成人高考数学试题(历年成考数学试题答案与解答提示)
- 格式:doc
- 大小:4.24 MB
- 文档页数:33
成考数学试题及答案详解一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x - 3 \),则\( f(1) \)的值为:A. -1B. 1C. 3D. 52. 已知\( a \)和\( b \)是两个不同的非零实数,且\( a^2 - b^2 =0 \),则\( a \)和\( b \)的关系是:A. \( a = b \)B. \( a = -b \)C. \( a \)和\( b \)互为相反数D. \( a \)和\( b \)互为倒数3. 计算\( \sqrt{9} \)的值:A. 3B. -3C. ±3D. 94. 若\( x \)和\( y \)满足方程\( x + y = 5 \)且\( x - y = 3 \),则\( x \)和\( y \)的值分别为:A. \( x = 4, y = 1 \)B. \( x = 1, y = 4 \)C. \( x = 2, y = 3 \)D. \( x = 3, y = 2 \)5. 已知\( \cos(\theta) = \frac{1}{2} \),且\( \theta \)在第一象限,求\( \sin(\theta) \)的值:A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)6. 一个等差数列的首项为3,公差为2,求第5项的值:A. 13B. 11C. 9D. 77. 计算\( \log_2(8) \)的值:A. 2B. 3C. 4D. 58. 已知\( \tan(\alpha) = 2 \),求\( \sin(\alpha) \)的值:A. \( \frac{2\sqrt{5}}{5} \)B. \( \frac{\sqrt{5}}{5} \)C. \( \frac{2}{\sqrt{5}} \)D. \( \frac{1}{\sqrt{5}} \)9. 计算\( \frac{1}{x} + \frac{1}{y} = \frac{1}{x+y} \)时,\( x \)和\( y \)的关系:A. \( x = y \)B. \( x = -y \)C. \( x \)和\( y \)互为相反数D. \( x \)和\( y \)互为倒数10. 已知\( a \)和\( b \)是两个不同的实数,且\( a^3 - b^3 = 0 \),则\( a \)和\( b \)的关系是:A. \( a = b \)B. \( a = -b \)C. \( a \)和\( b \)互为相反数D. \( a \)和\( b \)相等答案:1. B2. B3. A4. A5. A6. A7. B8. A9. B10. C结束语:本试题及答案详解旨在帮助考生复习和掌握成考数学的基本概念和计算方法,希望考生能够通过练习提高解题能力,为考试做好充分准备。
2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。
2. 等差数列1, 3, 5, 7, 的前10项和是______。
3. 不等式3x 4 < 2x + 5的解集是______。
4. 圆柱的体积公式是______。
5. 积分∫(x^3 + 1)dx的值是______。
三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。
3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。
4. 求圆柱的表面积。
5. 计算积分∫(x^4 + 1)dx。
四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。
2025年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设f(x) = (x - 2)^2 - 3,求函数f(x)的对称轴方程。
A. x = 2B. y = 2C. x = 3D. y = 12、已知函数(f(x)=x2−3x+2),则该函数的最小值为:A. -1/4B. 1/4C. -5/4D. 5/43、在下列各数中,不是有理数的是()A、-2.5B、0.3333…(无限循环小数)C、√4D、π4、若集合A={x | -2 ≤ x < 3},集合B={x | x > 1},则A∩B等于()。
A、{-2, -1, 0, 1}B、{x | 1 < x < 3}C、{x | -2 ≤ x < 1}D、{x | x > -2}5、若函数(f(x)=x 2−4x−2)在(x=2)处有定义,则(f(2))的值为:A. 2B. 4C. 无定义D. 16、已知函数(f(x)=x2−3x+2),若(f(a)=0),则(a)的值为?A. 1B. 2C. 1 或 2D. 无解7、下列函数中,定义域为全体实数的函数是()A.(f(x)=√x2−4)B.(g(x)=1x2−1)C.(ℎ(x)=ln(x+2))D.(k(x)=√xx)8、若集合 A = {x | x^2 - 3x + 2 = 0},集合 B = {x | 2x - 4 = 0},则 A ∩B = ( )A. {1}B. {2}C. {1, 2}D. ∅9、已知圆的方程为(x2+y2=16),点(A)的坐标为((4,0)),点(B)的坐标为((0,4))。
