第六讲第一原理计算方法简介及Materials Studio中Castep使用

  • 格式:ppt
  • 大小:2.35 MB
  • 文档页数:97

下载文档原格式

  / 50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
库) (2)通过软件建模(如Material Studio中
模块 Visualizer 、Diamond)
Castep使用
CASTEP模块 Cambridge Serial Total Energy Package)
CASTEP是特别为固体材料学而设计的一个现代的量子力学基本程序,其 使用了密度泛函(DFT)平面波赝势方法,进行第一原理量子力学计算,以 探索如半导体,陶瓷,金属,矿物和沸石等材料的晶体和表面性质。
第一原理计算方法简介 及Materials Studio中Cestep使用
第一原理计算方法简介
第一性原理方法(First-principles
method),有时候也称为从头计算(ab initio),其基本思想是将多原子构成的
体系当作电子和原子核(或原子实)组成的 多粒子系统,从量子力学第一性原理(多电 子体系的Schrö dinger方程)出发,对材料 进行“非经验性”的模拟。原则上,第一性原 理方法无可调经验参数,只用到几个基本物
精 组态相互作用方法(采用多个Slater行列式考虑电子关联)
度 Mφller-Plesset(MP)修正(将关联作用作为微扰修正)
, 计
Hartree-Fock方法(忽略交换作用,严格计算电子积分)
算 半经验方法,如CNDO,MNDO,MINDO,AM1,PM3
量 等(同样忽略交换作用,近似计算电子积分)
www.wien2 k.at
Materials Studio 概述
Material Studio简介
Material Studio的特点: 1. 采用服务器/客户机模式的软件环境, Microsoft标
准用户界面,不需要登录服务器。 XP, 2000, 2003, Vista, 2008
Http Gateway Ftp
理常数,如光速c、Planck常数h、电子电 量质量e、,电因子此质处量理m不e以同及体原系子时的候各具种有同较位好素的的可
移植性(transferability)。但是,在具 体实行时,仍依赖于具体近似方法的选取, 从而带来系统误差。
多粒子体系(电子+核)的薛定谔方程
三个近似
a. 非相对论近似(忽略了电子运动的相对论效应) ve<<c,ve~108cm/s<3×1010cm/s),me=m0 求解非相对论的薛定谔方程,而不是相对论的狄拉克方程
Pseudo
Pseudo
Pseudo, PAW all-electron
操作系统
Linux
Web Site
www.abinit. org
Windows Linux
Linux
www.tcm.ph y.cam.ac.uk/ castep/
www.pwscf.o rg/
Linux Linux
cms.mpi.un ivie.ac.at/v asp
第一原理计算软件
Code Basis Name Set
ABINIT Plane wave
CASTEP Plane wave
PWscf Plane wave
VASP Plane wave
LAPW WIEN2K
Potentials Plane Wave Pseudopotential Codes
Pseudo, PAW
b. Born-Oppenheimer近似,核固定近似 中子/质子的质量是电子质量的约1835倍,即电子的运 动速率比核的运动速率要高3个数量级,因此可以实现 电子运动方程和核运动方程的近似脱耦。这样,电子可 以看作是在一组准静态原子核的平均势场下运动。
c.单电子近似 把体系中的电子运动看成是每个电子在其余电子的平均 势场作用中运动,从而把多电子的薛定谔方程简化单电 子方程。
Hartree Fock方程
薛定谔方程简化为:
将总Hamilton分解成单电子贡献H0和电子-电子相互作 用U。应用变分法计算多电子波函数方程,可得HartreeFock方程。
量子化学分子轨道方法
分子轨道方法:在Hartree-Fock框架下,将单电子波函数 用原子轨道(Slater型-STO,Gaussian型-GTO)的 线性叠加表示来求解。




Reflex-Powder Indexing
√√
Reflex-Powder Refinement
√√
Reflex Plus

√ √ √ Reflex QPA

√ √ √ Sorption
√ √ √ Synthia
√ √ √ VAMP
√√
X-Cell

√ √ √ Mesotek

√ √ √ Morphology
计算:允许选择计算选项(如基集,交换关联势和收敛判据),作业控制 和文档控制。
分析:允许处理和演示CASTEP计算结果。这一工具提供加速整体直观化以 及键结构图,态密度图形和光学性质图形。
CASTEP的任务
CASTEP计算包括单点的能量计算,几何优化或分子动 力学。可提供这些计算中的每一个以便产生特定的物理性 能。
Visualizer:图形化建模模块
可构建计算的模型:晶胞,分子,晶体表面, 纳米结构,聚合物等
锐钛矿TiO2
TiO2(111)
Pt(110)-CO(2x1)
碳纳米管
TiO2纳米棒
Material Studio 晶体结构模型建立
建立方铅矿PbS晶体结构模型(实验15) 步骤 (1)查晶体结构数据(如ICSD、PDF数据
典型的应用包括表面化学,键结构,态密度和光学性质等研究, CASTEP 也可用于研究体系的电荷密度和波函数的3D形式。此外, CASTEP可用于 有效研究点缺陷(空位,间隙和置换杂质)和扩展缺陷(如晶界和位错) 的性质。
Material Studio使用组件对话框中的CASTEP选项来准备,启动,分析和 监测CASTEP计算工作。

