2015年南开初三数学期中考试卷
- 格式:doc
- 大小:2.58 MB
- 文档页数:7
2015-2016学年天津市南开区九年级(上)期中数学试卷一.选择题(共36分)1.(3分)方程x(x+)=0的根是()A.x1=0,x2=B.x1=0,x2=﹣C.x1=0,x2=﹣2 D.x1=0,x2=22.(3分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠04.(3分)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l 上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)5.(3分)如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定6.(3分)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°7.(3分)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=(x﹣2)2+2 D.y=(x﹣2)2﹣2 8.(3分)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是﹣3≤x≤1.其中正确的有()A.1个 B.2个 C.3个 D.4个9.(3分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1),将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()A.(2,1) B.(2,3) C.(4,1) D.(0,2)10.(3分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.11.(3分)如图,若正△A1B1C1内接于正△ABC的内切圆,则△A1B1C1与△ABC 的面积的比值为()A.B.C.D.12.(3分)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC 的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4﹣C.4 D.6﹣2二.填空题:共18分.13.(3分)坐标平面内的点P(m,2)与点Q(3,﹣2)关于原点对称,则m=.14.(3分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为15.(3分)请写出一个二次函数,使其满足以下条件:①图象过点(2,﹣2);②当x<0时,y随x增大而增大;它的解析式可以是16.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10cm、深约为2cm 的小坑,则该铅球的直径约为cm.17.(3分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:.18.(3分)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc >0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)三.解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或证明过程.19.(8分)(1)x(x﹣2)+x﹣2=0(适当方法)(2)2x2+1=3x(配方法)20.(8分)二次函数中y=ax2+bx﹣3的x、y满足表:(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.21.(10分)如图,在圆O中,AB是直径,CD是弦,AB⊥CD,AB=12cm,∠CFD=60°.(1)求∠COB的度数;(2)求CD的长.22.(10分)如图,已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上,点D在⊙O上,连接CD,且CD=OA,OC=2.求证:CD是⊙O的切线.23.(10分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为28m,求建成的饲养室总面积的最大值(墙体厚度忽略不计).24.(10分)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)25.(10分)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A,B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在求出P的坐标,不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB面积为S,求S 的最大(小)值.2015-2016学年天津市南开区九年级(上)期中数学试卷参考答案与试题解析一.选择题(共36分)1.(3分)方程x(x+)=0的根是()A.x1=0,x2=B.x1=0,x2=﹣C.x1=0,x2=﹣2 D.x1=0,x2=2【解答】解:方程x(x+)=0,可得x=0或x+=0,解得:x1=0,x2=﹣.故选:B.2.(3分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.3.(3分)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠0【解答】解:依题意列方程组,解得k<1且k≠0.故选:D.4.(3分)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l 上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)【解答】解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选:B.5.(3分)如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【解答】解:∵∠ACB与∠AOB所对的弧是同一段弧,且∠AOB=90°,∴∠ACB=∠AOB=90°,故选:B.6.(3分)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选:A.7.(3分)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=(x﹣2)2+2 D.y=(x﹣2)2﹣2【解答】解:抛物线y=x2+1的顶点坐标为(0,1),把点(0,1)先向左平移2个单位,再向下平移3个单位得到的对应点的坐标为(﹣2,﹣2),所以所得抛物线的函数关系式y=(x+2)2﹣2.故选:B.8.(3分)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是﹣3≤x≤1.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵二次函数的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,故①正确;②∵当x=2时,y<0,∴4a+2b+c<0,故②正确;③∵抛物线与x轴的交点分别是(﹣3,0),(1,0),∴一元二次方程ax2+bx+c=0的两根之和=﹣3+1=﹣2,故③正确;④由函数图象可知,当y≤3时,x≥0或x≤﹣2,故④错误.