~-80ħ,与切削区高温形成巨大温差,降温效果最好,且对高速切图8㊀C M Q L叠加降温机制F i g.8㊀S u p e r p o s e d c o o l i n g m e c h a n i s mo fC M Q L 削过程中的高温环境起到明显降温作用;L C O2/ s c C O2温度范围为-78.5~-25ħ,适用于中等速度的切削过程;C A温度范围通常为-50~0ħ,并且温度可控,可以根据实际情况进行调整以控制切削区温度.高速流动的低温冷风有助于增大对流换热面积,进一步增强换热能力.低温环境有利于提高润滑膜生存能力,有效减轻刀具与工件间的摩擦,抑制加工热效应.另外,低温介质可能导致润滑油凝固,在切削区摩擦界面发生润滑油由固态到液态的相变过程,吸收一定热量[34].535低温微量润滑加工技术研究进展与应用 刘明政㊀李长河㊀曹华军等Copyright©博看网. All Rights Reserved.(2)界面高温会减小金属材料表面/亚表面晶粒位错密度和界面密度,降低对位错的阻碍,进而加快位错运动速度;会改变位错的运动方式,使位错可在水平和垂直方向上攀移,更容易绕过小尺寸障碍.另外,高温会引起原子间距增大,金属键变弱而易断裂,容易发生塑性变形[35].以上因素使金属材料纤维组织发生变化而引起热软化,导致摩擦加剧㊁切削热增加㊁切屑对刀具黏附作用加强,严重影响工件表面加工质量.切削过程中,工件表面硬度主要受加工硬化和温度影响.C MQ L 不仅可以冷却切削区域,还可以改变工件材料的性能,但低温和MQ L的影响机制并不相同. MQ L(NMQ L)通过润滑油膜降低工件与刀具间的摩擦热,使工件材料对刀具黏合力减小,松弛黏附可以显著抑制工件塑性变形,减小加工硬化[36].低温通过改变材料本构关系,使工件材料的晶粒变得细化和致密,抑制热软化,但可能存在过度硬化现象,即低温是通过影响材料的本构关系而从能量的本质上降低切削热.因此,应合理选用低温介质,使工件维持合适硬度,有效减小材料的断裂应变,进而降低断裂应变能.例如,对于中/低碳钢,可选用冷风浅冷辅助;对于钛合金㊁镍基合金等难加工材料,可选用L C O2或L N2深冷辅助. (3)在切削区被移除的热量中,除了低温介质强化换热移除的大部分热量外,还有一部分热量被润滑油的沸腾换热作用所移除[37].沸腾换热过程可以分为自然对流换热㊁核态沸腾换热㊁过渡沸腾换热以及膜态沸腾换热4个阶段,如图9所示[38].前两个阶段称为成核阶段,后两个阶段称为成膜阶段.在成核阶段,热导率随温度升高而增大,超过临界温度后到达成膜阶段,热导率迅速减小,进而换热效果显著降低.Z H A N G等[38]研图9㊀不同工况沸腾换热机制对传热系数的影响[38]F i g.9㊀I n f l u e n c e o f b o i l i n g h e a t t r a n s f e rm e c h a n i s mo n h e a t t r a n s f e r c o e f f i c i e n t u n d e r d i f f e r e n t c o n d i t i o n s[38]究了NMQ L辅助磨削T iG6A lG4V过程中引入C A对传热系数的影响,结果表明NMQ L单独使用时降温能力有限,切削区温度超过临界温度,而C A+NMQ L可以有效降低切削区温度,相较于NMQ L下降了31.6%,温度阈值低于成核成膜的临界温度,因而润滑油传热系数提高了50.1%,大幅增强了换热能力.2.3㊀C M Q L对切削力影响机理切削过程中使用MQ L(NMQ L)可明显减小切削力,这是因为极性油雾颗粒吸附在刀具与工件界面形成一层物理膜,起到润滑和承载作用.