系统函数
- 格式:ppt
- 大小:975.00 KB
- 文档页数:43
§4.6 系统函数(网络函数)H (s )•系统函数; LTI 互联网络的系统函数;并联;级联; 反馈连接一.系统函数 1.定义响应的拉氏变换与激励的拉氏变换之比2.H (s )的几种情况策动点函数:激励与响应在同一端口时策动点导纳 策动点阻抗转移函数:激励和响应不在同一端口转移导纳 转移阻抗电压比 电流比()()()s H s E s R ⋅=↔)()()(s E s R s H =∴()()()t h t e t r *=)]([)()],([)( t e L s E t r L s R ==其中系统的零状态响应时当 ,)()(t t e δ=)()(s H s R =)()(t h t r =)()]([s H t h L =则单端口网络()s I 1+-()s V 111')()()(11s V s I s H =)()()(11s I s V s H =+-()s V 2)()()(12s V s I s H =)()()(12s I s V s H =)()()(12s V s V s H =)()()(12s I s I s H =3.求H (s )的方法微分方程两端取拉氏变换→利用网络的s 域元件模型图,列s 域方程→4.应用:求系统的响应二.LTIS 互联的系统函数 1.LTI 系统的并联2.LTI 系统的级联3.LTI 系统的反馈连接()()s H t h →()()()s E s R s H =()()()s E s R s H =)()()()()(t h t e t r t h s H *=→→方法一:)()()()(t r s E s H s R →=方法二:()()()t h t h t h 21+=)()()(21s H s H s H +=)()()( :21t h t h t h *=时域)()()( :21s H s H s H ⋅=频域()s H 1()s H 2()s E ()s R ()s H 1()s H 2()s E ()s R ()s E 1()s E 2-+)()()(21s E s E s E -=)()()(22s H s R s E ⋅=[])()()()(21s E s E s H s R -⋅=4.结论在s 域可进行代数运算:比较H (s )和H (p )例4-6-1(1)在零起始状态下,对原方程两端取拉氏变换(2))()()()(211s E s H s E s H -=)()()()()(211s R s H s H s E s H ⋅-=)()(1)()()()(211s H s H s H s E s R s H +==∴()。
【信号与系统】03-系统函数的性质1. 系统函数的性质1.1 变换的对偶性 不管是傅⾥叶变换的频域还是拉普拉斯变换的s域(下⾯统称s域),都是深⼊讨论LIT系统的有⼒⼯具,有时甚⾄是必备⼯具。
s域的系统函数和时域的信号(单位冲激响应)是⼀对共⽣体,它们通过拉普拉斯变换⽣成彼此,同时也是连接两个域的纽带。
对⼀个函数解析式,经常要对它做⼀些常规的分析操作,⽐如运算、平移、缩放、微积分、卷积等。
⼀个很⾃然的问题是,在某个域的分析操作会对另⼀个域带来什么影响呢?本篇就来讨论这个问题。
在正式讨论之前,有必要再回顾⼀下拉普拉斯变换的公式。
你可能⼀开始就注意到,正反变换存在⼀定的“对称性”,⽽仅在局部有微⼩差别。
在数学上,两个概念如果通过类似的⽅法互相定义,它们就称为对偶的,从形式上不难看出,互为对偶的概念的性质也是对偶存在的,这就省去了相似论证的⿇烦。
信号x(t)和拉普拉斯变换H(s)之间不具有严格的对偶性,但这样的相似性仍然可以被使⽤。
如果记χ(ω)=eσ√2πX(σ+jω),将得到更为对称的式(1),把这个关系记作变换T,显然有式(2)成⽴。
以后变换的性质如果本⾝不是对称的,可以运⽤该式迅速得到另⼀个对称的性质,当然简单的性质直接证明会更快。
x(t)=1√2π∫∞−∞χ(ω)e jωt dω;χ(ω)=1√2π∫∞−∞x(t)e−jωt d t x(t)T↔χ(ω)⇔χ(t)T↔x(−ω)1.2 拉普拉斯变换的性质 以下按函数运算的复杂程度,罗列LT的基本性质,过于直⽩的结论不加证明。