√ √√

√√



√√






√√

√√





2. 能够容易地创建并研究分子模型或材料结构,使用 极好的制图能力来显示结果。
3. 与其它标准PC软件整合的工具使得容易共享这 些数据 Origin, Matlab…。
4. 采用材料模拟中领先的十分有效并广泛应用的 模拟方法(LDA, GGA)。
晶体、结晶与X射线 衍射
MS.Polymorph Predictor MS.Morphology MS.X-Cell MS.Reflex MS.Reflex Plus MS.Reflex QPA
分子力学与分子动力学 MS.DISCOVER MS.COMPASS MS.Amorphous Cell MS.Forcite MS.Forcite Plus MS.GULP MS.Equilibria MS.Sorption
密度泛函理论
Hartree-Fock方法的主要缺限:(1)完全忽略电子 关联效应;(2)计算量偏大,随系统尺度4次方关系 增长。
20世纪60年代,Hohenberg,Kohn和Sham(沈吕九) 提出了密度泛函理论(DFT)。DFT理论奠定了将多电 子问题转化为单电子方程的理论基础,给出了单电 子有效势计算的可行方法,DFT在计算物理、计算化 学、计算材料学等领域取得巨大成功。1998年,W. Kohn与分子轨道方法的奠基人Pople分享了诺贝尔化 学奖。
密度泛函理论
赝势(pseudo potential) 赝势就是把离子实的 内部势能用假想的势能 取代真实的势能,但在 求解波动方程时,不改 变能量本征值和离子实 之间区域的波函数。模 守恒赝势NCP (Norm Conserving Pseudopotential) 和 超软赝势 USPP(Ultrasoft Pseudoptential)
密度泛函理论
基组(basis set) 求解Kohn-Sham方程,选取适当的基组, 将波函数对其展开,将方程求解转化为线 性代数问题。 一般选用如下基组展开:
(Linearized) augmented plane waves (L)APW’s
(Linearized) muffin-tin orbitals - (L)MTO’s Projector augmented waves -PAW’s
Module
parallel Windows Linux Linux IA32 IA64
Module
parallel Windows Linux Linux IA32 IA64
Materials Visualizer Adsorption Locator
Amorphous Cell
Blends

ONETEP
密度函数
电子与原子核间的库仑势 电子间的库仑势 交换关联势 (未知)
密度泛函理论
LDA和GGA近似 Kohn-Sham方程原则是精确的,但遗憾的 是交换关联势是未知的。要进行具体计算, 就必须使用近似方法求出交换关联势。常 用的近似方法有局域密度近似(Local Density Approximation)和广义梯度近似 (Generalized Gradient Approximation), 在某些情况下,广义梯度近似改善了局域 密度近似的计算结果,但它并不总是优于 局域密度近似。
5. 可模拟的内容:催化剂、聚合物、固体化学、 结晶学、晶粉衍射以及材料特性等。
主要模块:
建模模块
Visualizer
计算和分析模块
Amorphous Cell Blends CASTEP Conformers DMol3 DPD Discover Equilibria Forcite
GULP MesoDyn Morphology Onetep Polymorph QMERA Reflex Synthia VAMP Gaussian


√√
√√
Polymorph
√ √ √ QMERA
√√
QSAR and QSAR Plus






CASTEP and NMR CASTEP
Reflex-Pattern

√ √ √ Processing and
Powder Diffraction

COMPASS
CCDC
Conformers Discover DMol3 DPD Equilibria Forcite Gaussian GULP MesoDyn
提示: CASTAP计算所需时间随原子数平方的增加而增加。 因此,建议是用最小的初晶胞来描述体系,可使用 Build\Symmetry\Primitive Cell菜单选项来转换成初晶
CASTEP的任务
计算设置:合适的3D模型文件一旦确定,必须选择计算类型 和相关参数,例如,对于动力学计算必须确定系综和参数, 包括温度,时间步长和步数。选择运行计算的磁盘并开始 CASTEP作业。 结果分析:计算完成后,相关的CASTEP作业的文档返回用户, 在项目面板适当位置显示。这些文档进一步处理能获得所需 的观察量如光学性质。
在CASTAP计算中有很多运行步骤,可分为如下几组:
结构定义:必须规定包含所感兴趣结构的周期性的3D模型 文件,有大量方法规定一种结构:可使用构建晶体 (Build Crystal)或构建真空板(Build Vacuum Stab)来 构建,也可从已经存在的结构文档中引入,还可修正已存 在的结构。
注意: CASTEP仅能在3D周期模型文件基础上进行计算, 必须构建超单胞,以便研究分子体系。
第一原理常用计算软件
根据对势函数及内层电子的处理方法不同 主要分为两大类,一种是波函数中包含了 高能态和内层电子,而势函数只是原子核 的贡献,这称为全电子(all electron calculation)法,另一种处理方法是势函 数为原子核和内层电子联合产生的势,称 为离子赝势,波函数只是高能态电子的函 数,这称为赝势(pseudo-potential)法。
密度泛函理论的主要目标就是用电子密度取代波函 数做为研究的基本量。用电子密度更方便处理。
密度泛函理论
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度 的泛函。 Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能 量最小化之后就得到了基态能量。
根据以上两定理,将薛定谔方程转变为Kohn-Sham 方程
量子力学 MS.Dmol3 MS.CASTEP MS.NMR CASTEP MS.VAMP
高分子与介观模拟 MS.Synthia MS.Blends MS.DPD MS.MesoDyn MS.MesoPro
定量结构-性质关系 MS.QSAR MS.QSAR Plus MS.Dmol3 DHale Waihona Puke Baiduscriptor