在润滑油中添加的纳米粒子,如M o S2㊁碳纳米管㊁A l2O3等,进入刀具与工件界面起到 滚珠 作用,以滚动摩擦代替原本的滑动摩擦,可有效减小切削力.低温介质(L N2㊁L C O2㊁C A)对刀具与工件界面的不同冷却程度会对切向力(主切削力)㊁轴向力(进给力)㊁径向力(背向力)的变化趋势产生不同影响.低温介质通常是喷射到前刀面㊁后刀面或同时喷到两者之上.以车削过程L N2冷却为例,喷到前刀面可降低刀具与切屑间的黏附作用从而减小摩擦力,但L N2的深冷作用会使工件产生一定程度硬化,使得克服材料变形难度增加,导致切削力增大[39].材料硬化和减小摩擦的竞争关系影响低温加工过程中切削力的变化趋势,这与工件的冷却程度直接相关.L N2在前刀面与切屑间隙的喷射深度影响工件冷却程度[40G41].对于图10a所示的工况一, L N2直接喷射到切屑根部,冷却程度高,使工件材料硬度变大.虽然L N2可以减小摩擦力,但减小幅度小于工件深冷硬化后切削力增大幅度,因而主切削力增大.L N2单独喷射在后刀面或前刀面上时,相较于干切削,进给力分别下降2.3%㊁9.5%,表明摩擦力减小量大于切削力增大量; L N2同时喷前后刀面时,深冷作用使材料去除难度增加,切削力增大量大于摩擦力减小量,因此相比单独喷射前刀面,进给力增大,但幅度不大,只有1.7%.径向力增大是因为L N2使工件局部硬度增大,温度越低,硬化程度越高,径向力越大.对于工况二,如图10b所示,L N2在前刀面喷射位置距离切屑根部相对较远,工件表面硬化程度低,所以材料去除对切削力的影响较小.此时,L N2喷射位置对工件与刀具界面摩擦力的影响将直接决定切削力变化.以主切削力为例,不同切削参数下,相较于干切削,同时喷射前后刀面的主切削力均减小,最大减幅为8.1%;只喷射前635中国机械工程第33卷第5期2022年3月上半月Copyright©博看网. All Rights Reserved.。
低温微量润滑技术
低温微量润滑技术是一种先进的润滑技术,主要应用于切削加工、机械加工等领域。
其特点是在低温环境下,通过微量润滑油的使用,实现润滑和冷却的目的,提高加工效率和工件质量。
具体来说,低温微量润滑技术利用低温冷风的特性,将润滑油以微小的量喷入切削区域或机械摩擦部位,形成一层薄薄的油膜,实现对切削刀具、机械部件的润滑和冷却。
由于润滑油的使用量极少,因此可以显著降低能源消耗和润滑剂成本。
另外,低温微量润滑技术还可以改善工件表面的质量和精度,减少刀具磨损和机械故障,提高设备使用寿命。
同时,由于该技术采用的润滑油量极小,可以减少环境污染和废油处理成本。
在实际应用中,低温微量润滑技术需要结合具体工艺和设备进行设计和优化。
具体而言,需要选择合适的润滑油、喷油方式和润滑系统,调整低温冷风的流量和温度等参数,以确保润滑效果的充分发挥。
总之,低温微量润滑技术是一种高效、节能、环保的润滑技术,具有广泛的应用前景和发展潜力。
随着技术的不断进步和应用领域的拓展,该技术将会在更多领域发挥重要作用。
钻井液润滑剂润滑性能及影响因素国内外研究者对钻井液的润滑性能进行了评价,得出的结论是:空气与油处于润滑性的两个极端位置,而水基钻井液的润滑性处于其间。
用Baroid公司生产的钻井液极压润滑仪测定了三种基础流体的摩阻系数(钻井液摩阻系数相当于物理学中的摩擦系数),空气为0.5,清水为0.35,柴油为0.07。
在配制的三类钻井液中,大部分油基钻井液的摩阻系数在o.08~o.09之间,各种水基钻井液的摩阻系数在0.20~0.35之间,如加有油晶或各类润滑剂,则可降到0.10以下。