则直线(AB)的方程是:A.(x+y=8)B.(x−y=8)C.(x+y=0)D.(x−y=0)10、已知函数(f(x)=x2−4x+3),则该函数图像与(x)轴的交点坐标为:A. (1,0), (3,0)B. (-1,0), (3,0)C. (1,0), (-3,0)D. (-1,0), (-3,0)11、若函数f(x)=x3−3x+2在x=1处的切线斜率为:A. 0B. 3C. -3D. 612、如果函数f(x)=2x2−3x+1,则f′(x)为()。
2024年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若等差数列{an}的前三项分别为1,4,7,则该数列的通项公式为:A、an = 3n - 2B、an = 2n + 1C、an = n + 2D、an = 3n + 12、若函数(f(x)=x2−4x+5),则该函数的最小值为()。
A、1B、2C、3D、43、已知某工厂去年生产总值为500万元,今年的生产总值比去年增长20%,则今年的生产总值为:A. 600万元B. 620万元C. 510万元D. 480万元+2x),则函数(f(x))的定义域为:4、已知函数(f(x)=3xA.((−∞,0)∪(0,+∞))B.((−∞,+∞))C.((−∞,0))D.([0,+∞))5、若集合A = {x | x^2 - 3x + 2 = 0},则A中的元素个数为()。
A、0B、1C、2D、36、下列各数中,属于正实数的是()A、-πB、0C、1D、-57、在下列各数中,不是有理数的是:)A、(34B、(−√5)C、(0.25)D、(1.5)8、已知集合A={1, 2, 3},B={3, 4, 5},则A∩B=()。
A. {1, 2, 3, 4, 5}B. {3}C. {1, 2, 4, 5}D. {0}9、在下列各对数运算中,正确的是()A、log2(4) + log2(6) = 2 + log2(2)B、log2(8) - log2(4) = 2 - 1 / log2(8)C、log2(16) / log2(2) = 4- log2(2)D、log2(32) * log2(4) = 5 * 210、下列函数中,在定义域内是奇函数的是()A.(f(x)=x2+1)B.(f(x)=x3−x)C.(f(x)=2x+3)D.(f(x)=|x|)11、已知集合A = {x | -2 < x < 3},集合B = {x | x < 1 或 x > 4},则A∩B 等于()。
历年成人高考数学试题及答案word一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1的零点个数是()。
A. 0B. 1C. 2D. 32. 如果一个等差数列的首项为a1,公差为d,那么它的第n项an可以表示为()。
A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 + (n-1)(2d)D. an = a1 + (n-1)(-d)3. 已知集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}4. 若直线y=kx+b与x轴交于点(2,0),则b的值为()。
A. 2B. -2C. 0D. 45. 函数y=x^3-3x^2+2的导数是()。
A. y' = 3x^2-6xB. y' = x^2-3xC. y' = 3x^2-6x+2D. y' = x^3-3x^26. 已知抛物线方程为y=x^2-4x+3,其顶点坐标为()。
A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)7. 函数y=sin(x)的周期是()。
A. πB. 2πC. π/2D. 4π8. 已知向量a=(3,-2),b=(1,2),则向量a·b的值为()。
A. 1B. -1C. 5D. -59. 函数y=e^x的反函数是()。
A. y=ln(x)B. y=e^(-x)C. y=ln(-x)D. y=e^(x-1)10. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a>0,b>0,则该双曲线的焦点位于()。
A. x轴上B. y轴上C. 原点D. 第一象限二、填空题(每题2分,共20分)11. 圆的方程为(x-3)^2 + (y+2)^2 = 9,该圆的半径是______。
12. 函数y=cos(x)在区间[0, π]上的最大值是______。
