第七章系统函数
- 格式:ppt
- 大小:1.22 MB
- 文档页数:64
第七章 系统函数一、单项选择题X7.1(浙江大学2004考研题)一个因果、稳定的离散时间系统函数)(z H 的极点必定在z 平面的 。
(A )单位圆以外 (B )实轴上 (C )左半平面 (D )单位圆以内 H (s )只有一对在虚轴上的共轭极点,则它的h (t )应是 。
(A )指数增长信号 (B )指数衰减振荡信号 (C )常数 (D )等幅振荡信号 X7.3(浙江大学2003考研题)如果一离散时间系统的系统函数)(z H 只有一个在单位圆上实数为1的极点,则它的h (k )应是 。
(A )ε(k ) (B ))(k ε- (C ))()1(k kε- (D )1X7.4(浙江大学2002考研题)已知一连续系统的零、极点分布如图X7.4所示,1)(=∞H ,则系统函数H (s )为 。
(A )2+s (B )1+s (C ))2)(1(++s s (D )1-s X7.5(西安电子科技大学2004考研题)图X7.5所示信号流图的系统函数H (s )为 。
(A )26132+++s s s (B )2132++s s (C )26132--+s s s (D )1212-+s s X7.6(哈尔滨工业大学2002考研题)下列几个因果系统函数中,稳定(包括临界稳定)的系统函数有 个。
(1)4312+--s s s (2)s s s 312++ (3)34234+++s s s (4)33223++++s s s s (5)1224++s s s (6)2421ss + (A )3 (B )2 (C )1 (D )4X7.7(哈尔滨工业大学2002考研题)下面的几种描述中,正确的为 。
(A )系统函数能提供求解零输入响应所需的全部信息;(B )系统函数的零点位置影响时域波形的衰减或增长; (C )若零极点离虚轴很远,则它们对频率响应的影响非常小; (D )原点的二阶极点对应)(2t t ε形式的滤形。
7.3 如图7-5的RC 带通滤波电路,求其电压比函数)()()(12s U s U s H 及其零、极点。
7.7 连续系统a 和b ,其系统函数)(s H 的零点、极点分布如图7-12所示,且已知当∞→s 时,1)(=∞H 。
(1)求出系统函数)(s H 的表达式。
(2)写出幅频响应)(ωj H 的表达式。
7.10 图7-17所示电路的输入阻抗函数)()()(11s I s U s Z =的零点在-2,极点在31j ±-,且21)0(=Z ,求R 、L 、C 的值。
7.14 如图7-27所示的离散系统,已知其系统函数的零点在2,极点在-0.6,求各系数a,b。
7.18 图7-29所示连续系统的系数如下,判断该系统是否稳定。
(1)3,210==a a ; (2)3,210-=-=a a ; (3)3,210-==a a 。
7.19 图7-30所示离散系统的系数如下,判断该系统是否稳定。
(1)1,2110-==a a ; (2)1,2110==a a ;(3)1,2110=-=a a 。
7.20 图7-31所示为反馈系统,已知44)(2++=s s ss G ,K 为常数。
为使系统稳定,试确定K 值的范围。
7.26 已知某离散系统的差分方程为)1()2()1(5.1)(-=---+k f k y k y k y(1) 若该系统为因果系统,求系统的单位序列响应h(k)。
(2) 若该系统为稳定系统,求系统的单位序列响应h(k),并计算输入)()5.0()(k k f k ε-=时的零状态响应)(k y zs 。
7.28 求图7-36所示连续系统的系统函数)(sH。
7.30 画出图7-40所示的信号流图,求出其系统函数)(sH。
解(a)由s域系统框图可得系统的信号流图如图7-41(a)。
流图中有一个回路。
其增益为(b)由s 域系统框图可得系统的信号流图如图7-41(b)。
流图中有一个回路。