一、平移和旋转
- 格式:doc
- 大小:61.05 KB
- 文档页数:2
DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。
说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。
2.平移的性质:①平移前后图形的大小、形状都不改变。
即:平移前后的图形全等形。
②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。
二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。
说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。
即:旋转前后的图形全等形。
②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。
【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。
例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。
例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。
例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。
平移与旋转的性质定理平移和旋转是几何学中常见的基本变换,它们在许多领域中都有广泛的应用。
在本文中,我们将探讨平移和旋转的性质定理,并解释它们在几何学中的重要性。
一、平移的性质定理平移是指在平面或者空间内,将一个图形沿着固定的方向平行地移动一定的距离。
平移具有以下性质定理:1. 平移保持图形的大小和形状不变。
当一个图形通过平移进行变换时,它的每个点都按照相同的方向和距离进行移动,因此图形的大小和形状不会发生改变。
2. 平移保持图形的对称性不变。
如果一个图形具有某种对称性,那么它在平移过程中仍然保持相同的对称性。
例如,如果一个图形是关于某个轴对称的,那么通过平移后,它仍然是关于同一轴对称的。
3. 平移是一个可逆操作。
平移不改变图形的大小、形状和对称性,并且可以通过反向的平移操作将图形恢复到原来的位置。
这意味着平移是可逆的,可以被撤销。
二、旋转的性质定理旋转是指围绕一个点或者轴进行旋转变换,使得图形绕该点或轴进行旋转一定的角度。
旋转具有以下性质定理:1. 旋转保持图形的大小和形状不变。
当一个图形通过旋转进行变换时,它的每个点都绕着旋转中心按照相同的角度进行旋转,因此图形的大小和形状不会发生改变。
2. 旋转保持图形的对称性不变。
如果一个图形具有某种对称性,那么它在旋转过程中仍然保持相同的对称性。
例如,如果一个图形是关于某个点对称的,那么通过旋转后,它仍然是关于同一点对称的。
3. 旋转是一个可逆操作。
旋转不改变图形的大小、形状和对称性,并且可以通过反向的旋转操作将图形恢复到原来的位置。
这意味着旋转是可逆的,可以被撤销。
三、平移和旋转的组合应用平移和旋转经常同时应用于几何学中的问题,它们的组合可以产生更复杂的变换效果。
通过合理地组合平移和旋转,我们可以实现以下应用:1. 对称图形的复制。
通过平移和旋转的组合操作,可以将一个对称图形复制并重叠到其他位置,从而形成新的图形。
2. 分析和解决几何问题。
在解决几何问题时,常常需要进行平移和旋转变换来研究图形的性质和关系。
三年级上册平移和旋转的知识点一、平移。
1. 平移的定义。
- 物体或图形在同一平面内沿直线运动,而本身没有发生方向上的改变,这种运动现象就是平移。
例如,在水平的传送带上,物体随着传送带直线移动;或者在电梯里,人随着电梯上下直线运动等都是平移现象。
2. 平移的特点。
- 平移后的图形与原图形的形状和大小完全相同。
例如,将一个正方形沿着水平方向平移一段距离后,得到的新正方形和原来的正方形边长一样,四个角也都是直角。
- 平移后的图形与原图形对应点之间的连线平行(或在同一条直线上)且相等。
比如一个三角形平移后,它原来的顶点和对应平移后的顶点连线是平行且相等的。
3. 平移的方向和距离。
- 方向:平移的方向可以是水平方向(向左或向右)、垂直方向(向上或向下)或者是斜着的方向。
例如,汽车在笔直的公路上向左行驶是水平方向的平移;火箭垂直升空是垂直方向的平移;而一个物体沿着与水平方向成45度角的方向移动就是斜方向的平移。
- 距离:平移的距离是指图形上每个点平移的长度。
可以通过数方格的方法来确定平移的距离,在方格纸上,一个方格的边长可以作为一个单位长度。
例如,一个图形从方格纸的左上角平移到右上角,经过了5个方格,那么平移的距离就是5个单位长度。
二、旋转。
1. 旋转的定义。
- 物体绕着一个点或一个轴做圆周运动的现象就是旋转。
像风车绕着中心轴转动、时钟的指针绕着中心点转动等都是旋转现象。
2. 旋转的特点。
- 旋转后的图形与原图形的形状和大小不变。
例如,一个圆形的表盘不管指针怎么旋转,表盘的形状和大小都不会改变。
- 图形的旋转是由旋转中心、旋转方向和旋转角度决定的。
3. 旋转中心、旋转方向和旋转角度。
- 旋转中心:是物体旋转时所绕着的那个点或轴。
例如,风车的旋转中心就是风车叶片中间固定的那个点;地球的自转是以地轴为旋转中心的。
- 旋转方向:分为顺时针方向和逆时针方向。
顺时针方向是指和时钟指针转动方向相同的方向,逆时针方向则是与时钟指针转动方向相反的方向。
第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。
平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。
知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。
旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。
注意:旋转分为顺时针旋转和逆时针旋转。
知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。
轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。
三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。
A.B.C.D.2.在括号中填“平移”或“旋转”。
(1)小明进教室开门时,门的运动是()。
(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。
(3)小红拉开窗帘,窗帘的运动是()。
(4)老师将课桌拖到最后一排,桌子的运动是()。
3.观察下面的图形,然后填空。
(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)飞机向()平移了()格。
4.如图所示。
(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。
(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。
A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。
7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。
用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。
观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。
很多同学学习几何时对于一些概念都不是很了解。
那么什么是平移?什么是旋转呢?