故选:C.9.(3分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1),将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()A.(2,1) B.(2,3) C.(4,1) D.(0,2)【解答】解:如图所示:结合图形可得点B′的坐标为(2,1).故选:A.10.(3分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【解答】解:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b﹣1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个正实数根.∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选:A.11.(3分)如图,若正△A1B1C1内接于正△ABC的内切圆,则△A1B1C1与△ABC 的面积的比值为()A.B.C.D.【解答】解:设圆心为O,AB与圆相切于点D,连接AO,DO,∵△A1B1C1和△ABC都是正三角形,∴它们的内心与外心重合;如图:设圆的半径为R;Rt△OAD中,∠OAD=30°,OD=R;AO=OD•=R,即AB=2R;同理可求得:A1B1=R,∴==,则△A1B1C1与△ABC的面积的比值为:()2=.故选:C.12.(3分)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC 的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4﹣C.4 D.6﹣2【解答】解:如图,当点E旋转至y轴上时DE最小;∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC∵AB=BC=2∴AD=AB•sin∠B=,∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,6)∴OA=6∴DE′=OA﹣AD﹣OE′=4﹣故选:B.二.填空题:共18分.13.(3分)坐标平面内的点P(m,2)与点Q(3,﹣2)关于原点对称,则m=﹣3.【解答】解:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),所以m=﹣3.14.(3分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为m>0【解答】解:∵抛物线y=(x﹣m)2+(m+1),∴顶点坐标为(m,m+1),∵顶点在第一象限,∴m>0,m+1>0,∴m的取值范围为m>0.故答案为:m>0.15.(3分)请写出一个二次函数,使其满足以下条件:①图象过点(2,﹣2);②当x<0时,y随x增大而增大;它的解析式可以是y=﹣2x2+6【解答】解:∵当x<0时,y随x的增大而增大,∴设解析式为:y=﹣2x2+b,∵图象经过点(2,﹣2),∴﹣2=﹣2×22+b,解得:b=6.∴解析式为:y=﹣2x2+6(答案不唯一).故答案为:y=﹣2x2+6(答案不唯一).16.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10cm、深约为2cm 的小坑,则该铅球的直径约为14.5cm.【解答】解:根据题意,画出图形如图所示,由题意知,AB=10,CD=2,OD是半径,且OC⊥AB,∴AC=CB=5,设铅球的半径为r,则OC=r﹣2,在Rt△AOC中,根据勾股定理,OC2+AC2=OA2,即(r﹣2)2+52=r2,解得:r=7.25,所以铅球的直径为:2×7.25=14.5 cm.17.(3分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:2(1+x)+2(1+x)2=8.【解答】解:∵去年对实验器材的投资为2万元,该校这两年在实验器材投资上的平均增长率为x,∴今年的投资总额为2(1+x);明年的投资总额为2(1+x)2;∵预计今明两年的投资总额为8万元,∴2(1+x)+2(1+x)2=8.18.(3分)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc >0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.三.解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或证明过程.19.(8分)(1)x(x﹣2)+x﹣2=0(适当方法)(2)2x2+1=3x(配方法)【解答】解:(1)分解因式得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1;(2)方程整理得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,开方得:x﹣=±,解得:x1=1,x2=.20.(8分)二次函数中y=ax2+bx﹣3的x、y满足表:(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把(﹣1,0),(0,﹣3),(1,﹣4)代入得,解得a=1,b=﹣2,c=﹣3,所以抛物线解析式为y=x2﹣2x﹣3;(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,所以抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4).21.(10分)如图,在圆O中,AB是直径,CD是弦,AB⊥CD,AB=12cm,∠CFD=60°.(1)求∠COB的度数;(2)求CD的长.【解答】解:(1)连接OD,∵AB是直径,CD是弦,AB⊥CD,∴,∴∠COB=∠DOB=∠COD,∴∠CFD=∠COB=60°;(2)Rt△COE中,OC=6cm,∠COE=∠CFD=60°;∴CE=OC•sin60°=3cm;∴CD=2CE=6cm.22.(10分)如图,已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上,点D在⊙O上,连接CD,且CD=OA,OC=2.求证:CD是⊙O的切线.【解答】证明:连接OD,如图,CD=OD=OA=AB=2,OC=2,∵22+22=(2)2,∴OD2+CD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴OD⊥CD,又∵点D在⊙O上,∴CD是⊙O的切线.23.(10分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为28m,求建成的饲养室总面积的最大值(墙体厚度忽略不计).【解答】解:设中间隔开的墙EF的长为x米,建成的饲养室总面积为S平方米,根据题意得AD﹣2+3x=28,解得AD=30﹣3x,则S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故当中间隔开的墙长为5米时,饲养室有最大面积75平方米.24.