成考数学试卷题型分类一、集合与简易逻辑2001年(1) 设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T)N 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B ,命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2002年(1) 设集合}2,1{=A ,集合}5,3,2{=B ,则B A 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x ,乙:5>x ,则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2003年(1)设集合{}22(,)1M x y x y =+≤,集合{}22(,)2N x y x y =+≤,则集合M 与N 的关系是(A )MN=M (B )M N=∅ (C )N M Ø (D )M N Ø(9)设甲:1k =,且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2004年(1)设集合{},,,M a b c d =,{},,N a b c =,则集合MN=(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方,则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2005年(1)设集合{}P=1234,,,,5,{}Q=2,4,6,8,10,则集合PQ=(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4(7)设命题甲:1k =,命题乙:直线y kx =与直线1y x =+平行,则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2025年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数f(x)=x2−4x+5在x=2处取得极值,则该极值为:()A.−1B.0C.1D.32、若函数f(x) = x^3 - 3x^2 + 4x在区间[1,2]上连续,且f’(x) = 3x^2 - 6x + 4,则f(x)在区间[1,2]上的极值点为:A. 1B. 1.5C. 2D. 无极值点3、在下列各数中,既是质数又是合数的是()A、4B、6C、9D、154、在下列各数中,最小的负整数是()A、-1.5B、-3C、-2D、-2.35、若函数(f(x)=x2−4x+3)的图像与(x)轴交于点(A)和(B),则(AB)的长度是:A. 2B. 3C. 4D. 56、在下列各数中,绝对值最小的是:A、-2B、0C、2D、-37、下列函数中,在其定义域内连续的函数是())A.(f(x)=xxB.(g(x)=√x2)C.(ℎ(x)=|x|))D.(k(x)=1x8、在下列各数中,既是整数又是无理数的是()A、√4B、πC、0.25D、-1/29、下列各数中,有理数是:A、√2B、πC、−3√5D、3210、已知函数(f(x)=2x3−3x2+4),求函数的极值点。
A.(x=−1)B.(x=1)C.(x=0)D.(x=2)11、若函数f(x)=lnx的图像上一点A(x0,lnx0),那么该点的切线斜率为:A.1B.1x0C.1x0−1D.1x0+112、在下列各数中,哪个数是无限循环小数?A、0.333…B、0.444…C、0.666…D、0.777…二、填空题(本大题有3小题,每小题7分,共21分)1、若函数(f(x)=√2x+3−x)的定义域为(A),则(A)的取值范围是______ 。
2、若函数(f(x)=2x3−3x2+2)在(x=1)处的切线斜率为 4,则(f′(1))的值为______ 。
成考数学试题答案及解析一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^2 + 1D. f(x) = x^3 - 1答案:B解析:奇函数的定义是f(-x) = -f(x)。
对于选项A,f(-x) = (-x)^2 = x^2 = f(x),是偶函数;对于选项B,f(-x) = (-x)^3 = -x^3 = -f(x),是奇函数;对于选项C,f(-x) = (-x)^2 + 1 = x^2 + 1 =f(x),是偶函数;对于选项D,f(-x) = (-x)^3 - 1 = -x^3 - 1 ≠ -f(x),既不是奇函数也不是偶函数。
2. 计算下列极限:\[\lim_{x \to 0} \frac{\sin x}{x}\]A. 0B. 1C. -1D. 不存在答案:B解析:根据极限的性质,我们知道\(\lim_{x \to 0} \frac{\sinx}{x} = 1\),这是一个基本的极限公式。
3. 计算下列定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 2/3D. 1答案:A解析:根据定积分的计算公式,\(\int_{0}^{1} x^2 dx =\left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}(1^3 - 0^3) = \frac{1}{3}\)。
