紫外吸收光谱分析
- 格式:ppt
- 大小:2.15 MB
- 文档页数:77
第九章紫外吸收光谱分析Ultraviolet Spectrophotometry,UV§9-1 分子吸收光谱前述发射光谱及原子吸收光谱是由于原子发射或吸收电磁辐射时,使原子核外电子能级产生跃迁所引起的,这些都属于原子光谱的范畴,本章及下一章将讨论分子光谱。
分子和原子一样,也有它的特征分子能级。
分子内部的运动可分为价电子运动,分子内原子在平衡位置附近的振动和分子绕其重心的转动。
因此分子具有电子(价电子)能级、振动能级和转动能级。
对于双原子分子的电子、振动、转动能级如图9—1所示。
图中A和B是电子能级,在同一电子能级A,分子的能量还因振动能量的不同而分为若干“支级”,称为振动能级,图中V' = 0,1,2,…等即为电子能级A的各振动能级,而V'=0,1,2,’··为电子能级B的各振动能级。
分子在同一电子能级和同一振动能级时,它的能量还因转动能量的不同而分为若干“分级”,称为转动能级,图中j'=0,1,2,…等即为A电子能级和V'=0振动能级的各转动能级。
所以分子的能量E等于下列三项之和:E=E e+E v+E r(9-1) 式中E e,E v,E r分别代表电子能、振动能和转动能。
分子从外界吸收能量后,就能引起分子能级的跃迁,即从基态能级跃迁到激发态能级。
分子吸收能量具有量子化的特征,即分子只能吸收等于二个能级之差的能量:hc(9-2) ΔE= E2-E1=hν=由于三种能级跃迁所需能量不同,所以需要不同波长的电磁辐射使它们跃迁,即在不同的光学区出现吸收谱带。
电子能级跃迁所需的能量较大,其能量一般在1~20eV 。
如果是5eV ,则由式(9—2)可计算相应的波长。
已知ħ=6.624 ×10-34J·s =4.136 × 10-15eV·sc (光速)=2.998×1010cm·s -1图9-1 双原子分子的三种能级跃迁示意图(实际上电子能级间隔要比图示大得多,而转动能级间隔要比图示小得多。
紫外可见吸收光谱分析法紫外可见吸收光谱分析法是一种广泛应用于化学、生物、环境科学等领域的检测方法,通过测定物质对紫外可见光的吸收特性来获得有关物质的结构和浓度等信息。
本文将详细介绍紫外可见光谱分析法的原理、仪器和应用等方面,以及其在药物、环境、食品等领域的具体应用。
首先,紫外可见光谱的基本原理是根据物质对不同波长的紫外或可见光的吸收特性来确定其浓度或进行定性分析。
在紫外可见光谱中,紫外光波长范围为200-400nm,可见光波长范围为400-800nm。
当物质吸收光线时,其分子内的电子从基态跃迁到激发态,吸收能量取决于分子内电子的能级跃迁,这将导致光谱吸收峰的出现。
物质的吸收光谱图形反映了不同波长的光线对物质的吸收能力,吸收峰的强度与物质的浓度成正比。
为了进行紫外可见光谱分析,需要使用紫外可见分光光度计。
该仪器由光源、样品室、单色器、检测器和计算机等组成。
光源发出广谱连续光,在单色器中,只有特定波长的光通过,其他波长的光被滤除。
样品放在样品室中,光线穿过样品后到达检测器。
检测器将光强度转换为电信号,并将信号输出到计算机进行分析。
紫外可见光谱分析法在各个领域有广泛的应用。
在药物领域,紫外可见光谱可用于药物成分的定量分析。
例如,可以通过对药物溶液的吸光度测定得到药物的浓度,从而判断药物的纯度和含量。
在环境领域,紫外可见光谱可以用于水质和大气污染物的监测。
通过检测水样中有机物和无机物的紫外可见吸收光谱,可以对水质进行评估和监测。
同时,还可以使用紫外可见光谱分析法来检测大气中的有害气体,如二氧化硫和氮氧化物等。