(10分)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于2,线段CE1的长等于2;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)【解答】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1==2,E1C==2;故答案为:2,2;(2)证明:当α=135°时,如图2,∵Rt△AD1E是由Rt△ADE绕点A逆时针旋转135°得到,∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中∵,∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BFA=∠CFP,∴∠CPF=∠FAB=90°,∴BD1⊥CE1;(3)解:如图3,作PG⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=2,则BD1==2,故∠ABP=30°,则PB=2+2,故点P到AB所在直线的距离的最大值为:PG=1+.25.(10分)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A,B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在求出P的坐标,不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB面积为S,求S 的最大(小)值.【解答】解:(1)如答图1,连接CB.∵BC=2,OC=1∴OB===∴B(0,)将A(3,0),B(0,)代入二次函数的表达式得:,解得:,∴y=﹣x2+x+;(2)存在.如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P1,P2.∵B(0,),O(0,0),∴直线l的表达式为y=,代入抛物线的表达式,得﹣x2+x+=,解得x1=1+或x2=1﹣,∴P1(1﹣,)或P2(1+,);(3)如答图3,作MH⊥x轴于点H,设M(x m,y m),则S=S梯形MBOH+S△MHA﹣S△OAB△MAB=(MH+OB)•OH+HA•MH﹣OA•OB=(y m+)x m+(3﹣x m)y m﹣×3×=x m+y m﹣,∵y m=﹣x m2+x m+,=x m+(﹣x m2+x m+)﹣∴S△MAB=﹣x m2+x m=﹣(x m﹣)2+,∴当x m=时,S△MAB取得最大值,最大值为.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
重庆市南开中学2015届九年级数学下学期期中试题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.2的相反数是( ▲ ) A .2 B .21 C .-2 D .212.计算322·x x 的结果是( ▲ ) A .52x B.52x C.62x D.62x3.下列图形中,既是中心对称图形又是轴对称图形的是( ▲ )A .B .C . D.4.如图,点O 在直线AC 上,BO ⊥DO 于点O ,若1451,则3的度数为( ▲ )A .35° B.45° C.55° D.65°5.若a(a ≠0)是关于方程022a bxx的一个根,则b a的值为( ▲ )A .2B .-2C .0D .4 6.如图,已知DE ∥BC ,且AD:DB=2:1,则△ADE 与△ABC 的面积比为( ▲ )A .1:4 B.2:3 C.4:6 D.4:97.下列说法正确的是( ▲ )A .调查重庆市空气质量情况应采用普查的方式B .若A 、B 两组数据的平均数相同,A 组数据的方差2A S =0.03,B 组数据的方差2BS =0.2,则8组数据比A 组数据稳定C .南开中学明年开运动会一定会下雨D .为了解初三年级24个班课间活动的使用情况。
李老师采用普查的方式8.如图,⊙O 是正方ABCD 的外接圆,点E 是弧AB 上任意一点,则DEC 的度数为( ▲ )A .40°B .45° C.48° D.50°9.关于x 的方程11x a 的解是负数,则口的取值范围是( ▲ )A .a<l B.a<1且a ≠0 C.a ≤1 D.a ≤l且a ≠010.2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家。
[来源:学科网ZXXK]1.在中,无理数是(▲)A.B.C.D.0.352.下列事件中,必然事件是(▲)A.6月14日晚上能看到月亮 B.早晨的太阳从东方升起C.打开电视,正在播放新闻 D.任意掷一枚均匀的硬币,正面朝上3.下列图形既是轴对称图形又是中心对称图形的是(▲)4.在某次数学测验中:随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为(▲)[来源:学#科#网Z#X#X#K][来源:]A.81,82 B.83,81 C.81,81 D.83,825.若二次根式有意义,则的取值范围是(▲)A.B.C.D.6.如图,AB∥CD,AD平分,若,贝的度数为(▲)A.40° B.45° C.50° D.55°7.如图O的直径,点C在O上,,则AC的长是(▲)A.2 B.C.D.18.分式方程的解为(▲)A.B.C.D.9.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=(▲)A.2:5 B.2:3 C.3:5 D.3:210.打开某洗衣机开关。
在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其图象大致为(▲)[来源:学科网]11.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第l个图案需4根小木棒,拼搭第2个图案需l0根小木棒,……,依此规律,拼搭第6个图案需小木棒(▲)A.36根 B.48根 C.54根 D.64根12.如图,直线与反比例函数在第一象限内的图象交于A、B两点,且与x轴的正半轴交于C点,若AB=2BC,的面积为8,则k的值为(▲)[来源:学&科&网]A.6 B.9 C.12D.18二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.13.分解因式:▲.14.国家统计局数据显示,2014年全年我国GDP(国内生产总值)约为636000亿元.将636000这个数用科学记数法表示为▲.15.如图,在矩形ABCD中。
重庆南开(融侨)中学初2016届九年级(上)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-。
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1、小圆身高170cm ,以小圆的身高为标准,小圆爸爸的身高为180cm ,记作10+cm ,那么小圆妈妈的身高为165cm 应记为( C ) A 、5+cmB 、10+cmC 、5-cmD 、10-cm2、计算()22x y -的结果是( D ) A 、422x yB 、4x y -C 、22x yD 、42x y3、下列图案中,不是..中心对称图形的是( C )A .B .C .D . 4、如图,//,110,70AB CD DBF ECD ∠=∠=,则E ∠的度数为( B ) A 、30B 、40C 、50D 、605、已知3x =是关于x 的方程53x a -=的解,则a 的值等于( C ) A 、12B 、14C 、12-D 、14-6、如图,点A 、B 、C 是⊙O 上的三点,且AB OB =,则ACB ∠的度数为( B ) A 、22.5B 、30C 、45D 、604题图 6题图 7题图 7、一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( C ) A 、0x >B 、0x <C 、2x >D 、2x <8、如图,DEF ∆是由ABC ∆经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则DEF ∆与ABC ∆的面积比是( A )A 、1:4B 、1:2C 、1:9D 、1:29、用火柴棒按如下方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是( D ) A 、48根B 、50根C 、52根D 、54根10、如图,在Rt ABC ∆中,90,6ACB AC BC ∠===,D AC 为的中点,E 是线段AB 边上一动点,连接ED 、EC ,则CDE ∆周长的最小值为( D ) A 、35B 、33C 、333+D 、353+11、如图,矩形OABC 放置在平面直角坐标系中,OA 所在直线为x 轴,OC 所在直线为y 轴,且4,2OA OC ==。