需要注意的是,性质成⽴有它⾃⼰的ROC,并不完全受限于原LT的ROC。
还有我们知道,ROC和积分在具体的s上的收敛性是不同的,以下性质在ROC外的收敛点仍然可以是成⽴的。
⾸先是函数的线性运算,在s域也是线性的(式(3))。
然后看函数的平移,容易有式(4)左成⽴,在s域的平移还有式(4)右成⽴,这是⼀组对偶性质。
当对函数进⾏伸缩时,频谱系数也跟着反⽐例伸缩(式(5)左);特别地,a=−1时表⽰函数左右翻转(旋转180度),s域则也跟着旋转180度(式(5)右)。
系统函数的定义
系统函数定义
1、系统函数
系统函数是一类特殊的程序函数,用来实现由操作系统提供的功能,这些功能不能由应用程序直接实现,而是由操作系统来完成。
2、系统函数的定义
系统函数是一类特殊的程序函数,它们用来实现由操作系统提供的功能,而这些功能无法由应用程序直接实现。
系统函数是操作系统提供给应用程序的公共接口,通过调用系统函数来实现操作系统提供的功能。
3、系统函数的特点
(1)系统函数是可重入的,这是因为它必须支持多个任务同时运行。
(2)系统函数是可移植的,这是因为它必须能够移植到不同平台。
(3)系统函数是可调试的,这是因为它必须能够被调试以便发现问题并进行修复。
(4)系统函数是安全的,这是因为它必须能够确保操作系统的安全性。
- 1 -。
第七章系统函数系统分类:连续系统离散系统分析方法:时域:h(t)h(k) 冲击响应/单位响应↑逆↑逆复频域: H(s) H(z) 系统函数H(·)↓s = jw↓z =e jwT频域: H(jw) H(e jwT) 频率响应系统的研究:系统分析: 给定系统→H(·)→系统的特性系统综合: 给定要求(如幅频特性)→确定结构和参数→H(·) 本章是在前几章的基础上加以概括和引伸主要内容:一H(·)与系统的特性(时域响应、频域响应)二系统的因果性和稳定性及判别准则三信号流图四系统模拟。
由系统函数→框图§ 7.1 系统函数与系统特性一 H(·)的零点与极点H(·)=)()(••A B 极点:A(·)=0的根,i P ,H(i P )→∞ 零点:B(·)=0的根,i ξ,H(i ξ)=0类型:实数、共轭虚数、共轭复数,一阶或二阶 二 H(·)与时域的响应关系: H(·) h(·)1 连续系统: H(s) h(t) 以虚轴为界结论:○1 H(s)的极点位置→h(t)的函数形式 ○2 极点在左半开平面→h(t)是衰减的,h(t)|∞→t →0,系统是稳定的○3 虚轴上的一阶极点→h(t)是幅度稳定,临界稳定 ○4 极点在右半开,和虚轴上二阶以上→h(t)是增长的, 系统不稳定稳定性:若输入有界,则输出有界。
若|f(·)|<∞,则| y f (·)|<∞ 2 离散系统:H(z) h(k) 以单位圆为界结论:○1 H(z)的极点位置→h(k)的序列形式 ○2 极点在单位圆内→h(k)是衰减的,k →∞,h(k)→0 系统是稳定的○3 单位圆上的一阶极点→h(k)是幅度稳定,临界稳定 ○4 极点在单位圆外,和单位圆上二阶以上→h(k)是增长的,系统不稳定三 极、零点与频率响应的关系: 1 连续系统H (s)=∏∏=-=-ni i p s mj j s m b 1)(1)(ξ 设极点都在左半开平面,收敛域含虚轴H (j ω)= H (s)|s=jw =∏∏=-=-ni i p jw mj j jw m b 1)(1)(ξ 画幅频、相频特性下面用矢量分析法分析,主要是定性分析其变化规律矢量:p i | p i | j ω |ω| 差矢量: j ω- p i 幅角i ϕ 幅角2π令 j ω- p i =A i ij e θ j ω-ζi =B j jj e ψH (j ω)=)(21)(212121n m j e n A A A j e m B B B m b θθθψψψΛΛΛΛ++++=H (ω)=nA A A mB B B m b ΛΛ2121 )(ωϕ=(m ψψψΛ++21)- (n θθθΛ++21)ω从0~∞时,可得到其幅频特性和相频特性曲线例7.1-1 研究RC 低通网络电压转移函数的频率响应H(j ω)=)(1)(2ωωj