第五章 平面电磁波
- 格式:ppt
- 大小:740.50 KB
- 文档页数:73
第5章 平面电磁波5.1基本内容概述本章讨论均匀平面波在无界空间传播的特性,主要内容为:均匀平面波在无界的理想介质中的传播特性和导电媒质中的传播特性,电磁波的极化,均匀平面波在各向异性媒质中的传播、相速与群速。
5.1.1理想介质中的均匀平面波1.均匀平面波函数在正弦稳态的情况下,线性、各向同性的均匀媒质中的无源区域的波动方程为220k ∇+=E E对于沿z 轴方向传播的均匀平面波,E 仅是z 坐标的函数。
若取电场E 的方向为x 轴,即x x E =E e ,则波动方程简化为222d 0d x x E k E z+= 沿+z 轴方向传播的正向行波为()j jkz x m z E e e φ-=E e (5.1)与之相伴的磁场强度复矢量为()()z kz z ωμ=⨯H e E 1j jkz ym E e e φη-=e (5.2)电场强度和磁场强度的瞬时值形式分别为(,)Re[()]cos()j t x m z t z e E t kz ωωφ==-+E E e (5.3)(,)Re[()]cos()j t m y Ez t z e t kz ωωφη==-+H H e (5.4)2.均匀平面波的传播参数 (1)周期2T πω=(s),表示时间相位相差2π的时间间隔。
(2)相位常数k =(rad/m ),表示波传播单位距离的相位变化。
(3)波长kπλ2=(m ),表示空间相位相差2π的两等相位面之间的距离。
(4)相速p v kω==m/s ),表示等相位面的移动速度。
(5)波阻抗(本征阻抗)x y E H η==Ω),描述均匀平面波的电场和磁场之间的大小及相位关系。
在真空中,37712000≈===πεμηη(Ω) 3.能量密度与能流密度在理想介质中,均匀平面波的电场能量密度等于磁场能量密度,即221122εμ=E H电磁能量密度可表示为22221122e m w w w εμεμ=+=+==E H E H (5.5)瞬时坡印廷矢量为21zη=⨯=S E H e E (5.6)平均坡印廷矢量为211Re 22av z η*⎡⎤=⨯=⎣⎦S E H e E (5.7) 4.沿任意方向传播的平面波对于任意方向n e 传播的均匀平面波,定义波矢量为n x x y y z z k k k k ==++k e e e e (5.8)则00()n jk j --==e r k r E r E e E e (5.9)()()1n η=⨯H r e E r (5.10)00n =e E (5.11)5.1.2电磁波的极化1.极化的概念波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 并用电场强度矢量的端点在空间描绘出的轨迹来描述。
平面电磁波知识点电磁波是一种在空间中传播的波动现象,它由电场和磁场相互作用而产生。
平面电磁波作为电磁波的一种形式,具有特定的特性和应用。
本文将介绍平面电磁波的基本知识点,包括定义、特性、产生和传播、应用等内容。
一、平面电磁波的定义平面电磁波是指电场和磁场在空间中沿着一定方向传播的电磁波。
它的波动方向垂直于电场和磁场的传播方向,且电场和磁场的变化情况具有一定的关系。
平面电磁波包含了无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等多个频段。
二、平面电磁波的特性1. 频率和波长:平面电磁波的频率和波长间存在确定的关系,即波长等于光速除以频率。
波长越短,频率越高,能量越大。
不同频段的电磁波对应着不同的波长和频率范围。
2. 周期和振幅:平面电磁波的周期指一个完整波形所经历的时间,振幅指波峰或波谷与波中心的距离。
波形的周期和振幅决定了平面电磁波的能量和强度。
3. 速度:平面电磁波在真空中的传播速度是一个恒定值,即真空中的光速。
它的数值约为299,792,458米每秒,通常记作c。
不同介质中的传播速度与光速有关,由该介质的折射率决定。
4. 方向性:平面电磁波的传播方向是垂直于电场和磁场方向的。
电场和磁场的方向彼此垂直,并且与传播方向形成右手定则。
三、平面电磁波的产生和传播1. 产生:平面电磁波可以通过加速带电粒子、振动电荷或电流等方式产生。
当带电粒子或电流经过加速、振动时,会产生电场和磁场的变化,从而产生平面电磁波。
2. 传播:平面电磁波的传播遵循麦克斯韦方程组。
根据这些方程,平面电磁波在真空中以光速传播,不受介质的影响。
当平面电磁波遇到介质时,会发生折射、反射或透射等现象,具体情况取决于介质的性质。
四、平面电磁波的应用1. 通信:平面电磁波广泛应用于无线通信领域。
不同频段的电磁波用于无线电、电视、手机、卫星通信等通信系统,实现声音、图像和数据的传输。
2. 医学:平面电磁波在医学诊断、治疗和影像技术中起到重要作用。
平面电磁波1 时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。
