黑龙江大庆实验中学高三上学期第一次月考数学(理)试题含答案
- 格式:doc
- 大小:708.78 KB
- 文档页数:14
...【全国百强校】黑龙江省大庆实验中学2019届高三上学期第一次月考数学(理)试题一、单选题(每小题5分,共12题)1.已知集合和集合,则等于A. B. C. D.2.“,”的否定是A. ,B. ,C. ,D. ,3.已知平面向量, 且, 则( )A. B. C. D.4.已知角的终边经过点P(4,-3),则的值等于( )A. B. C. D.5.()A. B. C. D.6.中的对边分别是其面积,则中的大小是()A. B. C. D.7.已知函数,则在(1,3)上不单调的一个充分不必要条件是( )A. B. C. D.8.已知的三边长构成公差为2的等差数列,且最大角为120°,则这个三角形的周长为()A. 15B. 18C. 21D. 249.已知函数(其中)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:①直线是函数图象的一条对称轴;②点是函数的一个对称中心;③函数与的图象的所有交点的横坐标之和为.其中正确的判断是()A. ①②B. ①③C. ②③D. ①②③10.已知关于的不等式恒成立,则实数的取值范围是()A. B. C. D.11.在中,角的对边分别为,若,则()A. B. C. D.12.已知直线与函数的图象恰有四个公共点,,,.其中,则有()A. B.C. D.第II卷(非选择题)二、填空题(每小题5分,共4题)13..14.若,,则___________.15.分别是的中线,若,且、的夹角为,则•=__________.16.已知分别为函数,上两点,则两点的距离的最小值是__________.三、解答题17.已知,且(1)求的值;(2)求的值.18.已知为坐标原点,,,若.(1)求函数的最小正周期和单调递减区间;(2)若时,函数的最小值为2,求的值.19.如图所示,中,.(1)求证:是等腰三角形;(2)求的值以及的面积.20.已知函数(1)当时,求的单调增区间;(2)若在上是增函数,求的取值范围.21.在锐角中,角的对边分别为,.(1)求角的大小;(2)若,求的取值范围.22.设函数,其中是实数,已知曲线与轴相切于坐标原点. (1)求常数的值;(2)当时,关于的不等式恒成立,求实数的取值范围;(3)求证:.。
大庆实验中学月考试题一选择题1.已知集合{}{}2cos 0,sin 2700A B x x x A B ==+=⋂o o ,,则为( )A .{}01-,B .{}11-,C .{}1-D .{}02.用反证法证明命题“若0a b c ++≥,0abc ≤,则,,a b c 三个实数中最多有一个小于零”的反设内容为( )A .,,a b c 三个实数中最多有一个不大于零B .,,a b c 三个实数中最多有两个小于零C .,,a b c 三个实数中至少有两个小于零D .,,a b c 三个实数中至少有一个不大于零 3.用数学归纳法证明不等式“241321...2111>++++n n n (n >2)”过程中,由k n =到1+=k n 时,不等式的左边( )A.增加了一项)1(21+k B.增加了两项++121k )1(21+kC.增加了两项++121k )1(21+k ,又减少了一项11+k D.增加了一项)1(21+k ,又减少了一项11+k4.若两个正数b a ,满足, 24a b +<,则222-+=a b z 的取值范围是( )A.{}|11z z -≤≤ B.{}|11z z -≥≥或z C.{}|11z z -<< D.{}|11z z ->>或z5.已知函数()cos f x x x ωω=+(0ω>)的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向左平移6π个单位,得到函数()g x 的图象.关于函数()g x , 下列说法正确的是( ) A .在,42ππ⎡⎤⎢⎥⎣⎦上是增函数 B .其图象关于直线4x π=-对称C .函数()g x 是奇函数D .当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域是[]2,1-6.,,,a b c d R +∈设a b c dS a b c b c d c d a d a b=+++++++++++则下列判断中正确的是( )A .01S <<B .12S <<C .23S <<D .34S <<7.已知等差数列{}n a 的等差0≠d ,且1331,,a a a 成等比数列,若11=a ,n S 为数列{}n a 的前n 项和,则3162++n n a S 的最小值为( )A .4B .3 C.2- D8.