平移简介
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
它是等距同构,是仿射空间中仿射变换的一种。
它可以视为将同一个向量加到每点上,或将坐标系统的中心移动所得的结果。
即是说,若是一个已知的向量,是空间中一点,平移。
旋转的定义
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A',那么这两个点叫做旋转的对应点。
平移和旋转的区别与联系
1、区别:旋转不改变物体在空间上的位置不发生位移,平移将一个图形上的所有点都按照某个直线方向做相同距离的移动发生了位移。
2、联系:旋转和平移都是物体运动现象,在运动中都没有改变本身的形状、大小与自身性质特征。
以上就是一些有关于平移和旋转的相关信息,供大家参考。
平移和旋转的定律平移和旋转是几何学中常用的变换方法,它们在解决实际问题和研究几何性质时起到了重要作用。
本文将分别介绍平移和旋转的定律,并阐述它们的应用。
一、平移的定律平移是指将一个图形沿着直线方向移动一定的距离,保持形状和大小不变。
平移的定律有以下几个要点:1. 平移的性质:平移不改变图形的大小、形状和内部角度。
2. 平移的表示方法:平移可以用向量表示,即将图形上的每个点都沿着同一方向平行地移动相同的距离。
平移向量可以表示为一个有向线段,起点为原点,终点为目标点。
3. 平移的步骤:平移的步骤包括确定平移向量、找到每个点的新位置、绘制新图形。
4. 平移的特点:平移是保持图形相对位置关系的变换,它将原来的图形完全重叠到了新位置上,相当于给原图形“搬家”。
平移的应用非常广泛。
在实际生活中,我们经常可以看到平移的影子。
比如,一辆汽车从一个位置开到另一个位置,这就是一个平移过程。
在建筑设计中,平移可以用来布局房间、道路等。
在数学教学中,平移可以帮助我们理解向量的概念和性质。
二、旋转的定律旋转是指将一个图形围绕一个点或轴线进行转动,使其在平面内改变位置和朝向,但形状和大小保持不变。
旋转的定律有以下几个要点:1. 旋转的性质:旋转不改变图形的大小和内部角度,但改变了图形的位置和朝向。
2. 旋转的表示方法:旋转可以用角度来表示,即将图形上的每个点绕着旋转中心按照一定的角度旋转。
旋转角度可以用度数或弧度来表示。
3. 旋转的方向:旋转可以顺时针或逆时针进行,视旋转角度的正负而定。
4. 旋转的特点:旋转是保持图形形状不变,但改变位置和朝向的变换。
旋转的中心可以是一个点,也可以是一条轴线。
旋转在几何学中有着重要的应用。
在工程设计中,旋转可以用来描述物体的运动轨迹,比如机械零件的旋转运动。
在自然界中,旋转也是普遍存在的,比如地球的自转和公转。
在数学教学中,旋转可以帮助我们理解三角函数的概念和性质。
总结起来,平移和旋转是几何学中常用的变换方法,它们有着许多相似之处,也有着各自独特的特点和应用。
平移和旋转知识点总结一、平移的基本概念平移是指物体沿着某一方向按照一定距离进行移动的操作。
在平面上,平移是指将图形在水平方向和垂直方向上进行平移,将图形中的每一个点沿着相同的距离进行移动。
在三维空间中,平移是指将物体在三个坐标轴方向上进行移动,即沿着 x 轴、y 轴和 z 轴进行平移。
在进行平移变换时,可以使用矩阵的乘法来进行描述。
对于二维坐标系中的点 (x, y),如果要将其进行平移变换,可以使用以下的矩阵表示:```1 0 tx0 1 ty0 0 1```其中 tx 和 ty 分别表示在 x 方向和 y 方向上的平移距离。
对于三维空间中的点 (x, y, z),平移变换可以使用以下的矩阵表示:```1 0 0 tx0 1 0 ty0 0 1 tz0 0 0 1```其中 tx、ty 和 tz 分别表示在 x 轴、y 轴和 z 轴方向上的平移距离。
二、平移的性质1. 平移变换具有可加性,即两个或多个平移变换的效果可以合并为一个平移变换。
设 T1 和 T2 分别表示两个平移变换,对于任意的点 P,有 T2(T1(P)) = T3(P),其中 T3 为合并后的平移变换。
2. 平移变换的逆变换也是一个平移变换。
即如果对一个点进行一次平移变换 T,再对其进行逆变换 T^-1,则得到的结果还是一个平移变换,并且可以合并为一个恒等变换。