对大多数水基钻井液来说,摩阻系数维持在o.20左右时可认为是合格的。
但这个标准并不能满足水平井的要求,对水平井则要求钻井液的摩阻系数应尽可能保持在0.08~0.10范围内,以保持较好的摩阻控制。
因此,除油基钻井液外,其它类型钻井液的润滑性能很难满足水平井钻井的需要,但可以选用有效的润滑剂改善其润滑性能,以满足实际需要。
近年来开发出的一些新型水基仿油性钻井液,其摩阻系数可小于0.10,很接近油基钻井液,其润滑性能可满足水平井钻井的需要。
从提高钻井经济技术指标来讲,润滑性能良好的钻井液具有以下优点:(1)减小钻具的扭矩、磨损和疲劳,延长钻头轴承的寿命;(2)减小钻柱的摩擦阻力,缩短起下钻时间;(3)能用较小的动力来转动钻具;(4)能防粘卡,防止钻头泥包。
钻井液润滑性好,可以减少钻头、钻具及其它配件的磨损,延长使用寿命,同时防止粘附卡钻、减少泥包钻头,易于处理井下事故等。
在钻井过程中,由于动力设备有固定功率,钻柱的抗拉、抗扭能力以及井壁稳定性都有极限。
若钻井液的润滑性能不好,会造成钻具回转阻力增大,起下钻困难,甚至发生粘附卡钻和日钻具事故;当钻具回转阻力过大时,会导致钻具振动,从而有可能引起钻具断裂和井壁失稳。
1.钻井作业中摩擦现象的特点随着密封轴承的出现,改善钻井液润滑性能的目的主要是为了降低钻井过程中钻柱的扭矩和阻力。
在钻井过程中,按摩擦副表面润滑情况,摩擦可分为以下三种情况(见图4-11):(1)边界摩擦:两接触面间有一层极薄的润滑膜,摩擦和磨损不取决润滑剂的粘度,而是与两表面和润滑剂的特性有关,如润滑膜的厚度和强度、粗糙表面的相互作用以及液体中固相颗粒间的相互作用。
七种轴承润滑方式优点缺点以及适用场合轴承是机械设备中非常重要的部件,用于支撑和减少机械设备的摩擦。
为了保证轴承的正常运行,润滑是必不可少的。
根据润滑方式的不同,可以分为七种轴承润滑方式,它们分别是:润滑油润滑、润滑脂润滑、干摩擦润滑、固体润滑、水润滑、气体润滑和混合润滑。
下面我们将逐一介绍这七种润滑方式的优点、缺点以及适用场合。
1.润滑油润滑:润滑油润滑是通过在摩擦表面形成润滑油膜来减少摩擦和磨损。
优点包括摩擦小、寿命长、适用于高速运转的轴承等。
缺点是当轴承运行在高速、高温或高粘度等特殊工况下时,润滑油的润滑效果会下降。
适用场合包括高速轴承、高温轴承和高负荷轴承等。
2.润滑脂润滑:润滑脂润滑是将固态润滑剂和润滑油混合制成的一种半固态润滑剂,适用于一些无需频繁维护和加油的轴承。
优点包括使用方便、不易漏油和长期稳定性好等。
缺点是当润滑脂老化或温度过高时,润滑效果会下降。
适用场合包括需要长期润滑、密封性要求较高和不易清洁的轴承。
3.干摩擦润滑:干摩擦润滑是通过在摩擦表面形成固态润滑膜来减少摩擦和磨损。
优点包括不需润滑剂、使用温度范围广和不受污染影响等。
缺点是摩擦力较大、容易产生干磨损和适用条件有限。
适用场合包括高温、高速且污染较严重的环境。
4.固体润滑:固体润滑是将固态润滑剂直接应用于摩擦表面的一种润滑方式。
优点包括使用方便、不易泄漏和摩擦系数低等。
缺点是润滑效果随温度变化较大、容易形成沉淀和难以进行在线监测等。
适用场合包括高温、高速和重载等特殊工况。
5.水润滑:水润滑是使用水作为润滑介质的一种润滑方式。
优点包括环境友好、无毒无污染和不易燃烧等。
缺点是水的润滑性能较差、易蒸发和对金属腐蚀等。
适用场合包括低速、低温和密封要求严格的轴承。
6.气体润滑:气体润滑是通过气体形成气体隔离膜来减少摩擦和磨损。
优点包括摩擦小、适用于高速运转和密封性好等。
缺点是对气体压力和流量要求较高、不能很好地保护轴承和适用条件较窄等。