4. 计算下列二阶导数:\[f''(x) = \frac{d^2}{dx^2} (e^x \sin x)\]A. \(e^x \sin x + e^x \cos x\)B. \(e^x \sin x - e^x \cos x\)C. \(e^x \cos x + e^x \sin x\)D. \(e^x \cos x - e^x \sin x\)答案:A解析:使用乘积法则求导,\(f'(x) = e^x \sin x + e^x \cos x\),再求导得到\(f''(x) = e^x \sin x + e^x \cos x + e^x \cos x - e^x \sin x = 2e^x \cos x\)。
成人高考数学试题第一部分:试题答案与解答提示1. 简单计算题请计算下列各式的结果:(1)3 + 5 × 2 8 ÷ 4 = ?(2)(9 3)² + 4 × 6 ÷ 2 = ?(3)√(16 × 25) = ?解答提示:对于简单计算题,我们需要掌握基本的算术运算规则,如加减乘除、乘方、开方等。
在解题过程中,要注意运算顺序,遵循先乘除后加减的原则。
2. 代数式计算题请计算下列各式的结果:(1)若 a = 3,b = 4,求 2a 3b 的值。
(2)若 x = 2,y = 3,求(x² y²) ÷ (x + y) 的值。
(3)若 a = 2,b = 1,求(a + b)² 2ab 的值。
解答提示:对于代数式计算题,我们需要熟练掌握代数式的运算规则,如合并同类项、分配律、平方差公式等。
在解题过程中,要注意代入给定的数值,并按照运算顺序进行计算。
3. 解方程题请解下列方程:(1)2x 5 = 7(2)3x + 4 = 11 2x(3)2x² 5x + 3 = 0解答提示:对于解方程题,我们需要掌握一元一次方程、一元二次方程的求解方法。
在解题过程中,要注意方程的化简、移项、合并同类项等步骤,以及使用求根公式求解一元二次方程。
4. 几何题请计算下列几何问题的答案:(1)若一个正方形的边长为 5 厘米,求其面积。
(2)若一个圆的半径为 4 厘米,求其周长。
(3)若一个三角形的底边长为 6 厘米,高为 8 厘米,求其面积。
解答提示:对于几何题,我们需要掌握基本的几何知识,如正方形、圆、三角形的面积和周长公式。
在解题过程中,要注意代入给定的数值,并按照公式进行计算。
5. 应用题请解决下列应用问题:(1)小华有 10 元钱,购买一支铅笔和一本笔记本后,还剩 2 元。
铅笔的价格是 3 元,笔记本的价格是多少?(2)一辆汽车以每小时 60 公里的速度行驶,从甲地到乙地需要2 小时。
2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。
A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。
成考数学试卷(文史类)题型分类一、集合与简易逻辑2001年(1) 设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T)N I U 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B ,命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2002年(1) 设集合}2,1{=A ,集合}5,3,2{=B ,则B A I 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x ,乙:5>x ,则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2003年(1)设集合{}22(,)1M x y x y =+≤,集合{}22(,)2N x y x y =+≤,则集合M 与N 的关系是(A )M N=M U (B )M N=∅I (C )N M Ø (D )M N Ø(9)设甲:1k =,且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2004年(1)设集合{},,,M a b c d =,{},,N a b c =,则集合M N=U(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方,则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2005年(1)设集合{}P=1234,,,,5,{}Q=2,4,6,8,10,则集合P Q=I(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4(7)设命题甲:1k =,命题乙:直线y kx =与直线1y x =+平行,则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2006年(1)设集合{}M=1012-,,,,{}N=123,,,则集合M N=I(A ){}01, (B ){}012,, (C ){}101-,, (D ){}10123-,,,, (5)设甲:1x =;乙:20x x -=.(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2007年(8)若x y 、为实数,设甲:220x y +=;乙:0x =,0y =。
则(A )甲是乙的必要条件,但不是乙的充分条件; (B )甲是乙的充分条件,但不是乙的必要条件;(C )甲不是乙的充分条件,也不是乙的必要条件; (D )甲是乙的充分必要条件。
