数据结构约瑟夫环问题的c语言实现
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
2009年02月24日星期二下午 05:03问题描述:约瑟夫环问题;有N个人围成一个环,从第一个人开始报数,报到M 的人退出环,并且由他的M值来代替原有的M值,要求输出离开环的顺序。
#include<iostream>#include<stdlib.h>using namespace std;//结点中数据域的类型定义typedef struct{int number;//标号int chipher;//手中的值}DataType;//带头结点的单循环链表typedef struct node{DataType data;struct node *next;}Scnode;//初始化void MyInit(Scnode **head)//指向指针的指针。
{if((*head=(Scnode *)malloc(sizeof(Scnode)))==NULL) exit(1);//动态分配 (*head)->next=*head;}//插入int MyInsert(Scnode *head,int i,DataType x){Scnode *p,*q;int j;p=head->next;j=1;while(p->next!=head&&j<i-1){p=p->next;j++;}if(j!=i-1&&i!=1){cout<<"erro!!!!!!!!!";return 0;}if((q=(Scnode *)malloc(sizeof(Scnode)))==NULL) exit(1); q->data=x;q->next=p->next;p->next=q;return 1;}//删除int MyDelete(Scnode *head,int i,DataType *x){Scnode *p,*q;int j;p=head;j=1;while(p->next!=head&&j<i-1){p=p->next;j++;}if(j!=i-1){cout<<"erro!!!!!!!!!";return 0;}q=p->next;*x=q->data;p->next=p->next->next;free(q);return 1;}//取数据元素int MyGet(Scnode *head,int i,DataType *x){Scnode *p;int j;p=head;j=0;while(p->next!=head&&j<i){p=p->next;j++;}if(j!=i){cout<<"erro!!!!!!!!!";return 0;}*x=p->data;return 1;}//判断是否为空int MyNotEmpty(Scnode *head){if(head->next==head) return 0;else return 1;}//删除P结点所指结点的下一个结点(也就是下面函数中的pre结点的下一个结点) void MyDelete(Scnode *p){Scnode *q=p->next;p->next=p->next->next;free(q);}//关键的函数void MyRing(Scnode *head,int m){Scnode *pre,*curr;int i;pre=head;curr=head->next;while(MyNotEmpty(head)==1)//这个喜欢是外层的把人循环完{for(int i=1;i<m;i++)//注意此处的循环是把当前m值下的人找出来。
约瑟夫环问题问题描述:有n个⼈,编号分别从0到n-1排列,这n个⼈围成⼀圈,现在从编号为0的⼈开始报数,当报到数字m的⼈,离开圈⼦,然后接着下⼀个⼈从0开始报数,依次类推,问最后只剩下⼀个⼈时,编号是多少?分析:这就是著名的约瑟夫环问题,关于来历不再说明,这⾥直接分析解法。
解法⼀:蛮⼒法。
我曾将在⼤⼀学c语⾔的时候,⽤蛮⼒法实现过,就是采⽤标记变量的⽅法即可。
解法⼀:循环链表法。
从问题的本质⼊⼿,既然是围成⼀个圈,并且要删除节点,显然符合循环链表的数据结构,因此可以采⽤循环链表实现。
解法三:递推法。
这是⼀种创新的解法,采⽤数学建模的⽅法去做。
具体如下:⾸先定义⼀个关于n和m的⽅程f(n,m),表⽰每次在n个编号0,1,...,n-1中每次删除的报数为m后剩下的数字,在这n个数字中,第⼀个被删除的数字是(m-1)%n,为了简单,把(m-1)%n记作k,那么删除k之后剩下的数字为0,1,2,...,k-1,k+1,...,n-1并且下⼀次删除的数字从k+1开始计数,这就相当于剩下的序列中k+1排在最前⾯,进⽽形成k+1,..,n-1,0,1,2,...,k-1这样的序列,这个序列最后剩下的数字应该和原序列相同,由于我们改变了次序,不能简单的记作f(n-1,m),我们可以记作g(n-1,m),那么就会有f(n,m)=g(n-1,m).下⼀步,我们把这n-2个数字的序列k+1,..,n-1,0,1,2,...,k-1做⼀个映射,映射的结果是形成⼀个从0到n-2的序列。
k+1对0,k+2对1,......,n-1对n-k-2,0对n-k-1,1对n-k,....,k-1对n-2这样我们可以把这个映射定义为p,则p(x)=(x-k-1)%n,它表⽰如果映射前的数字是x,映射后为(x-k-1)%n,从⽽这个映射的反映射问为p-1(x)=(x+k+1)%n由于映射之后的序列和原始序列具有相同的形式,都是从0开始的序列,所以可以⽤函数f来表⽰,即为f(n-1,m),根据映射规则有:g(n-1,m)=p-1[f(n-n,m)]=[f(n-1,m)+k+1]%n,最后把之前的k=(m-1)%n带⼊式⼦就会有f(n,m)=g(n-1,m)=[f(n-1,m)+m]%n.这样我们就可以得出⼀个递推公式,当n=1时,f(n,m)=0;当n>1时,f(n,m)=[f(n-1,m)+m]%n;有了这个公式,问题就变得多了。