天津南开区九年级上期中模拟数学考试卷(解析版)(初三)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A. B. C. D.【答案】A【解析】试题分析:求出各旋转对称图形的最小旋转角度,继而可作出判断. A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.考点:旋转对称图形.【题文】如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30° B.40° C.50° D.60【答案】C【解析】试题分析:根据图形,利用圆周角定理求出所求角度数即可.∵∠AOB与∠ACB都对,且∠AOB=100°,评卷人得分∴∠ACB=∠AOB=50°考点:圆周角定理.【题文】如图,已知⊙O的半径为5cm,弦AB=8cm,则圆心O到弦AB的距离是()A.1cm B.2cm C.3cm D.4cm【答案】C【解析】试题分析:过点D作OD⊥AB于点D,根据垂径定理求出AD的长,再根据勾股定理得出OD的值即可.过点D作OD⊥AB于点D.∵AB=8cm,∴AD=AB=4cm,∴OD===3cm.考点:(1)、垂径定理;(2)、勾股定理.【题文】已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而增大C.2a+b=1D.方程ax2+bx+c=0有一个根是x=3【答案】D【解析】试题分析:根据图象可得出a<0,c>0,得出ac<0,对称轴x=1,在对称轴的右侧,y随x的增大而减小;根据x=﹣=1,得出b=﹣2a,从而得出2a+b=0;根据抛物线的对称性另一个交点到x=1的距离与﹣1到x=1的距离相等,得出另一个根.∵抛物线开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴ac<0,故A选项错误;∵对称轴x=1,∴当x>1时,y随x的增大而减小;故B选项错误;∵x=﹣=1,∴b=﹣2a,∴2a+b=0,故C选项错误;∵对称轴x=1,一个交点是(﹣1,0),∴另一个交点是(3,0)∴方程ax2+bx+c=0另一个根是x=3,故D选项正确.考点:二次函数图象与系数的关系.【题文】已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是()A.x<﹣1 B.x>4 C.x<1 D.x>1【答案】C【解析】试题分析:根据y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,在对称轴左侧y随x的增大而减小,可得答案. y=(x﹣1)2+4, a=,当x<1时y随x的增大而减小.考点:二次函数的性质.【题文】二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A.向左平移1个单位,向上平移3个单位B.向右平移1个单位,向上平移3个单位C.向左平移1个单位,向下平移3个单位D.向右平移1个单位,向下平移3个单位【答案】C【解析】试题分析:根据配方法,可得顶点式解析式,根据右移减,上移加,可得答案.二次函数y=﹣2x2+4x+1的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),只需将函数y=﹣2x2+4x+1的图象向左移动1个单位,向下移动3个单位即可.考点:二次函数图象与几何变换.【题文】若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣ B.x=1 C.x=2 D.x=3【答案】D【解析】试题分析:由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;考点:二次函数的性质.【题文】如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25° B.30° C.35° D.40°【答案】B【解析】试题分析:根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°考点:旋转的性质.【题文】如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1) B.(1,2) C.(1,3) D.(1,4)【答案】B【解析】试题分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).考点:坐标与图形变化-旋转.【题文】如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,-)B.(﹣1,-)或(﹣2,0)C.(-,﹣1)或(0,﹣2)D.(-,﹣1)【答案】B【解析】试题分析:需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0);考点:坐标与图形变化-旋转.【题文】已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是()A.k>- B.k-且k≠0 C.k- D.k>-且k≠0【答案】B【解析】试题分析:直接利用抛物线与x轴交点个数与△的关系得出即可.∵二次函数y=kx2﹣5x﹣5的图象与x轴有交点,∴△=b2﹣4ac=25+20k≥0,k≠0,解得:k≥﹣,且k≠0.考点:抛物线与x轴的交点.【题文】如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】B【解析】试题分析:根据题意列出函数表达式,函数不是二次函数,也不是一次函数,又AB为定值,当OC⊥AB时,△ABC面积最大,此时AC=2,用排除法做出解答.∵AB=4,AC=x,∴BC==,∴S△ABC=BC•AC=x,∵此函数不是二次函数,也不是一次函数,∴排除A、C,∵AB为定值,当OC⊥AB时,△ABC面积最大,此时AC=2,即x=2时,y最大,故排除D 考点:动点问题的函数图象.【题文】如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是.【答案】(2,0)【解析】试题分析:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).考点:(1)、垂径定理;(2)、点的坐标;(3)、坐标与图形性质.【题文】将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=.【答案】y=(x﹣2)2+1【解析】试题分析:将二次函数y=x2﹣4x+5的右边配方即可化成y=(x﹣h)2+k的形式.y=x2﹣4x+5, y=x2﹣4x+4﹣4+5, y=x2﹣4x+4+1, y=(x﹣2)2+1.