润滑分析报告1. 简介本报告旨在对润滑问题进行分析和解决方案的提出。
润滑在工业生产和机械运行中起着至关重要的作用,它能降低摩擦和磨损,减少能量损失,并延长设备的使用寿命。
2. 润滑问题分析2.1 摩擦和磨损问题摩擦和磨损是润滑问题的主要表现。
摩擦会导致能量损失和设备过热,影响设备的正常运行,增加维修和维护成本。
磨损则会缩短设备的使用寿命,降低生产效率。
2.2 润滑剂选择不合适润滑剂的选择对润滑效果有着重要影响。
如果润滑剂的性能不符合实际使用环境的要求,使用效果将大打折扣。
例如,对于高温环境,选择能够耐高温的润滑剂是至关重要的。
2.3 润滑剂使用不当即使是合适的润滑剂,如果使用不当也会导致润滑效果不佳。
例如,过量的润滑剂会浪费资源并增加清洁和处理工作;而过少的润滑剂则会无法达到预期的润滑效果。
3. 解决方案3.1 分析目标解决润滑问题的关键是减少摩擦和磨损,改善设备运行效率,并延长设备的使用寿命。
为了实现这个目标,我们需要采取以下措施:•选择合适的润滑剂,根据实际使用环境的要求,选用性能符合标准的润滑剂;•建立润滑剂使用标准,确保润滑剂的正确使用,避免过量或过少使用;•建立定期润滑检查和维护制度,确保润滑剂的及时更换和设备的定期保养。
3.2 润滑剂的选择根据实际使用环境的要求,我们应选择性能符合标准的润滑剂。
以下是一些常见的润滑剂类型和适用场景:•矿物油:适用于一般工业设备和机械,耐热性能较差;•合成油:具有优异的耐高温性能,适用于高温环境下的设备;•脂类润滑剂:适用于滑动轴承和开放齿轮传动等摩擦副;•固体润滑剂:适用于高温高压和精密设备。
3.3 润滑剂使用标准建立润滑剂使用标准是确保正确使用润滑剂的关键。
以下是一些润滑剂使用的基本原则:•按照设备制造商的要求选择润滑剂品牌和型号;•根据设备的运行条件和工作量,制定合理的润滑剂使用计划;•定期检查润滑剂的质量和消耗量,并及时更换;•在润滑剂更换时,彻底清洗设备并确保加注新润滑剂的干净。
设备润滑的七个主要作用
1. 减少机械磨损:设备润滑能够降低机械部件之间的摩擦,减少接触面磨损和表面疲劳,从而延长设备的使用寿命。
2. 提高机械效率:润滑油润滑表面能够使机械部件之间的摩擦系数降低,从而能够提高机械的运行效率,降低能源消耗。
3. 降低噪音:在润滑作用下,机械设备的噪音会降低,从而提升工作环境的质量。
4. 防止腐蚀:润滑油中的防锈和防腐剂能够防止设备部件锈蚀和腐蚀,保护设备减少维修支出。
5. 减少损失:润滑油的性能能够保证设备能够长时间运行,从而能够减少停机时间,提高设备运转效率。
6. 改善密封:润滑油能够改善机械设备的密封效果,避免液体和气体泄漏,确保机械设备的正常运行和质量。
7. 降低维护成本:润滑油可以减少机器损坏,降低不必要的维修费用,避免由维修费用和停机时间经济损失。
微量润滑的优势及深孔钻耐用度分析
杨延冬
(北京培峰技术有限责任公司,北京100098)
摘要:微量润滑是压缩空气将极微量的润滑油雾化,形成微米级油滴喷射到切削区域的润滑方法。
分为外喷型和内冷型,外喷型无 需对机床进行改进就直接使用,润滑油和压缩空气由润滑装置输送至喷嘴处混合再喷射至切削区域。
内冷型润滑是在机床内部输送 微量油雾,经过切削刀具内部通道直接送达切削区域参与润滑冷却。
关键词:微量润滑;深孔加工;深孔钻
中图分类号:T H117 文献标识码:B D O I:10.16621/j.c n k i.is s n1001-0599.2018.07.28
0引言
在高速切削已经成为提高加工效率的主要方法的今天,航 空、汽车零部件、模具等领域的切削加工已广泛采用高速切削 以提高加工效率。