实验一:约瑟夫问题问题描述:用数组和链表存储方式实现约瑟夫问题。
约瑟夫问题:n个人围成一个圆圈,首先第1个人从1开始一个人一个人顺时针报数,报到第m个人,令其出列。
然后再从下一个人开始,从1顺时针报数,报到第m个人,再令其出列,…,如此下去,直到圆圈中只剩一个人为止。
此人即为优胜者。
基本要求:用顺序存储和链式存储方式实现。
试验报告内容:1.问题描述:设有n个人围坐在圆桌周围,现从某个位置m(1≤m≤n)上的人开始报数,报数到k 的人就站出来。
下一个人,即原来的第k+1个位置上的人,又从1开始报数,再报数到k的人站出来。
依此重复下去,直到全部的人都站出来为止。
2. 算法描述:可以先建一个单向循环链表;而整个“约瑟夫环”问题的过程,最终是把这个链表删空为止。
但在删时不能顺着删,而是按该问题的方案来删。
3.源程序#include <stdio.h>#include <stdlib.h>#define MAX_NODE_NUM 100#define TRUE 1U#define FALSE 0Utypedef struct NodeType{int id; /* 编号 */int cipher; /* 密码 */struct NodeType *next;} NodeType;/* 创建单向循环链表 */static void CreaList(NodeType **, const int);/* 运行 "约瑟夫环 "问题 */static void StatGame(NodeType **, int);/* 打印循环链表 */static void PrntList(const NodeType *);/* 得到一个结点 */static NodeType *GetNode(const int, const int);/* 测试链表是否为空, 空为TRUE,非空为FALSE */static unsigned EmptyList(const NodeType *);int main(void){int n, m;NodeType *pHead = NULL;while (1){printf( "请输入人数n(最多%d个): ", MAX_NODE_NUM); scanf( "%d ", &n);printf( "和初始密码m: ");scanf( "%d ", &m);if (n > MAX_NODE_NUM){printf( "人数太多,请重新输入!\n ");continue;}elsebreak;}CreaList(&pHead, n);printf( "\n------------ 循环链表原始打印 -------------\n "); PrntList(pHead);printf( "\n-------------- 出队情况打印 ---------------\n "); StatGame(&pHead, m);printf( "\n\ "约瑟夫环\ "问题完成!\n ");return 0;}static void CreaList(NodeType **ppHead, const int n){int i, iCipher;NodeType *pNew, *pCur;for (i = 1; i <= n; i++){printf( "输入第%d个人的密码: ", i);scanf( "%d ", &iCipher);pNew = GetNode(i, iCipher);if (*ppHead == NULL){*ppHead = pCur = pNew;pCur-> next = *ppHead;}else{pNew-> next = pCur-> next;pCur-> next = pNew;pCur = pNew;}}printf( "完成单向循环链表的创建!\n ");}static void StatGame(NodeType **ppHead, int iCipher){int iCounter, iFlag = 1;NodeType *pPrv, *pCur, *pDel;pPrv = pCur = *ppHead;/* 将pPrv初始为指向尾结点,为删除作好准备 */while (pPrv-> next != *ppHead)pPrv = pPrv-> next;while (iFlag) /* 开始搞了! */{/* 这里是记数,无非是移动iCipher-1趟指针! */for (iCounter = 1; iCounter < iCipher; iCounter++) {pPrv = pCur;pCur = pCur-> next;}if (pPrv == pCur) /* 是否为最后一个结点了 */iFlag = 0;pDel = pCur; /* 删除pCur指向的结点,即有人出列 */pPrv-> next = pCur-> next;pCur = pCur-> next;iCipher = pDel-> cipher;printf( "第%d个人出列, 密码: %d\n ",pDel-> id, /* 这个编号标识出列的顺序 */pDel-> cipher);free(pDel);}*ppHead = NULL; /* 没人了!