考点:二次函数的三种形式.【题文】如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=20°,则∠C的度数是.【答案】65°【解析】试题分析:根据直角三角形定义可得∠BAC=90°,根据旋转可得AB=AB′,∠BAB′=90°,∠C=∠AC′B′,然后求出∠AB′C′,从而可得∠C的度数.∵△ABC是直角三角形,∴∠BAC=90°,∵Rt△ABC绕直角顶点A顺时针旋转90°,∴AB=AB′,∠BAB′=90°,∠C=∠AC′B′,∴∠AB′B=45°,∵∠1=20°,∴∠AB′C′=45°﹣20°=25°,∴∠AC′B′=90°﹣25°=65°,∴∠C=65°考点:旋转的性质.【题文】如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为.【答案】65°【解析】试题分析:根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B 的度数,即可求得∠BAD的度数.∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.考点:圆周角定理.【题文】初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…﹣2﹣112…y…﹣15.5﹣5﹣3.5﹣2﹣3.5…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.【答案】﹣5【解析】试题分析:由点的坐标结合二次函数的对称性可以找出该二次函数图象的对称轴,找出与x=3对称的点的坐标,由此即可得出y值.试题解析:∵点(0,﹣3.5)、(2,﹣3.5)在二次函数y=ax2+bx+c的图象上,∴二次函数图象的对称轴为x==1,∵1×2﹣3=﹣1,且点(﹣1,﹣5)在二次函数y=ax2+bx+c的图象上,∴当x=3时,二次函数y=ax2+bx+c中y=﹣5.考点:二次函数图象上点的坐标特征.【题文】如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.【答案】或1或3【解析】试题分析:依题意,y=2x2﹣8x+8,设A(t,t),B(t,2t2﹣8t+8),则AB=|t﹣(2t2﹣8t+8)|=|2t2﹣9t+8|,当△ABP是以点A为直角顶点的等腰直角三角形时,则∠PAB=90°,PA=AB=|t﹣2|;当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,PB=AB=|t﹣2|;分别列方程求k的值.试题解析:∵y=2(x﹣2)2∴y=2x2﹣8x+8,∵直线x=t分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,∴设A(t,t),B(t,2t2﹣8t+8),AB=|t﹣(2t2﹣8t+8)|=|2t2﹣9t+8|,①当△ABP是以点A为直角顶点的等腰直角三角形时,∠PAB=90°,此时PA=AB=|t﹣2|,即|2t2﹣9t+8|=|t﹣2|,∴2t2﹣9t+8=t﹣2,或2t2﹣9t+8=2﹣t,解得t=或1或3;②当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,此时PB=AB=|t﹣2|,结果同上.考点:(1)、二次函数综合题;(2)、等腰直角三角形.【题文】如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在☉O上.(1)若∠AOD=54°,求∠DEB的度数;(2)若OC=3,OA=5,求弦AB的长.【答案】(1)28°;(2)8.【解析】试题分析:(1)、欲求∠DEB,又已知一圆心角,可利用圆周角与圆心角的关系求解;(2)、利用垂径定理可以得到AC=BC=AB=4,从而得到结论.试题解析:(1)、∵OD⊥AB,∴=,∴∠DEB=∠AOD=×54°=28°.(2)、∵OC=3,OA=5,∴AC=4,∵OD⊥AB,∴弧AD=弧BD=弧AB,∴AC=BC=AB=4,∴AB=8.考点:(1)、垂径定理;(2)、勾股定理;(3)、圆周角定理.【题文】小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大,最大面积是多少?【答案】(1)、S=x(30﹣x)(0<x<30);(2)、x=15时,S有最大值为225平方米.【解析】试题分析:(1)、已知周长为60米,一边长为x,则另一边长为30﹣x.(2)、用配方法化简函数解析式,求出s的最大值.试题解析:(1)、S=x(30﹣x)自变量x的取值范围为: 0<x<30.(2)、S=x(30﹣x) =﹣(x﹣15)2+225,∴当x=15时,S有最大值为225平方米.即当x是15时,矩形场地面积S最大,最大面积是225平方米.考点:二次函数的应用.【题文】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)求C、D两点坐标及△BCD的面积;(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.【答案】(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】试题分析:(1)设抛物线顶点式解析式y=a(x﹣1)2+4,然后把点B的坐标代入求出a的值,即可得解(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)、先根据面积关系求出点P 的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.试题解析:(1)、∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;令y=0,则0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵点P在x轴上方的抛物线上,∴yP>0,∴yP=,∵抛物线的解析式为y=﹣(x﹣1)2+4;∴=﹣(x ﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).考点:二次函数综合题.【题文】设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.【答案】(1)、4;(2)、12【解析】试题分析:(1)、由于抛物线与x轴有两个不同的交点,所以b2﹣4ac>0;可求得线段AB的表达式,利用公式法可得到顶点C的纵坐标,进而求得斜边AB上的高(设为CD),若△ABC为等腰直角三角形,那么AB=2CD,可根据这个等量关系求出b2﹣4ac的值;(2)、当△ABC为等边三角形时,解直角△ACE,得CE=AE=AB ,据此列出方程,解方程求出b2﹣4ac的值.试题解析:(1)、当△ABC为等腰直角三角形时,过C作CD⊥AB于D,则AB=2CD;∵抛物线与x轴有两个交点,∴△>0,∴|b2﹣4ac|=b2﹣4ac,∵AB=,又∵CD=(a≠0),∴,∴b2﹣4ac=,∵b2﹣4ac≠0,∴b2﹣4ac=4.(2)、如图,当△ABC为等边三角形时,由(1)可知CE=AE=AB,∴,∵b2﹣4ac>0,∴,∴b2﹣4ac=12.考点:二次函数综合题.【题文】如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.求证:DB=DC.