2008年(1)设集合{}A=246,,,{}B=123,,,则A B=U(A ){}4 (B ){}1,2,3,4,5,6 (C ){}2,4,6 (D ){}1,2,3(4)设甲:1, :sin 62x x π==乙,则 (A )甲是乙的必要条件,但不是乙的充分条件; (B )甲是乙的充分条件,但不是乙的必要条件; (C )甲不是乙的充分条件,也不是乙的必要条件; (D )甲是乙的充分必要条件。
2009年成人高考(文史类)选择题(1)2010年成人高考(文史类)选择题(1)二、不等式和不等式组2001年(4) 不等式53>+x 的解集是( )(A) }2|{>x x (B) {|82}x x x <- >或 (C) }0|{>x x (D) }2|{>x x()355>358>282x x x x x +> ⇒-+> ⇒-> ⇒ <- >或2002年(14) 二次不等式0232<+-x x 的解集为( )(A )}0|{≠x x (B )}21|{<<x x (C )}21|{<<-x x (D )}0|{>x x2003年(5)、不等式2|1|<+x 的解集为( )(A )}13|{>-<x x x 或 ( B )}13|{<<-x x (C )}3|{-<x x (D )}1|{>x x2004年(5)不等式123x -<的解集为(A ){}1215x x << (B ){}1212x x -<< (C ){}915x x << (D ){}15x x < 2005年 (2)不等式{3274521x x ->->-的解集为(A )(,3)(5,+)-∞∞U (B )(,3)[5,+)-∞∞U (C )(3,5) (D )[3,5){{123327390(39)(525)0452152505x x x x x x x x ⎛=⎫->->⎧⇒⇒--<⇒⎨ ⎪->-->=⎩⎝⎭2006年(2B ){}2x x ≤-(C ){}24x x ≤≤(D ){}4x x ≤(9)设,a b ⊂R ,且a b >,则下列不等式中,一定成立的是(A )22a b > (B )(0)ac bc c >≠ (C )11a b> (D )0a b -> 2007年(9)不等式311x -<的解集是(A )R (B )203x x x ⎧⎫< >⎨⎬⎩⎭或 (C )23x x ⎧⎫>⎨⎬⎩⎭ 2008年(10)不等式23x -≤的解集是(A ){}51x x x ≤-≥或 (B ){}51x x -≤≤ (C ){}15x x x ≤-≥或 (由x 2332315x x -≤⇒-≤-≤⇒-≤≤)三、指数与对数2001年(6) 设7.6log 5.0=a ,3.4log 2=b ,6.5log 2=c , 则,,a b c 的大小关系为( )(A) a c b << (B) b c a << (C) c b a << (D) b a c <<(0.5log a x =是减函数,>1x 时,a 为负;2log b x =是增函数,>1x 时a 为正.故0.522log 6.7<log 4.3<log 5.6) 2002年(6) 设a =2log 3,则9log 2等于( )(A)a 1 3323log 92log 32log 9log 2a a ⎫===⎪⎭(C )223a (D )232a(10) 已知3104log )2(2+=x x f ,则)1(f 等于( ) (A )314log 2 (B )21(C )1 (D )2()22224/2102102110()log log (1)log log 42333x x f x f ++⨯+=====,(16) 函数212-=x y 12120log 212x x x -⎛⎫-≥⇒≥⇒≥- ⎪⎝⎭2003年(2)函数51-xy x =+ ∞<<+∞()的反函数为(A )5log (1), (1)y x x =-< (B )15, ()x y x -=-∞<<+∞0.5log b x=2log b x=xbabc(C )5log (1), (1)y x x =-> (D )151, ()xy x -=+-∞<<+∞55555151log 5log (1)log (1)log (1)10,1x x x y y y x y x y y x x x ⎡⎤=+ ⇒=-⇒=-⇒=-⎢⎥ −−−−−−−−−−−→=--> >⎣⎦按习惯自变量和因变量分别用和表示定义域:; (6)设01x <<,则下列不等式成立的是(A )20.50.5log log x x > (B )222x x > (C )2sin sin x x > (D )2x x >(8)设5log 4x =,则x 等于 (A )10 (B )0.5 (C )2 (D )4[4154445lg 25554log log 22log 2lg lg 2lg lg 22lg 444x x xx x x x ⨯======(), , , ] 2004年(16)232164log =16+()223423322164log 4log 2441216-⎡⎤+=+=-=⎢⎥⎣⎦2005年(12)设0m >且1m ≠,如果log 812m =,那么log 3m =41111log 3log 3log 8124442m m m ⎫===⨯=⎪⎭(B )12- (C )13 (D )13- 2006年(7)下列函数中为偶函数的是(A )2xy = (B )2y x = (C )2log y x = (D )2cos y x =(13)对于函数3xy =,当0x ≤时,y 的取值范围是(A )1y ≤ (B )01y <≤ (C )3y ≤ (D )03y <≤(14)函数23()log (3)f x x x =-的定义域是(A )(,0)(3,+)-∞∞U (B )(,3)(0,+)-∞-∞U (C )(0,3) (D )(3,0)-()223>03<003x x xx x -⇒-⇒<<x{2201222220.50.50.5B C D A 2(0,2)2>2(1,2)201,sin <sin 0101,log log log x x x y x x y x x x x x x x x x x x X x x <<⎡⎤⎧⎫=−−−→⇒⇒⎨⎬⎢⎥=⎩⎭⎢⎥<<⇒<⎢⎥⎢⎥<<⇒<⎢⎥<<⇒<>⎣⎦为增函数值域排除();值域为增函数排除();排除();为减函数,故选(),,,,(19)122log 816=-132222log 816log 243log 24341⎛⎫-=-=-=-=- ⎪⎝⎭2007年(1)函数lg -1y x =()的定义域为 (A )R(B ){}0x x > (C ){}2x x > (2)0441lg 8lg 2=4⎛⎫+- ⎪⎝⎭(A )3 (B )2 (C )1 0312********lg 8lg 2=lg 4lg 41=1=1422⎡⎤⎛⎫+-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(D )0(5)xy = (B )1(3,)6- (C )(3,8)-- (D )(3,)--6(15)设1a b >>,则(A )log 2log 2a b > (B )22log log a b > (C )0.50.5log log a b > (D )log 0.5log 0.5b a >2008年(3)021log 4()=3-(A )9 (B )3 (C )2 (D )102221log 4()=log 21=21=13⎡⎤---⎢⎥⎣⎦(6)下列函数中为奇函数的是(A )3log y x = (B )3xy = (C )23y x = (D )3sin y x = (7)下列函数中,函数值恒大于零的是(A )2y x = √(B )2xy =(C )2log y x = (D )cos y x =(9)函数lg y x =(A )(0,∞) (B )(3,∞) (C )(0,3] (D )(-∞,3] [由lg x 得>0x 得3x ≤,{}{}{}03=0<3x x x x x x >≤≤I故选(C )](11)若1a >,则x y1.3log y x=2log y x =0.5log y x=0.77log y x=330.30.30.40.30.40.3()()[(1,0)][(1,0)]()().log log log log ..log log log log 0.50.4, 45; 0.5>0.5, 5<>>数数点的左边点的右边函数函数①同底异真对数值大小比较:增函数真大对大,减函数真大对小如②异底同真对数值大小比较:同性时:左边底大对也大,右边底大对却小 异性时:左边减大而增小,右边减小而增大 如0.4343343434log log log log log log log log log log 5; 0.5>0.5, 5<5lg 2lg 2lg 2lg 268(61,81,68)lg3lg 4lg3lg 4>=+=+>⇒>③异底异真对数值大小比较:同性时:分清增减左右边,去同剩异作比较. 异性时:不易不求值而作比较,略.如:(B )2log 0a < (C )10a-< (D )210a -<1122112log log ,, 0A 1log 0A 2ya y a y a y y a a y >= = <⎡⎤⎛⎫=−−→=−−→<⎢⎥⎪⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦分析①:故选分析②:是减函数,由的图像知在点(10)右边,故选()设,,()四、函数2001年(3) 已知抛物线22-+=ax x y 的对称轴方程为1x =,则这条抛物线的顶点坐标为( )(A) )3,1(- (B) )1,1(- (C) )0,1( (D) )3,1(--002201, =1224(2)(2)4(2)344x a x a a y ⎡⎤=⎢⎥⎢⎥=-⇒=-⎢⎥⎢⎥-⨯---⨯-=-=-=-⎢⎥⎣⎦(7) 如果指数函数xa y -=的图像过点)81,3(-,则a 的值为( )(A) 2 (B) 2- (C) 21-(10) 使函数)2(log 22x x y -=为增函数的区间是( )(A) ),1[+∞ (B) )2,1[ (C) ]1,0( (D) ]1,(-∞(13)函数2655)(xx f x x +-=-是( )(A) 是奇函数 (B) 是偶函数(C) 既是奇函数又是偶函数 (D) 既不是奇函数又不是偶函数(16) 函数)34(log 31-=x y 的定义域为____________。