紫外吸收光谱知识讲解
- 格式:ppt
- 大小:896.50 KB
- 文档页数:23
紫外吸收光谱法名词解释
紫外吸收光谱法是一种分析化学技术,通过测量样品在紫外光波
长范围内对光的吸收程度来确定其物质成分。
在紫外光谱法中,使用
紫外可见光谱仪或分光光度计测量样品溶液或气体在紫外光波长范围
内的吸收光强。
紫外吸收光谱法的原理是,当紫外光照射到物质样品时,部分光
会被物质吸收,而其余光会通过或反射。
吸收的光的数量与物质的浓
度成正比,因此可以利用吸收光的强度来推断物质的浓度。
通过测量
不同波长下的吸收光强,可以绘制出物质的吸收光谱图,帮助确定物
质的成分。
紫外吸收光谱法广泛应用于许多领域,包括生物化学、药物分析、环境监测和食品安全等。
在生物化学中,紫外吸收光谱法常用于测量
核酸、蛋白质和酶的浓度。
在药物分析中,紫外吸收光谱法可用于药
物纯度和含量的检测。
在环境监测中,可以利用紫外吸收光谱法测量
水中污染物的含量。
在食品安全方面,紫外吸收光谱法可用于检测食
品中的添加剂和农药残留。
总之,紫外吸收光谱法是一种常用的分析技术,可以用于快速、准确地分析物质的成分和浓度。
它具有灵敏度高、无损伤性、操作简便等优点,广泛应用于各个领域的科学研究和工业生产中。
紫外可见光吸收光谱紫外可见光吸收光谱是一种重要的分析方法,广泛应用于化学、光学、生物学等领域。
下面我将从什么是紫外可见光吸收光谱、应用领域、分析方法、仪器设备、典型实验步骤以及注意事项等方面进行介绍。
一、什么是紫外可见光吸收光谱紫外可见光吸收光谱又称紫外可见吸收光谱,是物质分子在紫外、可见光区的吸收光谱。
简单来说,就是利用物质吸收光的特性进行分析。
二、应用领域紫外可见光吸收光谱被广泛应用于分析化学、光学、生物医学、环境监测等领域。
如利用紫外可见吸收光谱对生物大分子如DNA、蛋白质等进行分析、对环境中的水质、空气等进行检测,还可用于药物研究等方面。
三、分析方法紫外可见光吸收光谱的分析方法是利用物质吸收光的特性进行分析。
通过分析不同波长的光线在样品中的吸收情况,可以了解样品所含的化学物质的组成及浓度。
四、仪器设备紫外可见光吸收光谱的仪器设备主要有:紫外可见分光光度计,样品池,光源,检测器。
五、典型实验步骤(1)准备样品:取少量样品并将其溶解在适量的溶液中,使其达到稳定状态。
(2)将溶液倒入样品池中,并将样品池放置于紫外可见分光光度计中。
(3)选择波长:根据样品的特性选择合适的波长进行分析。
(4)根据波长设置仪器参数:包括选择光路、调整光栅、检测器增益等。
(5)记录吸收光谱:启动分光光度计进行测试并记录数据。
(6)数据处理:利用计算机等工具对数据进行处理和分析。
六、注意事项(1)在记录数据前,应先了解仪器的基本操作流程,以便能更准确地记录数据。
(2)在取样时应注意取样量,建议取量小,避免影响测试结果。
(3)在进行测试时,应尽可能排除环境因素的影响,以保障测试结果的准确性。
紫外光谱的解析一、紫外光谱的基本原理1. 概念•紫外光谱(UV)是分子吸收紫外•可见光区(200•800nm)的电磁波而产生的吸收光谱。
它反映了分子中的电子跃迁情况。
当分子吸收紫外光时,分子中的价电子从低能级跃迁到高能级。
•例如,在一些有机化合物中,存在着π电子和n电子(非键电子)。
这些电子可以发生π• π跃迁、n• π跃迁等。