如下图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n (n>1,n∈ N *)个点,相应的图案中总的点数记为n a( )A.20102011 D .201120129.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )A.(9题) (10题) 10.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值 D .异面直线E A '与BD 不可能垂直 11.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)21(21f a =,)2(2--=f b ,)21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( )A .b c a <<B .a c b <<C .c b a <<D .b a c <<12.分析函数()f x 的性质:①的图象是中心对称图形;②的图象是轴对称图形;③函数的值域为;④方程有两个解.其中描述正确个数是( )A.1B.2C.3D.4 二填空题13.已知与的夹角为,且,求_________.14.在等式的分母上的三个括号中各填入一个正整数,使得该等式成立,则所填三个正整数的和的最小值是_________.15.如图所示,正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、分别交于两点,设,,给出以下四个结论:①平面平面;②直线∥平面始终成立;③四边形周长,是单调函数;④四棱锥的体积为常数;以上结论正确的是___________.16.若关于的不等式在(0,+)上恒成立,则实数的取值范围是.三解答题17.已知锐角中内角、、所对边的边长分别为、、,满足,且.(Ⅰ)求角的值;(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围18.已知命题:函数在内有且仅有一个零点.命题:在区间[]内有解.若命题“且”是假命题,求实数的取值范围.19.(本小题满分12分)数列的前项和为,且(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的前项和. 20.如图,多面体中,四边形是边长为的正方形,,且,,.(Ⅰ)求证:平面垂直于平面;(Ⅱ)若分别为棱和的中点,求证:∥平面;(Ⅲ)求多面体的体积.21.设函数.(1)若函数是定义域上的单调函数,求实数的取值范围;(2)若,试比较当时,与的大小;(3)证明:对任意的正整数,不等式成立.22.已知函数,在处的切线与直线垂直,函数.(1)求实数的值;(2)设是函数的两个极值点,若,求的最小值.数学(理)答案选择:CCCDD BAACD AB填空: 13.2 14.64 15. ①②④ 16.17(Ⅰ);(Ⅱ) .试题解析:(Ⅰ)因为,由余弦定理知所以又因为,则由正弦定理得:,所以,所以 6分(Ⅱ)由已知,则 8分因为,,由于,所以10分所以,根据正弦函数图象,所以 12分18【解析】解:先考查命题p:若a=0,则容易验证不合题意;故解得a<-1或解得a>1因此a<-1或a>1再考查命题q:因为x∈,所以a≤-(x+)在上有解.可知当且仅当时等号成立,因此当命题p和命题q都真时因为命题“p且q”是假命题,所以命题p和命题q中一真一假或都为假综上,a的取值范围为.19【答案】(1);(2);(3).试题解析:(1)当n=1时,a1=S1=2,当n≥2时,a n=S n-S n-1=n(n+1)-(n-1)n =2n,a1=2满足该式,∴数列{a n}的通项公式为a n=2n 3分(2),①②②-①得,,得b n+1=2(3n+1+1),又当n=1时,b1=8,所以.(3)=n(3n+1)=n·3n+n, 8分∴T n=c1+c2+c3++c n=(1×3+2×32+3×33++n×3n)+(1+2++n),令H n=1×3+2×32+3×33++n×3n,①则3H n=1×32+2×33+3×34++n×3n+1②,-②得,-2H n=3+32+33++3n-n×3n+1=-n×3n+1∴, .10分∴数列{c n}的前n项和. 12分20(1)略(Ⅱ)作,,,是垂足.在中,,.在直角梯形中,.∴,∴四边形是平行四边形,∴.而平面,∴平面. 9分(Ⅲ)21. 试题解析:(1)∵又函数在定义域上是单调函数.∴或在上恒成立若在上恒成立,即函数是定义域上的单调地增函数,则在上恒成立,由此可得;若在上恒成立,则在上恒成立.即在上恒成立.∵在上没有最小值∴不存在实数使在上恒成立.综上所述,实数的取值范围是.(2)当时,函数.令则显然,当时,,所以函数在上单调递减又,所以,当时,恒有,即恒成立.故当时,有(3)法1:证明:由(2)知即令,,即有所以()因此故对任意的正整数,不等式成立.法2:数学归纳法证明:1、当时,左边=,右边=,原不等式成立.2、设当时,原不等式成立,即则当时,左边=只需证明即证,即证由(2)知即令,即有所以当时成立由1、2知,原不等式成立考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、恒成立问题.22. (1)由题可得由题意知,即(2)由,令即而由,即,解上不等式可得:而构造函数由,故在定义域内单调递减,所以的最小值为。