为了安全就给个空值 */}static void PrntList(const NodeType *pHead){const NodeType *pCur = pHead;if (EmptyList(pHead))return;do{printf( "第%d个人, 密码: %d\n ", pCur-> id,pCur-> cipher); pCur = pCur-> next;} while (pCur != pHead);}static NodeType *GetNode(const int iId, const int iCipher){NodeType *pNew;pNew = (NodeType *)malloc(sizeof(NodeType));if (!pNew){printf( "Error, the memory is not enough!\n ");exit(-1);}pNew-> id = iId;pNew-> cipher = iCipher;pNew-> next = NULL;return pNew;}static unsigned EmptyList(const NodeType *pHead){if (!pHead){printf( "The list is empty!\n ");return TRUE;}return FALSE;}4.实验测试数据(要求有多组):第一组测试结果人数n为7, 初始密码m为20第1个人, 密码: 3第2个人, 密码: 1第3个人, 密码: 7第4个人, 密码: 2第5个人, 密码: 4第6个人, 密码: 8第7个人, 密码: 4-------------- 出队情况打印 ---------------第6个人出列, 密码: 8第1个人出列, 密码: 3第4个人出列, 密码: 2第7个人出列, 密码: 4第2个人出列, 密码: 1第3个人出列, 密码: 7第5个人出列, 密码: 4第二组测试结果人数n为8, 初始密码m为15第1个人, 密码: 5第2个人, 密码: 4第3个人, 密码: 3第4个人, 密码: 2第5个人, 密码: 9第6个人, 密码: 1第7个人, 密码: 7第8个人, 密码: 8-------------- 出队情况打印 ---------------第7个人出列, 密码: 7第6个人出列, 密码: 1第8个人出列, 密码: 8第3个人出列, 密码: 3第1个人出列, 密码: 5第4个人出列, 密码: 2第2个人出列, 密码: 4第5个人出列, 密码: 95.总结:1. 通过本次上机实践,对链表存储结构有了更深的理解和把握.2. 通过本次上机实践,应用链表的知识解决和分析问题的能力有了新的提高.3. 通过上机实践,掌握了用高级语言实现算法的基本步骤和方法.(最前面加班级、学号、姓名)。
#include<iostream>using namespace std;struct Node//定义节点的结构类型{int data;Node* next;};class CircularLinkedList//循环链表类{public:CircularLinkedList(){first=new Node;first->next=NULL;}CircularLinkedList(int n);//构建一个附有值的循环链表~CircularLinkedList();int Josephus(int num);//约瑟夫函数private:Node* first;};CircularLinkedList::CircularLinkedList(int n){first=new Node;Node * r=first;for(int i=1;i<=n;i++){Node* s=new Node;s->data=i;s->next=NULL;r->next=s;r=s;} //头插法初始化链表r->next=first; //最后一个元素的next志指向头结点}CircularLinkedList::~CircularLinkedList(){Node* p=first,*q;while(p->next!=first)//p指向最后一个结点时结束循环{q=p;p=p->next;delete q;}delete p;//删除头结点}int CircularLinkedList::Josephus(int num){Node* p=first,*q;if(num<=0)throw "输入错误!";while(first->next->next!=first){for(int i=1;i<num;i++) //p向后移动num位,指向要删除的元素的前一个结点{p=p->next;if(p==first) //若循环过程中出现p指向头结点,则跳过头结点{p=p->next;}}if(p->next==first) //若循环结束后p指向最后一个元素,则要跳过头结点,并让头结点的next指向要删除元素的下一个{p=first;q=p->next;p->next=q->next;//first->next=q->next;cout<<q->data<<" ";delete q;}else{q=p->next;p->next=q->next;cout<<q->data<<" ";delete q;}}cout<<endl;cout<<"最后一个数为:";return first->next->data;}void main(){int n,m;cout<<"请输入约瑟夫问题的人数和间隔人数:";cin>>n>>m;cout<<"依次删除:"<<endl;CircularLinkedList Josephus1(n);//创建的对象调用第二个构造函数cout<<Josephus1.Josephus(m)<<endl;}。
数据结构与算法(Python版):⽤队列(Queue)处理约瑟夫问题在古罗马时期,犹太⼈背叛了罗马⼈,落到困境,约瑟夫和同⾏的⼀共39个犹太⼈只能够⾃杀殉国,但是犹太教义规定不能⾃杀,因此只能够让别⼈将⾃⼰杀害。