其中,π• π跃迁通常所需能量较高,对应的吸收波长相对较短,多在200nm左右;而n• π跃迁所需能量较低,吸收波长相对较长,一般在270• 350nm范围。
2. Lambert - Beer定律•这是紫外光谱分析的基本定律,其表达式为 A = εbc。
其中,A是吸光度,表示物质对光的吸收程度;ε是摩尔吸光系数,它与物质的性质有关,反映了物质对特定波长光的吸收能力,单位为L/(mol·cm);b是光程长度,即样品池的厚度,单位为cm;c是溶液中物质的摩尔浓度,单位为mol/L。
•例如,在测定某一化合物的浓度时,如果已知其摩尔吸光系数和光程长度,通过测量吸光度就可以计算出溶液中的物质浓度。
假设某物质的摩尔吸光系数为1000L/(mol·cm),光程长度为1cm,测得吸光度为0.5,根据Lambert• Beer定律,可算出该物质的浓度c = A/(εb)=0.5/(1000×1)= 5×10⁻⁴mol/L。
二、紫外光谱中的特征吸收带1. R带• R带是由n•π跃迁产生的吸收带。
其特点是吸收强度较弱,摩尔吸光系数一般在10• 100L/(mol·cm)范围内,吸收峰波长较长,多在270• 350nm。
•在醛、酮、硝基化合物等分子中常常可以观察到R带。
例如,丙酮分子中的羰基(C = O)上的n电子可以发生n• π跃迁,在约279nm处有一个R带吸收峰。
2. K带• K带是由共轭体系中的π• π跃迁产生的吸收带。
其吸收强度较大,摩尔吸光系数通常大于10000L/(mol·cm),吸收峰波长与共轭体系的大小有关。
紫外-可见吸收光谱鉴别技术紫外-可见分光光度法也称为紫外-可见吸收光谱法(UV-vis ),它是依据物质对紫外和可见光区不同波长光的吸收程度进行定性、定量的分析方法。
1.物质对光的选择性吸收光是一种电磁波,按波长顺序可以划分为不同的光区。
不同波长的光具有不同的能量,波长越长,能量越低;波长越短,能量越高。
当一束白光通过棱镜后色散为红、橙、黄、绿、青、蓝、紫等各种颜色的光,每种颜色的光又有一定的波长范围。
如果把两种光按一定强度比例混合,也可成为白光,这两种颜色的光称为互补色光。
图1是互补色光示意图,处于直线关系的两种颜色即为互补色光。
溶液所以呈现不同的颜色是由于该溶液对光具有选择性吸收。
当一束白光通过某一有色溶液时,一部分光被溶液选择吸收,另一部分光则通过溶液。
例如当白光入射通过KMnO4溶液时,溶液选择性吸收绿光,溶液本身呈现绿光的互补色光,即紫红色。
2.光吸收的基本定律——朗伯-比尔定律当一束平行单色光垂直照射到一定浓度c 、液层厚度为b 的均匀透明溶液时(如图2),由于溶液吸收了一部分光能,光的强度减弱。
透射光强度I t 与入射光强度I 0之比称为透射比,用T 表示;单色光通过溶液时被吸收的程度,称为吸光度,用A 表示。
400-450650-750绿橙图1 互补色光示意图图2 光通过溶液示意图 I 0-为入射光强度 I t -为透射光强度朗伯和比尔总结了光的吸收与液层厚度、溶液浓度的定量关系。
其数学表达式为:A=k·b·c 。
其物理意义是:当一束平行单色光垂直通过均匀、透明的吸光物质的稀溶液时,溶液的吸光度A与溶液浓度c和液层厚度b的乘积呈正比。
朗伯-比尔定律是紫外-可见分光光度法进行定量分析的理论依据,适用于可见光、紫外光、红外光和均匀非散射的液体、气体及透光固体。
比例常数k称为吸光系数,是吸光物质的特征常数,与入射光的波长、物质的性质和溶液的温度等因素有关,与溶液的浓度大小和液层厚度无关。