此外,紫外可见光谱分析法还在食品行业中得到了应用。
例如,可以利用该方法检测食品中的添加剂,如防腐剂和色素等,以确保食品的安全性和质量。
紫外可见光谱分析法还可用于检测食品中的重金属和农药残留物,以保障消费者的健康和权益。
综上所述,紫外可见吸收光谱分析法是一种快速、准确、灵敏的分析方法,可以广泛应用于化学、生物、环境科学等领域。
紫外吸收光谱分析原理
紫外吸收光谱分析是一种常用的分析方法,用于测定物质在紫外光波段的吸收特性。
其原理基于分子在紫外光波长的辐射下,会吸收特定波长的光能,而波长较短的紫外光可以提供充分的能量,使得分子的电子跃迁至能级更高的激发态。
在紫外吸收光谱分析中,常用的仪器是紫外可见分光光度计。
该仪器通过使用一束连续可见光谱范围的光源,并将光分成几种不同波长的组分。
这束光线经过样品后,会发生吸收作用,被吸收的光能量与样品中存在的物质量成正比。
未被吸收的光线则通过光谱仪,最终转化为一个电子信号。
在分析过程中,将样品和参比物(一般是纯溶剂)分别放入两个
光路,并测量它们的吸收谱线。
通过比较两者的吸收度差异,可以得到样品物质在不同波长下的吸收特性。
这种减法方法可以排除溶剂本身的吸收对结果的影响,提高测量的准确性。
紫外吸收光谱分析在许多领域中都有广泛的应用,特别是在药学、生物化学和环境监测等领域。
通过测定样品的吸收谱线,可以定量测定物质的浓度、检测它们的组分以及判断样品的纯度。
同时,该分析方法快速、灵敏度高,无损伤性,不需要特殊样品处理,是一种非常有效的分析手段。
仪器分析紫外吸收光谱分析紫外吸收光谱分析是一种广泛应用于分析化学领域的仪器分析技术。
它基于物质对紫外光的吸收特性进行定性和定量分析。
紫外吸收光谱分析具有操作简单、分析速度快、准确度高等优点,在药物分析、环境监测、食品安全等领域得到广泛应用。
紫外光谱分析基本原理是物质分子所吸收的紫外光具有特定的波长和强度,通过测定物质吸收紫外光的程度,可以推断出物质的组成和浓度。
紫外光谱通常分为两个区域:近紫外区域(200-400 nm)和可见光区域(400-800 nm)。
近紫外区域一般应用于研究含有芳香族化合物和具有共轭体系的大分子的样品,可见光区域则适用于研究有机化合物。
在测量中,样品溶液被置于一条光程长度固定的比色皿中,然后经紫外光源照射,光通过样品溶液后进入光度计进行测量。
光度计上会显示样品吸收的光强度。
通过测量吸收的光强度和校准曲线,可以计算出样品中所含的化合物浓度。
紫外吸收光谱分析的应用领域广泛。
在药物分析中,紫外吸收光谱可以用于定量分析和质量控制。
通过测量药物溶液中特定波长的吸光度,可以确定其浓度。
同时,也可以通过比较药物光谱图与已知标准药物光谱图的相似性来鉴定药品的纯度和质量。
在环境监测方面,紫外吸收光谱可以用于测定水体和大气中有害物质的浓度。
例如,通过测量水体中有机物质的紫外吸收特性,可以判断水质的优劣。
同样地,空气中有害大气物质的浓度也可以通过测量其紫外吸收进行评估。
在食品安全方面,紫外吸收光谱可以用于测定食品中的添加剂、残留农药和重金属等有害物质的浓度。
通过测量食品样品的紫外吸光度,可以判断食品的安全性和品质。
此外,紫外吸收光谱还可以用于研究化学反应的动力学和机理。
通过测量化学反应物祖父光谱的变化,可以推测化学反应的速率和反应类型。
这对于新化合物的开发和化学反应的优化非常有意义。
综上所述,紫外吸收光谱分析是一种重要的仪器分析技术。
它可以用于定性和定量分析化合物的组成和浓度,广泛应用于药物分析、环境监测、食品安全等领域。