他们所有39个⼈坐成⼀圈,报数1—7,报到7则由⾝旁的⼈将⾃⼰杀死。
结果约瑟夫灵机⼀动,给⾃⼰安排了⼀个位置,最后活了下来,那么约瑟夫给⾃⼰安排的是哪⼀个位置呢?在这个题⽬当中,我们如果使⽤队列,不仅可以处理任意⼈数坐成⼀圈,还可以将报数的值任意修改,最后都可以找到那⼀个不被杀死的⼈的位置。
我们可以将所有⼈都放进⼀个⼤的队列⾥,每报⼀次数字,那么就把队列头部的⼈放到队列的尾部,直到报数报到⼀组数字的最后⼀个,⽐如1——7当中的7。
这个时候就将队列头的这个⼈删除(也就是杀死),不断执⾏这个过程,直到整个队列当中的⼈数只有⼀个,则跳出循环返回最后活着的那个⼈的名字。
⾸先定义队列(Queue)类的结构:class Queue():def__init__(self):# 初始化⼀个空的列表self.__list=[]# 往队列⾥插⼊元素def enqueue(self,item):self.__list.append(item)# 弹出队列⾥的元素def dequeue(self):return self.__list.pop(0)# 弹出队列⾥最先进⼊的元素# 判断队列是否为空def is_empty(self):return self.__list == []# 计算队列的⼤⼩def size(self):return len(self.__list)使⽤队列类来初始化⼀个对象,sim_queue,然后编写刚才我们分析之后的程序:def hot_potato(namelist,num):sim_queue = Queue()for name in namelist:sim_queue.enqueue(name) # 把拿到的名字全部都放到队列⾥while sim_queue.size() > 1:for i in range(num):sim_queue.enqueue(sim_queue.dequeue())# 每执⾏完⼀次,就将队列的头拿出来弹出,相当于⼟⾖传递给这个⼈,然后这个⼈就死了last_person=sim_queue.dequeue()return last_personprint("开始执⾏约瑟夫问题")print(hot_potato(["bob","NAni","Ao li Gei!","HeHe","Mike","Suvennia"],4))输出:开始执⾏约瑟夫问题Ao li Gei!得解,因此Ao li Gei!这个⼈不会被杀死。
C语言的循环链表和约瑟夫环C语言的循环链表和约瑟夫环约瑟夫问题)是一个数学的应用问题,对于学习C语言四非常挺有帮助的,下面是店铺为大家搜集整理出来的有关于C语言的循环链表和约瑟夫环,一起了解下吧!循环链表的实现单链表只有向后结点,当单链表的尾链表不指向NULL,而是指向头结点时候,形成了一个环,成为单循环链表,简称循环链表。
当它是空表,向后结点就只想了自己,这也是它与单链表的主要差异,判断node->next是否等于head。
代码实现分为四部分:1. 初始化2. 插入3. 删除4. 定位寻找代码实现:1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1void ListInit(Node *pNode){int item;Node *temp,*target;cout<<"输入0完成初始化"<<endl; cin="">>item;if(!item)return ;if(!(pNode)){ //当空表的时候,head==NULLpNode = new Node ;if(!(pNode))exit(0);//未成功申请pNode->data = item;pNode->next = pNode;}else{//for(target = pNode;target->next!=pNode;target = target->next);4 15 16 17 18 19 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3temp = new Node;if(!(temp))exit(0);temp->data = item;temp->next = pNode;target->next = temp;}}}void ListInsert(Node *pNode,int i){ //参数是首节点和插入位置Node *temp;Node *target;int item;cout<<"输入您要插入的值:"<<endl; cin="">>item;if(i==1){temp = new Node;if(!temp)exit(0);temp->data = item;for(target=pNode;target->next != pNode;target = target->next);temp->next = pNode;target->next = temp;pNode = temp;}else{target = pNode;for (int j=1;j<i-1;++j) target="target-">next;temp = new Node;if(!temp)exit(0);temp->data = item;temp->next = target->next;target->next = temp;}}void ListDelete(Node *pNode,int i){Node *target,*temp;if(i==1){for(target=pNode;target->next!