U j U解:H (s)=SCR SC 11+=RC S RC 111+• 极点S= - RC 1H (j ω)=RCj RC111+ω令θωj Ae RCj =+1A=2)1(2RC +ω θ=arctg ωcR H (ω)=ARC 11 )(ωϕ=0-θ= - arctg ωcR 定性分析:ω从0~∞时,A 单调增大,θ从0~2π H (ω)单调下降,)(ωϕ从0~ - 2π例7.1-2 典型的二阶系统,RLC 串联电路,求动点导纳y(s)=)(1)(1s U s I 的频率特性 解:H (s) =2022ωα++s s s =)2)(1(p s p s s-- 设α>0,ω02 >α2零点:s=0极点:p 1,2 = -220αωα-±j =-βαj ± 其中:Lr2=α 衰减因素 220αωβ-= LC10=ω 谐振角频率只讨论α<ω0时的频率响应,先画极、零图H (j ω)=)2)(1(p j p j j --ωωω=)(2121θθψ--•j e A A BH (ω) =21A A B)21()(θθψωϕ--= 定性分析:ω从0~∞○1 ω=0 B=0,A 1=A=ω 21θθ-= 2πψ=y (ω)=0 2)(πωϕ=ω↑ B 和A 2↑ A 1↓ 21θθ+↑ 2πψ=y (ω) ↑ )(ωϕ↓○2 ω=ω0 y (ω)=α21为极大值 0)(=ωϕ 221πθθ=+ ω↑ B 、A 2、A 1↑ y (ω) ↓ 21θθ+↑ )(ωϕ↓○3ω→∞ y (ω)→0 πθθ=+21 2)(πωϕ-=全通函数: |H(j ω)|为常数设有二阶系统H(s),左半平面有一对极点p 1,2 = -βαj ± 右半平面有一队零点ξ1,2 =βαj ±H(s)=)2)(1()2)(1(p s p s s s ----ξξH(j ω)=)2)(1()2)(1(p j p j j j ----ωωξωξω=)(21212121θθψψ--+•j e A A B B 由图:对所有ω,有A 1= B 1 A 2 =B 2∴ |H(j ω)|= 2121A A BB =1结论:凡极点位于左半开平面,零点位于右半开平面,且以j ω轴镜像对称,此系统函数即为全通函数 最小相移函数零点位于左半开平面的系统函数,其相频特性)(ωϕ最小 一阶 p 1,2 = βj e ± H(z)=ββj ez z k j e z z k --+-*11 共轭极点 h(k)=2|k 1|cos (βk+θ)·u (k)二阶实或共轭: h(k)= Ck ·u (k) k ↑ h(k)↑ (二阶以上同) h(k)=Ckcos (βk+θ)·u (k) k →∞ h(k)→∞ (3) 极点在单位圆外:|a|>1一阶实极点 p=a ,h(k)=a k ·u (k) k ↑ 一阶共轭极点:p=a βj e ± h(k)=C a k cos (βk+θ)·u (k) h(k)↑ 高阶情况同上结论:A H(z)的零、极点决定 h(k) 形式由极点决定幅度和相角由零、极点共同决定B 单位圆内的极点,h(k)为衰减序列,k →∞ h(k)→0,暂态分量C 单位圆上的一阶极点,h(k)为等幅序列,k →∞ h(k)有限值,稳态分量D 单位圆上的二阶及以上极点 h(k)为等幅序列 单位圆外的极点 k →∞ h(k)→∞ 2 离散系统:H(z)零、极点H(T j e ω)关系H(z)=∏∏=-=-ni i p z mj j z m b 1)(1)(ξ 若极点均为单位圆内,收敛域含单位圆频率响应:H(T j e ω)=∏∏=-=-n i i p j m j j j m b 1)(1)(ωξω=∏∏==n i j e i A mj j e j B m b i j11θψ=)(21)(212121nm j e n A A A j e m B B B m b θθθψψψΛΛΛΛ++++=H d (ω) )(ωϕdj e幅频:H d (ω)= H(T j e ω)=nA A A mB B B m b ΛΛ2121相频:)(ωϕd =(m ψψψΛ++21)- (n θθθΛ++21) 分析:ωT 从0~2π,即ω从0~Tπ2,z 由z=1沿单位圆逆时针方向旋转一周。