【答案】证明过程见解析【解析】试题分析:先根据圆周角定理得出∠DAC=∠DBC,再由角平分线的性质得出∠EAD=∠DAC,根据圆内接四边形的性质得出∠EAD=∠BCD,由此可得出结论.试题解析:∵∠DAC与∠DBC是同弧所对的圆周角,∴∠DAC=∠DBC.∵AD平分∠CAE ,∴∠EAD=∠DAC,∴∠EAD=∠DBC.∵四边形ABCD内接于⊙O,∴∠EAD=∠BCD,∴∠DBC=∠DCB,∴DB=DC.考点:(1)、圆内接四边形的性质;(2)、圆周角定理.【题文】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【答案】(1)、当1≤x<50时,y==﹣2x2+180x+2000;当50≤x≤90时,y==﹣120x+12000;(2)、第45天时,当天销售利润最大,最大利润是6050元;(3)、41【解析】试题分析:(1)、根据单价乘以数量,可得利润,可得答案;(2)、根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)、根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.试题解析:(1)、当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)、当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)、当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.考点:二次函数的应用.【题文】正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,∠AFB=∠(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ (3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.【答案】(1)、BF;∠AED;(2)、证明过程见解析;(3)、证明过程见解析【解析】试题分析:(1)、直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)、将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)、根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.试题解析:(1)、∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.(2)、将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°∴∠PAQ=∠PAE,∴△APE≌△APQ(SAS),∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)、∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK,得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.考点:(1)、旋转的性质;(2)、全等三角形的判定与性质;(3)、勾股定理;(4)、正方形的性质.【题文】如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B(﹣1,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k与图象C始终有3个交点,求满足条件的k的取值范围.【答案】(1)、y=;(2)、<m<;(3)、1或【解析】试题分析:(1)、该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)、首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.(3)、先根据函数解析式画出图形,然后结合图形找出抛物线与x轴有三个交点的情形,最后求得直线的解析式,从而可求得m的值.试题解析:(1)、∵经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B(﹣1,0),∴,∴,∴抛物线解析式为y=x2﹣x﹣4,(2)、由(1)知,抛物线解析式为yx2﹣x﹣4=(x2﹣7x)﹣4=(x﹣)2﹣,∴此抛物线向上平移个单位长度的抛物线的解析式为y=(x﹣)2﹣,再向左平移m(m>0)个单位长度,得到新抛物线y=(x+m﹣)2﹣,∴抛物线的顶点P(﹣m+,﹣),对于抛物线y=x2﹣x﹣4,令y=0, x2﹣x﹣4=0,解得x=﹣1或8,∴B(8,0),∵A(0,﹣4),B(﹣1,0),∴直线AB的解析式为y=﹣4x﹣4,直线AC的解析式为y=x﹣4,当顶点P在AB上时,﹣ =﹣4×(﹣m+)﹣4,解得m=,当顶点P在AC上时,﹣ =(﹣m+)﹣4,解得m=,∴当点P在△ABC内时<m<.(3)、翻折后所得新图象如图所示.平移直线y=x+k知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点B(﹣1,0),∴0=﹣1+k,即k=1.②∵当直线位于l2时,此时l2与函数y=﹣x2+x+4(﹣1≤x≤8)的图象有一个公共点∴方程x+k=﹣x2+x+4,即x2﹣5x﹣8+2k=0有两个相等实根.∴△=25﹣4(2k﹣8)=0,即k=.综上所述,k的值为1或.考点:二次函数综合题.。
南开区2015—2016学年度第一学期九年级期中试卷可能用到的相对原子质量H 1 C 12N 14O 16 F 19Cl 35.5K 39Mn 55I 127一.选择题:(本大题共10小题,每小题2分,共20分。
每小题给出的四个选项中,只有一个最符合题意)1.人们在不同季节的制作过程中,一定发生了化学变化的是()A.春天花朵掰成花瓣B.夏天西瓜榨成汁C.秋天粮食酿成美酒D.冬天冰砖凿成冰雕2.规范的实验操作是化学实验成功的关键。
下列操作中正确的是()3.地壳中含量最多的金属元素是()A.OB.FeC.AlD.Si4.下列物质中属于纯净物的是()A.洁净的空气B.冰水混合物C.汽水D.人呼出的气体5.大型客机 C919 是中国自主设计、研制的第二种国产新型客机,预计 2015 年底上市。
其部分机身采用了新型的铝锂合金,这种材料具有较高的强度和适宜的延展性。
铝锂合金中的铝(Al)元素与锂(Li)元素的本质区别是()A.原子的质量不同B.原子的电子数不同C.原子的质子数不同D.原子的中子数不同6.化学实验中处处表现出颜色变化美。
下列化学实验中的颜色变化不符合实验事实的是()A.铁钉放入硫酸铜溶液中,溶液由蓝色变为浅绿色B.将空气中燃着的硫伸入氧气瓶中,火焰由黄色变为蓝紫色C.鎂条在空气中燃烧,发出耀眼白光,生成白色固体D.高温加热木炭与氧化铜的混合物,固体由黑色变成红色7.著名科学家张存浩获 2013 年度“国家最高科学技术奖”,他研究的火箭燃料常用的氧化剂是高氯酸铵(NH4ClO4),高氯酸铵中氯元素的化合价是()A.-1B.+3C.+5D.+78.右图为某化学反应的微观示意图,图中“”表示硫原子,“ ”表示氧原子。
下列说法中错误的是()一定条件+甲乙丙A.甲是 SO2B.该反应属于化合反应C.反应前后,原子种类、原子数目均不变D.该反应中,甲、乙、丙三种物质的分子个数比为 1:1:1 9.下图是某元素的原子结构示意图和该元素在元素周期表中的单元格,下列说法不正确的是()A.该元素属于金属元素B.该原子在化学变化中容易失去电子C.该原子的相对原子质量是 47.87gD.该原子的原子序数为 2210.X 和 Y 两种物质共 80g,在一定条件下恰好完全反应,生成 Z 与 W 的质量比为 11:9,且反应中消耗X的质量是生成W的质量的一半,则反应中消耗Y的质量为()A.62g B.44g C.36g D.16g二.选择题:(本大题共5题,每小题2分,共十分。