=pNode;target=target ->next);temp = pNode;//保存一下要删除的首节点 ,一会便于释放6 37 38 39 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5pNode = pNode->next;target->next = pNode;temp;}else{target = pNode;for(int j=1;j<i-1;++j) target="target-">next;temp = target->next;//要释放的nodetarget->next = target->next->next;temp;}}int ListSearch(Node *pNode,int elem){ //查询并返回结点所在的位置Node *target;int i=1;for(target = pNode;target->data!=elem && target->next!= pNode;++i)target = target->next;if(target->next == pNode && target->data!=elem)return 0;else return i;}</i-1;++j)></i-1;++j)></endl;></endl;>5 96 0 6 1 6 2 6 3 6 4 6 5 6 6 67 68 69 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8约瑟夫问题约瑟夫环(约瑟夫问题)是一个数学的'应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围。
约瑟夫问题详解(CC++)Josephus 约瑟夫问题假设n个竞赛者排成一个环形,依次顺序编号1,2,…,n。
从某个指定的第1号开始,沿环计数,每数到第m个人就让其出列,且从下一个人开始重新计数,继续进行下去。
这个过程一直进行到所有的人都出列为止。
最后出列者为优胜者。
无论是用链表实现还是用数组实现来解约瑟夫问题都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较麻烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。
注意到原问题仅仅是要求出最后的胜利者的序号,而不是要模拟整个过程。
因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。
求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始): k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:k --> 0k+1 --> 1k+2 --> 2......k-2 --> n-2变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x 是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?变回去的公式很简单:x'=(x+k)%n如何知道(n-1)个人报数的问题的解?显然,只要知道(n-2)个人的解就行了。
(n-2)个人的解呢?当然是先求(n-3)的情况---- 这显然就是一个倒推问题!递推公式:令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]递推公式f[1]=0;f[i]=(f[i-1]+m)%i; (i>1)有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。
数据结构实验报告约瑟夫环约瑟夫环是一个经典的问题,涉及到数据结构中的循环链表。
在本次数据结构实验中,我们将学习如何使用循环链表来解决约瑟夫环问题。
约瑟夫环问题最早出现在古代,传说中的犹太历史学家约瑟夫斯·弗拉维奥(Josephus Flavius)在围攻耶路撒冷时,为了避免被罗马人俘虏,与其他39名犹太人躲进一个洞穴中。
他们决定宁愿自杀,也不愿被敌人俘虏。
于是,他们排成一个圆圈,从第一个人开始,每次数到第七个人,就将他杀死。
最后剩下的人将获得自由。
在这个问题中,我们需要实现一个循环链表,其中每个节点表示一个人。
我们可以使用一个整数来表示每个人的编号。
首先,我们需要创建一个循环链表,并将所有人的编号依次添加到链表中。
接下来,我们需要使用一个循环来模拟每次数到第七个人的过程。
我们可以使用一个指针来指向当前节点,然后将指针移动到下一个节点,直到数到第七个人为止。
一旦数到第七个人,我们就将该节点从链表中删除,并记录下该节点的编号。
然后,我们继续从下一个节点开始数数,直到只剩下一个节点为止。
在实现这个算法时,我们可以使用一个循环链表的数据结构来表示约瑟夫环。
循环链表是一种特殊的链表,其中最后一个节点的指针指向第一个节点。
这样,我们就可以实现循环遍历链表的功能。
在实验中,我们可以使用C语言来实现循环链表和约瑟夫环算法。
首先,我们需要定义一个节点结构体,其中包含一个整数字段用于存储编号,以及一个指针字段用于指向下一个节点。
然后,我们可以实现创建链表、添加节点、删除节点等基本操作。
接下来,我们可以编写一个函数来实现约瑟夫环算法。
该函数接受两个参数,分别是参与游戏的人数和每次数到第几个人。
在函数内部,我们可以创建一个循环链表,并将所有人的编号添加到链表中。
然后,我们可以使用一个循环来模拟每次数到第几个人的过程,直到只剩下一个节点为止。
在每次数到第几个人时,我们可以删除该节点,并记录下其编号。
最后,我们可以返回最后剩下的节点的编号。