由于机床开始使用高速电主轴,机床转速在 10 000〜60 000 r/m in切削加工时会使切削刀具产生高压气幕 及离心力,在这种情况下使用传统的切削液大流量浇注的润 滑冷却方法就无法达到满意的效果。
采用一种既能有效润滑 又能良好冷却的方法是关键,如:干式切削、液氮冷却、微量润 滑、低温冷风等。
M Q L(M in im u m Q u a n tity L u b ric a tio n,微量润滑)是压缩空气将极微量的润滑油雾化形成微米级油滴喷射到切削区域的润 滑方法。
能够减小切削刀具与切屑及工件之间的摩擦,抑制切削 热,防止积削瘤产生及延长切削刀具的使用寿命,提高加工表面 质量,这样的润滑方式适用于钻、铣、车、锯等多种加工过程。
图1为内冷微量润滑原理图.
M Q L技术具有干式切削和湿式切削共同的优点。
M Q L能将 润油的用量降至极微量的程度,节省润滑油的投入成本,所使用 的自然降解的润滑油不会对环境和操作人员造成伤害。
与干式切 削对比大大改善了润滑和冷却的效果,大幅降低了切削刀具的磨 损,延长了工具的使用寿命。
图2为工作状态下的油雾输出。
后,摩擦因数呈下降趋势,
变化并不明显。
4结论
(1)定转速变负载工 况条件下,摩擦因数随着
负载的增大而呈略上升趋
势,且在同一时间,虽然不
同负载对于的摩擦因数相
差不大,但有负载越大摩
擦因数越大的规律。
(2)定负载变转速的 工况条件下,在(300〜800)
r/m in,摩擦因数随着转速
的增大呈现上升趋势,在 (800〜1000)r/m in,摩擦因
数有所下降,但摩擦因数
变化幅度非常小。
(3)不论工况是定转 速变负载工况还是定负
载变转速,时间的变化对
摩擦因数的影响都十分
微小。
擦盘与销的摩擦接触点摩 擦因数随转速变化
图9 6 s,12 s,18 s时铜基摩擦 盘与销的摩擦接触点摩擦因
数随转速变化量与识别方法研究(K Z201611232032)。
参考文献
[1]胡宏伟,周晓军.湿式自动离合器结合过程特性研究[D].杭州:浙江
大学,2008.
[2]王立勇,马彪,李和言.湿式换档离合器摩擦片摩擦磨损特性试验研
究[J].机械设计,2008 (5):46-48.
[3]张志刚,周晓军.关于湿式离合器几个工作特性研究[D].浙江:浙江
大学,2010.
[4 ]吴张兵.双离合器自动变速器换挡过程特性研究[D].重庆:重庆理
工大学,2015.
[5 ]杨李辰.多片湿式离合器转矩特性的仿真分析[D].长春:吉林大学,
2015.
[6] 范招军,陈晓萌,王文.复合材料摩擦磨损试验[J].计量与测试技
术,2017(12):25-28.
[7] 王伟,孙见君,涂桥安,马晨波.摩擦磨损试验机发展现状研究[J].
机械设计与制造工程,2015 (7):1-6.
[8] S.J.Shaffer,T.B.Freshly,S.E.PapanicolaouBenchtop screening of wet
clutch materials.Tribology International,2018,121 (^):161-166. [9] Tse-Chang L i,Y u-W en Huang,Jen-Fin LinStudies on centrifugal
clutch judder behavior and the design of frictional lining materials Research article.Mechanical Systems and Signal Processing, 2016,66-67(1):811-828.