南开区九年级上册数学期中试卷选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目的要求的。
1.一元二次方程(+5)=0的根是( )A.1=0,2=5B.1=0,2=-5C.1=0,2=51D.1=0,2=-512.下列四个图形中属于中心对称图形的是( )3.已知二次函数y=32+c 与正比例函数y=4的图象只有一个交点,则c 的值为( )A.34B.43C.3D.44.抛物线y=-32+12-7的顶点坐标为( )A.(2,5)B.(2,-19)C.(-2,5)D.(-2,-43) 5.由二次函数y=2(-3)2+1可知( )A.其图象的开口向下B.其图象的对称轴为=-3C.其最大值为1D.当<3时,y 随的增大而减小 6.如图中∠BOD 的度数是( )A.1500B.1250C.1100D.5507.如图,点E 在y 轴上,圆E 与轴交于点A ,B,与y 轴交于点C ,D,若C(0,9),D(0,-1),则线段AB 的长度为( )A.3B.4C.6D.88.如图,AB 是圆O 的直径,C 、D 是圆O 上的点,且OC//BD,AD 分别与BC 、OC 相交于点E 、F.则下列结论:①AD ⊥BD;②∠AOC=∠ABC;③CB 平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立的是( )A.①③⑤B.②③④C.②④⑤D.①③④⑤9.《九章算术》中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少步”( )A.3步B.5步C.6步D.8步10.如图,在△ABC 中,∠CAB=650.将△ABC 在平面内绕点A 逆时针旋转到△AB /C /的位置,使CC ///AB,则旋转角度数为( )A.350B.400C.500D.65011.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A.43 B.23 C.42 D.22 12.如图,正方形ABCD 中,AB=8cm ,对角线AC 、BD 相交于点O,点E 、F 分别从B 、C 两点同时出发,以1cm/s 的速度沿BC 、CD 运动,到点C 、D 时停止运动,设运动时间为t(s),△OEF 的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )二 填空题:本大题共6小题,每小题3分,共18分,请将答案直接天灾答题纸中对应横线上.13.点P(2,-1)关于原点的对称点坐标为P/(m,1),则m= .14.如图,在平面直角坐标系中,已知点A(3,4),将OA绕坐标原点O逆时针转900至OA/,则点A/的坐标是.15.关于的二次函数y=2-+-2的图象与y轴的交点在轴的上方,请写出一个满足条件的二次函数解析式:。
重庆南开中学初2015级九年级(上)期中考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题共12题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1、下列各数中是无理数的是( )A 、1 B、 C 、-2 D 、132、计算(-2a 2)3正确的是( )A 、-8a 6B 、8a 6C 、-9a 6D 、-6a 6 3、下列事件中适合用普查的是( ) A 、了解某种节能灯的使用寿命B 、旅客上飞机前的安检C 、了解重庆市中学生课外使用手机的情况B 、了解某种炮弹的杀伤半径4、已知AB ∥CD ,CE 交AB 于点F ,若45C ∠=︒,∠E=20°,∠则A ∠的度数为( ) A 、5º B 、15º C 、25º D 、35º5、如图,在Rt ABC ∆中,90C ∠=︒,AB =6,BC =2,则sinA =( )A 、12BC 、13D6、已知一个正棱柱的俯视图和左视图如图,则其主视图为( )A 、B 、C 、D 、第4题第5题7、若分式11x +有意义,则x 的取值范围是( ) A 、1x ≠B 、1x ≠-C 、1x -≥D 、1x >-8、将抛物线y =x 2向上平移2个单位后所得的抛物线解析式为( ) A 、22y x =+B 、22y x =-C 、2(2)y x =+D 、2(2)y x =-9、元元同学有急事准备从南开中学打车去大坪,出校门后发现道路拥堵命使得车辆停滞不前,等了几分钟后她决定步行前往地铁站乘地铁直达大坪站(忽略中途等站和停靠站的时间),在此过程中,他离大坪站的距离()y km 与时间()x h 的函数关系的大致图象是( )10、下列图形都是用同样大小的按一定规律组成的,则第(8)个图形中共有( )A 、80个B 、73个C 、64个D 、72个11、抛物线y=a x 2+b x +c 的图象如图所示,下列不等式正确的是( )1. A. abc >0 B. a+c >b2. C. b 2+2a <4ac3. D. 8a+3b <0A .-3B .-4C .-3D .-4二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题..卡.(卷.)中对应的横线上。
重庆南开中学初2015级九年级(下)半期考试数 学 试 题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号 为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑. 1.2的相反数是( ) A .2 B .21 C .-2 D .21- 2.计算322·x x -的结果是( ) A .52x - B .52x C .62x - D .62x 3.下列图形中,既是中心对称图形又是轴对称图形的是( )4.如图,点O 在直线AC 上,BO ⊥DO 于点O ,若︒=∠1451,则3∠的度数为( ) A .35° B .45° C .55° D .65°5.若a(a ≠0)是关于方程022=-+a bx x 的一个根,则b a +的值为( ) A .2 B .-2 C .0 D .46.如图,已知DE ∥BC ,且=DB AD :2:1,则△ADE 与△ABC 的面积比为( ) A .1:4 B .2:3 C .4:6 D .4:97.下列说法正确的是( )A .调查重庆市空气质量情况应采用普查的方式B .若A 、B 两组数据的平均数相同,A 组数据的方差2A S =0.03,B 组数据的方差2B S =0.2,则8组数 据比A 组数据稳定C .南开中学明年开运动会一定会下雨D .为了解初三年级24个班课间活动的使用情况。
李老师采用普查的方式 8.如图,O 是正方ABCD 的外接圆,点E 是弧AB 上任意一点,则DEC ∠的度数为( )A .40°B .45°C .48°D .50°9.关于x 的方程11=+x a的解是负数,则口的取值范围是( ) A .a<l B .a<1且a ≠0 C .a ≤1 D .a ≤l 且a ≠010.2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家出发前去观看, 预计1个小时能到达,可当天路上较为拥堵,行驶了半个小时,刚好行驶了一半路程,道路被“堵死”, 堵了几分钟突然发现旁边刚好有一个轻轨站,于是小王将车停在轻轨站的车库,然后坐轻轨前往,结果按 预计时间到达.下面能反映小王距离奥体中心的距离y (千米)与时间x (小时)的函数关系的大致图象是 ( )11.将一些形状相同的小棒按如图所示的方式摆放。