2 研究某一具体情况下电磁波的激发和传播规律,从数学上讲就是求解在这具体条件下Maxwell equations 或wave equations 的解。
3 在某些特定条件下,Maxwell equations 或wave equations 可以简化,从而导出简化的模型,如传输线模型、集中参数等效电路模型等等。
4 最简单的电磁波是平面波。
等相面(波阵面)为无限大平面电磁波称为平面波。
如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。
5 许多复杂的电磁波,如柱面波、球面波,可以分解为许多均匀平面波的叠加;反之亦然。
故均匀平面波是最简单最基本的电磁波模式,因此我们从均匀平面波开始电磁波的学习。
§ 波动方程1 电场波动方程:ερμμε∇+∂∂=∂∂-∇t J tE E ρρρ222 磁场波动方程 J t H H ρρρ⨯-∇=∂∂-∇222με 2 如果媒质导电(意味着损耗),有E J ρρσ=代入上面,则波动方程变为ερμεμσ∇=∂∂-∂∂-∇222tE t E E ρρρ 0222=∂∂-∂∂-∇tH t H H ρρρμεμσ 如果是时谐电磁场,用场量用复矢量表示,则ερμεωωμσ&&ρ&ρ&ρ∇=+-∇E E j E 22 022=+-∇H H j H &ρ&ρ&ρμεωωμσ 采用复介电常数,εμωωεσμεωωμσμεω&222)1(=-=-j j ,上面也可写成 3 在线性、均匀、各向同性非导电媒质的无源区域,波动方程成为齐次方程。
0222=∂∂-∇tE E ρρμε 0222=∂∂-∇t H H ρρμε 4在线性、均匀、各向同性、导电媒质的无源区域,波动方程成为齐次方程。
0222=∂∂-∂∂-∇tE t E E ρρρμεμσ 0222=∂∂-∂∂-∇tH t H H ρρρμεμσ 如果是时谐电磁场,用场量用复矢量表示,并采用复介电常数,εμωωεσμεωωμσμεω&222)1(=-=-jj ,上面也可写成 022=+∇E E &ρ&&ρεμω 022=+∇H H &ρ&&ρεμω 注意,介电常数是复数代表有损耗。
第六章主平面电磁波要 内 容 9学时平面电磁波电磁波:变化的电磁场脱离场源后在空间的传播 平面电磁波:等相位面为平面构成的电磁波 均匀平面电磁波:等相位面上E、H 处处相等的 电磁波 若电磁波沿 x 轴方向传播,则H=H(x,t),E=E(x,t) 平面电磁波知识结构框图电磁场基本方程组 电磁波动方程 均匀平面电磁波的传播特性平面电磁波的基本特性1. 理想介质中的均匀平面波 2. 损耗媒质中的均匀平面波 3. 均匀平面波的极化 4. 均匀平面波对平面边界的垂直入射 5. 均匀平面波对平面边界的斜入射 6. 各向异性媒质中的均匀平面波1-120 2-120理想介质中均匀平面波 平面电磁波的极化导电媒质中均匀平面波平面电磁波的垂直入射平面电磁波的斜入射各向异性媒质中的均匀平面波x方向传播的一组均匀平面波3-120平面电磁波知识结构框图数的媒质, σ → ∞ 的媒质称为理想导体。
σ 介 于两者之间的媒质称为有损耗媒质或导电媒质。
6.1 理想介质中的均匀平面波 理想介质是指电导率 σ = 0 ,ε 、 μ 为实常6.1.1波动方程的解其通解为假设电磁场沿着 Z 轴方向传播,且电场仅有指向 X 轴 的方向分量,则磁场必只有 Y 方向的分量,即:z z E x = f1 (t − ) + f 2 (t + ) v v ∂ 2 Ex + β 2 Ex = 0 ∂z 2对于时谐变电磁场:E = ex E x ( z, t )波动方程H = ey H y (z,t)其通解为 则平面波是指波前面,即等相位面或者波前 阵是平面的波。
均匀平面波是指波前面上场量振 幅处处相等的波。
本节介绍最简单的情况,即介绍无源、均 匀(homogeneous)(媒质参数与位置无关)、 线性(linear)(媒质参数与场强大小无关)、 各向同性(isotropic)(媒质参数与场强方向无 关)的无限大理想介质中的时谐平面波。
4-120 5-120则∂E 2 =0 ∂t 2 ∂E 2 ∇ 2 E x − με 2x = 0 ∂t 2 ∂ E x 1 ∂E x2 − =0 ∂z 2 v 2 ∂t 2 ∇ 2 E − με其中: v =其中: β = ω μ εEx = Ex + e− jβ z + Ex − e+ jβ zE x = E x+ cos(ω t − β z ) + E x− cos(ω t + β z )对应的磁场为1∇ × E = −μ6-120με∂H ∂t∂H y ∂E x = −μ ∂z ∂t对应的磁场为∇ × E = −μ其通解为∂H ∂t∂H y ∂E x = −μ ∂z ∂t考察电场的一个分量 ,瞬时值表达式为:Ex ( z, t ) = Ex+ cos(ωt − β z + ϕx )其中Hy =β ⎡ E + cos(ω t − β z ) − E x− cos(ω t + β z ) ⎤ ⎦ ωμ ⎣ xωt 为时间相位 , β z 为空间相位 , ϕ x 是初始相位。