〔编辑凌瑞〕
北京市教委科技计划重点项目:微小磨粒在线检测信号测
74设备管理与组饍2018
翼7(上)
Aemsd (气溶胶)
旋枓接头
机床主轴
控制j m
图1内冷微量润滑原理
图2工作状态下的油雾输出
M Q L有外喷型和内冷型,外喷型无需对机床进行改进就直 接使用,润滑油和压缩空气由润滑装置输送至喷嘴混合再喷射 至切削区域。
优点是产品简单经济,投入成本较低,操作环境清 洁,排放极低(图3显示微量润滑条件下的排放情况)。
润滑效果 理想,尤其对车削、铣削、钻孔加工的改进设备合适。
缺点是当工 件尺寸结构变化较大时,喷嘴的位置需要调整。
内冷型润滑是在 机床内部输送微量润滑油雾,经过切削刀具内部通道直达切削 区域参与润滑冷却。
优点是油雾颗粒小,油量消耗更低,因为通 过内冷通道输送,能更高效的将润滑油雾输送至切削点。
201---------------------------------------------------------------------------
■M Q L润滑
测量点
图3微量润滑条件下的排放情况
2微量润滑案例
图4为内冷微量润滑设备。
深孔加工是应用内冷微量润滑 的典型加工案例,由于深孔加工的特点,采用干式切削在实际生 产中一般很难实现。
因为深孔钻削与普通的车削、铣削加工有所不同,它是在封闭环
境下进行的,单位时
间产生的切削热量
相对较大,排屑通道
长,切屑和切削热排
出困难。
因此,分析
深孔加工中影响钻
头耐用度的因素是
深孔微量润滑能否
良好应用的关键。
(1)工件材料的
性能。
准干式钻孔对
工件材料的差异性
图4内冷微量润滑设备
变化较为敏感。
如铸
件毛坯,在钻头遇到
孔洞、夹杂和硬度变
化时,会产生额外的
应力和变形。
因此,
确保供应商提供的
铸件质量和铝合金内部的一致,是优化钻头高效加工的基础。
材
料性能不一样会影响切削刀具的耐用度。
(2) 钻头的制造误差。
正确的钻尖形状和切削刀具材料的最 佳物理性能对钻头的切削性能有很大影响。
(3)钻头横刃良好修磨及增加后刀面油雾槽能显著提高生 产率,使用效果最佳。
(4)钻头尾端面与钻夹套的密封与配合,防止出现阶梯台 阶,将微米级的油雾形成积油,导致油雾无法到达钻头切削刃口
处。
(5) 钻尖的偏移。
钻头装夹后的跳动度或主轴的跳动,导致 钻尖微量的偏移。
在加工前如果偏移量足够大则会造成孔位偏
移。
降低了钻头的使用寿命。
为避免孔位偏移,通常是用导向孔
和测量保证钻头跳动,钻头的使用寿命会增加。
(6) 压缩空气的影响。
钻孔时油雾压力的提升对钻尖获得良 好的润滑有正面效果。
(7) 切削刀具涂层。
准干式加工时采用有涂层的钻头是获得 高生产率最有效的手段。
相比之下,无涂层钻头寿命较短。
较好
的涂层是物理涂层,类金刚石涂层只用于钻尖、切削刀具前面,
而不是整体涂层。
采用局部P V D(P h y s ic a l V a p o r D e p o s itio n,物
理气相沉积)金刚石涂层的钻头性能优异,在铸件及铝合金材料
时,钻头的损坏多数是由于非正常磨损加剧导致。
3结束语
要充分发挥M Q L的优势,降低运营成本,改善环境和获得
良好的切削加工性能的有效统一,就需要对切削加工的工艺、切
削刀具及涂层、工件材料及M Q L系统参数要点(油雾生成效果、
喷嘴设置位置及距离、润滑油特性、压力空气压力及质量)这些
都是影响M Q L在切削加工中发挥效果的因素,因此要引起重
视,才能将M Q L技术更好的应用于切削加工领域。
〔编辑利文〕
设备管理与组饍2018翼7(上)7
5。