图①中有3根小棒,图②中有9根小棒,图③中有18 根小棒。
照此规律,图⑧中小棒的根数为( )12.如图,一次函数b x y +=的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数xy 2=交于点C(2, m ),则点B 到OC 的距离是( )A .2B .5C .52D .552二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对 应的横线上.13.计算()=--+++-302015812131π . 14.方程组⎩⎨⎧=++=421y x x y 的解为 .15.我校初三年级许多同学经过刻苦锻炼,在4月9、10日的中考体考中取得了优良的成绩.年级上随机 抽取了6名同学的体育成绩如下表所示:则这6名同学的平均分是 .17.从1-,0,1,3,4这五个数中任选一个数,记为a ,则使二次函数()1222-+--=a ax x a y 的顶点在第四象限且双曲线xay 27-=在第一、三象限的概率是 . 18.如图,矩形ABCD 中,AB=6,BC=8,将△ACD 沿对角线AC 翻折得△ACE 。
AE 交BC 于点F ,将△CEF 绕点C 逆时针旋转a 角(0°<a<180°)得''F CE ∆, 点E 、F 的对应点分别为'E 、'F ,旋转过程中直线'CF 、''F E 分别交直线AE 于点N M 、,当NM F '∆是等腰三角形且'MF MN =时,则MN = .三、解答题(本大题2个小题,每小题7分.共14分)解答时每小题必须给出必要的演算过 程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.如图,AC 与BD 相交于点O ,AO=DO ,21∠=∠,求证:DCB ABC ∆≅∆.20.暑假期间,一些同学将要到A ,B ,C ,D 四个地方参加夏令营活动,现从这些同学中随机调查了一部 分同学.根据调查结果,绘制成了如下两幅统计图:(1)扇形A 的圆心角的度数为 °,若此次夏令营一共有320名学生参加,则前往C 地的 学生约有 人,并将条形统计图补充完整;(2)若某姐弟两人中只能有一人参加夏令营,姐弟俩决定用一个游戏来确定参加者:在4张形状、大 小完全相同的卡片上分别写上1-,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张 卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或 树状图分析这种方法对姐弟俩是否公平?四、解答题(本大题4个小题,每小题10分,共 40分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答过程书写在答卷中对应的位置上. 21.化简下列各式.(1)()()()()y x y y x x y y x 222222--+-+-; (2)222⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-++-a b a ab b a bab b.22.重庆市是著名的山城,许多美丽的建筑建在山上.如图,刘老师为了测量小山项一建筑物DE 的高度, 和潘老师一起携带测量装备前往测量.刘老师在山脚下的A 处测得建筑物顶端D 的仰角为53°,山坡AE 的坡度i=1:5,潘老师在B 处测得建筑物顶端D 的仰角为45°,若此时刘老师与潘老师的距离AB=200m ,求建筑物DE 的高度.(5453sin ≈︒,5353cos ≈︒,3453tan ≈︒,结果精确到0.1m )23.每年的3月15日是 “国际消费者权益日”,许多商家都会利用这个契机进行打折促销活动.甲卖家的A商品成本为500元,在标价800元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于10%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A 商品,成 本、标价与甲卖家一致,以前每周可售出50件,为扩大销量,尽快减少库存,他决定打折促销.但他先 将标价提高m 3%,再大幅降价m 26元,使得A 商品在3月15日那一天卖出的数量就比原来一周卖出的 数量增加了m 512%,这样一天的利润达到了20000元,求m .24.阅读材料:如图,在平面直角坐标系中,O 为坐标原点,对于任意两点A (1x ,1y ),()22y x B ,,由勾股定理可得:()()2212212y y x x AB -+-=,我们把()()221221y y x x -+- 叫做A 、B 两点之间的距离,记作()()221221y y x x AB -+-=.例题:在平面直角坐标系中,O 为坐标原点,设点P(x ,0). ①A(0,2),B (3,-2),则AB= .;PA = .; 解:由定义有()()[]5223022=--+-=AB ;()()4203222+=-+-=x x PA .②()412+-x 表示的几何意义是 .;()92122+-++x x 表示的几何意义是 ..解:因为()()()22220141-+-=+-x x ,所以()412+-x 表示的几何意义是点()0,x P 到点()21,的距离;同理可得,()92122+-++x x 表示的几何意义是点()0,x P 分别到点(0,1)和点(2,3)的距离和.根据以上阅读材料,解决下列问题:(1)如图,已知直线82+-=x y 与反比例函数xy 6=(x >0)的图像交于()()2211y x B y x A ,、,两点, 则点A 、B 的坐标分别为A( , ),B( , ),AB= . (2)在(1)的条件下,设点()0,x P ,则()()22222121y x x y x x +-++-表示的几何意义是 ;试求()()22222121y x x y x x +-++-的最小值,以及取得最小值时点P的坐标.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演 算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.如图1,ABCD 中,AE ⊥BC 于E ,AE=AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF . (1)若BE=2EC ,AB =13,求AD 的长; (2)求证:EG=BG+FC ;(3)如图2,若AF=25,EF=2,点M 是线段 AG 上的一个动点,连接ME ,将GME ∆沿ME 翻折得ME G '∆,连接'DG ,试求当'DG 取得最小值时GM 的长.26.已知抛物线c bx x y ++-=23与x 轴交于点A (1,0)、B(3,0),与y 轴交于点C ,抛物线的顶点为D . (1)求b 、c 的值及顶点D 的坐标;(2)如图1,点E 是线段BC 上的一点,且BC=3BE ,点F(0,m )是y 轴正半轴上一点,连接BF 、EF , EF 与线段OB 交于点G ,OF:OG=2:3,求△FEB 的面积;(3)如图2,P 为线段BC 上一动点,连接DP ,将△DBP 绕点D 顺时针旋转60°得''P DB ∆’(点B 的对应点是点'B ,点P 的对应点是点'P ),'DP 交y 轴于点M ,N 为'MP 的中点,连接'PP 、NO ,延长NO 交BC 于点Q ,连接'QP ,若Q PP '∆的面积是BOC ∆面积的91,求线段BP 的长.。