第一性原理方法介绍-讲座1
- 格式:ppt
- 大小:110.00 KB
- 文档页数:30
第一性原理通俗易懂什么是第一性原理?在科学方法论中,第一性原理是指基于最基本的事实和原则进行推论和分析的方法。
它是一种不依赖于任何已知观测数据或已有理论的推理方式。
换句话说,第一性原理是基于最简单的必然的事实和基本规律,以及自洽的逻辑推理来构建解释现象和问题的方法。
第一性原理的由来第一性原理的概念最早可以追溯到古希腊哲学家亚里士多德。
他认为,所有的推理都应该从一些基础原理开始,这些原理本身不需要再加以证明,它们是不可分割的。
然后,通过对这些基础原理的逻辑推理,我们可以获得更复杂的事物和现象的解释。
第一性原理的应用领域第一性原理的方法可以应用到许多领域,包括自然科学、工程学、经济学等。
它可以帮助我们分析和解决各种问题,从而提出创新的理论和方法。
以物理学为例,第一性原理可以帮助科学家们理解基本粒子的性质和相互作用,揭示宇宙的奥秘。
通过对基本物理定律的逻辑推理,科学家可以建立起完整的物理理论体系,从而解释和预测各种物理现象。
在工程学中,第一性原理的思维可以帮助工程师们设计新的产品和技术。
通过对材料和工艺的基本规律的理解,他们可以创造出更高效、更可靠的工程方案。
第一性原理的优势和挑战第一性原理的方法具有一些独特的优势。
首先,它可以避免对现有知识的盲从和依赖。
通过从基本事实和原则出发,我们可以得到更为准确和可靠的结论。
其次,第一性原理的方法具有更强的适应性和通用性。
它可以应用于不同领域的问题,无论是自然科学还是社会科学,都能帮助我们得到深入的理解。
然而,使用第一性原理进行分析和推理也面临一些挑战。
首先,第一性原理的推理过程可能比较复杂和繁琐。
需要对问题进行全面的拆解和分析,才能建立起逻辑严密的推理链条。
其次,第一性原理的应用需要一定的专业知识和深入的思维。
只有具备了足够的学科基础,才能运用第一性原理来解决问题。
如何运用第一性原理?运用第一性原理的方法可以帮助我们挖掘问题的本质,找到创新的解决方案。
下面是一些简单的步骤,可以帮助我们运用第一性原理进行推理和分析:1.定义问题或现象:首先,需要明确要解决的问题或要分析的现象是什么。
【洞见干货】李善友《认知升级之第一性原理》,507张PPT全解!版权声明:本文内容来源于李善友6月18日在混沌大学的分享《认知升级-第一性原理》一课,版权为李善友教授所有公众号“没有钱的市场部”记录整理成年人学习的目的,应该是追求更好的思维模型,而不是更多的知识。
在一个落后的思维模型里,即使增加再多的信息量,也只算是低水平的重复,而不是有效学习。
这个时代,是创新者的时代,如何创建创新的思维模型?如何看到事物背后的道理?如何成为一个创新家而不是创新者?今天的课程将对你有帮助!乔布斯说,当你不知道你是谁的时候,你的偶像会提醒你是谁,你从哪儿来,你要到哪儿去。
如果你还没有偶像,请听听这堂课。
李善友今天课程主要是以下3个模块:非连续性:如何成为一个很厉害的创新家创新原理:如何成为一个很厉害的创新家开门:何为才是真正的创新教育?▍第一板块:非连续性:如何成为一个很厉害的创新家无论是科学革命的发生,还是顶级投资人形成自己思维模型的公理中,都有一个无法忽视的假设——非连续性。
人类的认知进化都是宇宙观模型的变化:最开始的天圆地方,到日心说,地心说,椭圆形模型,绝对时空模型,相对时空模型,大爆炸到现在的超弦模型。
不敢相信,中国竟然有活着的哲学家。
王东岳这样解释:越原始的物质存在状态,它在宇宙中的存在丰度越高(倪按:通俗地说,即总质量越大),衍存时间越长,也就是稳定性越强;越后衍的物种,它在宇宙中的总存在质量越小,存在的时间越短,也就是稳定度越差。
先拿原子来看。
元素周期表上的第1号元素——氢元素,约占宇宙元素总量的80%,而第2号元素——氦元素约占宇宙元素总量的20%,其他90种天然元素加起来的总质量还不到1%。
再看太阳系。
太阳系中心的太阳是一颗恒星,它是基本粒子存态和原子存态的基本存在形式,太阳的质量占据了太阳系总质量的99.86%,九大行星加上星际物质只占太阳系总质量的0.14%。
然后,生命只在九大行星之一的地球上薄薄的覆盖了一层。
第一性原理计算方法讲义标准化管理部编码-[99968T-6889628-J68568-1689N]第一性原理计算方法引言前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。
而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。
第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。
量子力学是反映微观粒子运动规律的理论。
量子力学的出现,使得人们对于物质微观结构的认识日益深入。
原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。
量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。
以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。
目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。
但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。
绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。
Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。