即 T^-1(T(P)) = P。
3. 平移变换不改变点之间的相互位置关系。
对于图形中的任意两点 A 和 B,它们之间的距离和方向在进行平移变换后不会发生改变,只是位置发生了移动。
三、平移的应用1. 平移变换在计算机图形学中有着广泛的应用。
在计算机图形学中,平移变换可以用来实现图形在屏幕上的移动、拖拽等操作。
在图形处理软件中,也可以使用平移变换来进行图形的平移操作。
2. 在工程和建筑设计中,平移变换可以用来描述物体在平面或空间中的移动和位置调整。
例如在建筑设计中,可以使用平移变换来进行建筑结构的调整和优化。
平移与旋转的概念与性质平移和旋转是数学中常见的几何变换方式,它们在几何学、计算机图形学、物理学等领域中都有广泛应用。
本文将介绍平移和旋转的概念以及它们的性质。
一、平移的概念与性质平移是指将一个图形按照指定的方向和距离在平面上移动,移动后的图形形状与原图形完全相同。
平移可以用向量表示,通过将图形的每个点都按照同样的位移量进行平移。
1. 平移的概念平移可以视为一种刚体运动,它保持图形的形状和大小不变,只是位置发生了改变。
平移可以沿任意方向进行,它不改变图形的内部结构和角度关系。
2. 平移的性质(1)平移不改变图形的面积、周长和角度大小。
(2)平移具有可逆性,即平移后再进行逆向平移可以回到原来的位置。
(3)平移可以用向量运算表示,例如一个点P(x, y)经过向量v(a, b)的平移后的新位置为P'(x+a, y+b)。
二、旋转的概念与性质旋转是指将一个图形围绕某个点或某条线进行旋转,使得图形绕旋转中心旋转一定的角度,旋转后的图形与原图形形状相似但位置不同。
旋转也可以用向量表示,通过将图形的每个点都绕旋转中心旋转同样的角度。
1. 旋转的概念旋转是一种刚体变换,它改变了物体的方向和位置,但保持了物体的形状和大小。
旋转可以绕任意点或任意直线进行,旋转中心可以在图形内部,也可以在图形外部。
2. 旋转的性质(1)旋转不改变图形的面积和周长,但可能改变图形的角度大小。
(2)旋转具有可逆性,即旋转后再进行逆向旋转可以回到原来的位置。
(3)旋转可以用矩阵运算表示,例如一个点P(x, y)绕原点逆时针旋转角度θ后的新位置为P'(x', y'),其中x' = x*cosθ - y*sinθ,y' =x*sinθ + y*cosθ。
三、平移与旋转的关系平移和旋转都是刚体变换中的一种,它们可以通过复合运算相互转化。
1. 平移与旋转的复合如果一个图形先进行平移,再进行旋转,那么得到的结果与先进行旋转,再进行平移得到的结果是一样的。
一、平移和旋转
一、下面的现象中是平移的画“△”,是旋转的画“□”。
(1)索道上运行的观光缆车。
()(2)推拉窗的移动。
()
(3)钟面上的分针。
()(4)飞机的螺旋桨。
()(5)工作中的电风扇。
()(6)拉动抽屉。
()
二、看时钟填空。
(1)指针从“12”绕点A顺时针旋转()0到“2”;
(2)指针从“12”绕点A顺时针旋转(0)到“3”;
(3)指针从“1”绕点A顺时针旋转(0)到“6”;
(4)指针从“3”绕点A顺时针旋转300到“()”;
(5)指针从“5”绕点A顺时针旋转600到“()”;
(6)指针从“7”绕点A顺时针旋转(0)到“12”。
三、先观察右图,再填空。
(1)图1绕点“O”逆时针旋转900到达图()的位置;
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图2绕点“O”顺时针旋转(0)到达图4的位置;
(4)图2绕点“O”顺时针旋转900到达图()的位置;
四、判断题。
正确的在题后的括号里画“√”,错的画“×”。
(1)正方形是轴对称图形,它有4条对称轴。
()
(2)圆不是轴对称图形。
()
(3)利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案。
()
(4)风吹动的小风车是旋转现象。
()
五、(1)画出三角形AOB 绕O点(2)绕O点顺时针旋转90°(3)绕O点逆时针旋转90°
六、涂色
1、把图形向右平移7格后得到的图形涂上颜色。
2
1
2
3
4、(1)画出三角形向右平移6格后的图形。
(2)画出梯形向下平移5格后的图形。