但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。
1964年,Hohenberg和Kohn提出了严格的密度泛函理论(DensityFunctional Theory, DFT)。
第一性原理在混沌大学,到底要学什么?怎么学?•思维模型•刻意练习混沌大学三大思维模型1.非连续性2.第一原理3.第二曲线“用第一性原理,跨越非连续性,发现第二曲线”《世界觀: 現代年輕人必懂的科學哲學和科學史》第1讲『第一性原理』Part 1常人的逻辑思维,有且仅有两种:归纳法、演绎法。
一、归纳法归纳法是人类最基础、最常见的用智方式,借助感觉和经验来积累知识,从特殊到一般。
几千年来,我们一直使用这个简单的归纳推理,99%人类知识建立在基于经验的归纳法上。
无师自通,也理所当然。
培根《新工具》提倡科学的归纳法,迄今,归纳法仍是常规科学的主要工具。
创业者最擅长归纳法,比如商业计划书中的上升曲线。
休谟是经验论者,他相信“知识源于感觉经验”。
但他第一个发现了归纳法的谬误:即使所有前提都正确,结论依然可能错误。
归纳法是对经验事实的简约处理,仅能收集部分信息,却得出普遍判断。
归纳法有一特征:“只能证伪,不能证明”。
换句话说,归纳法得出的知识一定是错误的,就像我们的眼睛看到外界的事实,一定会进行简约化和扭曲一样。
归纳法,我们的逻辑对经验事实进行处理的结果,也一定是简约和扭曲的。
既然每个人的经验都来自归纳法,你必须承认自己的认知有可能是错的。
——这就是“可证伪性” 的态度。
为什么我们要用归纳法呢?我们是要求存,而不是求真。
二、演绎法常人的思维逻辑只有两种,归纳法有根本问题,演绎法是不是好一点呢?•归纳法:从具象到抽象。
•演绎法:从抽象到抽象。
可以从已知思想推出未知思想。
演绎法的一大特征/好处:你可以从已知的知识里面推演出未知的知识来。
1%的人类知识来自演绎法,但这却是最重要的那一小部分知识。
哲科思维的重要特征“假设与检验” 或者“假设与证明”所有大科学家都是演绎法。
——张守晟抽象思维演绎法的坏处是速度慢;好处是可迁移性。
可迁移性:抽象东西,它生下来就是抽象的,抽象的东西可以从不同领域里边来迁移。
一旦在逻辑上导通一个共同的抽象概念,与此相关的所有具象问题,立即全部化解。
第二章 计算方法及其基本原理介绍化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。
因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。
这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。
这些近似和关于分子波函数的方程形成计算量子化学的数学基础。
2.1 SCF-MO 方法的基本原理分子轨道的自洽场计算方法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。
2.1.1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。
确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =⎥⎥⎦⎤⎢⎢⎣⎡-++∇-∇-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符,R AB =R 图2-1分子体系的坐标∑∑≠+∇-=p q p pqp e r H 12121ˆ2 (2.2) 以及原子核的动能∑∇-=A A AN M H 2121ˆ (2.3) 和电子与核的相互作用及核排斥能∑∑≠+-=p A B A AB B A pAA eN R Z Z r Z H ,21ˆ (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。
1什么是第一性原理?根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,称为第一性原理。
广义的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和密度泛函理论(DFT)计算。
从定义可以看出第一性原理涉及到量子力学、薛定谔方程、Hartree-Fock自洽场、密度泛函理论等许多对我来说很陌生的物理化学定义。
因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。
2第一性原理的作用以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的物理现象和物理规律。
密度泛函计算的一些结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第一原理计算方法的广泛应用。
密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT)及其计算已经快速发展成为材料建模模拟的一种“标准工具”。
密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、光学性能、磁性能以及原子集合的总能等等。
3第一性原理怎么用?目前我所学到的利用第一性原理的软件为Material Studio、V ASP软件。
其中Materials Studio(简称MS)是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。
使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。