大庆实验中学高三上学期第一次月考数学(理)试题卷(I)选择题(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.)1. ()A. B. C. D.【答案】A【解析】,选A2. 已知集合,则中元素的个数是()A. 2B. 3C. 4D. 5【答案】B【解析】试题分析:当时,;当时,;当时,;当时,,所以,所以,故选B.考点:集合的交集运算.3. 已知函数的定义域为,则函数的定义域为()A. B. C. D.【答案】A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.4. 已知函数是奇函数,当时,(且),且,则的值为()A. B. C. 3 D. 9【答案】B【解析】试题分析:因为,所以,,又,所以,故选B.考点:1.函数的奇偶性;2.函数的表示与求值.5. 已知,则()A. B. C. D.【答案】D【解析】试题分析:因为,所以=,故选D.考点:1、倍角公式;2、两角和与差的正切公式.【方法点睛】根据已知单角的三角函数值求和角(或差角)的三角函数,通常将结论角利用条件角来表示,有时还需借助同角三角函数间的基本关系化为相关角的三角函数后,再利用两角和与差的三角函数公式即可求解.6. 函数的图象关于轴对称,且对任意都有,若当时,,则()A. B. C. D. 4【答案】A【解析】试题分析:因为函数对任意都有,所以,函数是周期为的函数,,由可得,因为函数的图象关于轴对称,所以函数是偶函数,,所以,故选A.考点:1、函数的解析式;2、函数的奇偶性与周期性.7. 已知的外接圆半径为,圆心为点,且,则的值为()A. B. C. D.【答案】C考点:1.向量的线性运算;2.向量数量积的几何运算.【名师点睛】本题考查向量的线性运算、向量数量积的几何运算,属中档题;平面向量的数量积定义涉及到了两向量的夹角与模,是高考的常考内容,题型多为选择填空,主要命题角度为:1.求两向量的夹角;2.两向量垂直的应用;3.已知数量积求模;4.知模求模;5.知模求数量积.8. 将函数图象上所有点的横坐标伸长到原来的2倍,再向右平移个单位长度,得到函数的图象.则图象一条对称轴是()A. B. C. D.【答案】C【解析】图象上所有点的横坐标变为原来的倍,即,再向右平移个单位得到,令.9. 设函数是R上的单调递减函数,则实数的取值范围为( )A. B. C. D.【答案】B【解析】函数是上的单调减函数,则有:解得,故选B.点睛:本题考查分段函数的单调性,解决本题的关键是熟悉指数函数,一次函数的单调性,确定了两端函数在区间上单调以外,仍需考虑分界点两侧的单调性,需要列出分界点出的不等关系.10. 若曲线与曲线在它们的公共点处具有公共切线,则实数()A. -2B.C. 1D. 2【答案】C【解析】试题分析:根据题意可知:,两曲线在点处由公共的切线,所以即:,代入解得:,所以答案为C.考点:1.利用求导求切线斜率;2.解方程.11. 如图,分别是射线上的两点,给出下列向量:①;②;③;④;⑤若这些向量均以为起点,则终点落在阴影区域内(包括边界)的有()A. ①②B. ②④C. ①③D. ③⑤【答案】B【解析】试题分析:在上取使,以为邻边作平行四边形,其终点不在阴影区域内,排除选项;取的中点,作,由于,所以的终点在阴影区域内;排除选项,故选.考点:1.平面向量的线性运算;2.平面向量的几何运算.12. 已知函数,对,使得,则的最小值为()A. B. C. D.【答案】A【解析】令则的最小值,即为的最小值,令,解得∵当时,,当时,故当时,取最小值故选A.【点睛】本题考查的知识点是反函数,利用导数法求函数的最值,其中将求的最小值,转化为求的最小值,是解题的关键.卷(II) (非选择题,共90分)二.填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13. 曲线与所围成的封闭图形的面积为________;【答案】【解析】试题分析:由题意,知所围成的封闭图形的面积为. 考点:定积分的几何意义.14. 若命题“”是假命题,则实数的取值范围是________;【答案】【解析】试题分析:“”是假命题等价于,即,解之得,即实数的取值范围是.考点:1.特称命题与全称命题;2.不等式恒成立与一元二次不等式.15. 若方程在内有解,则的取值范围是________;【答案】【解析】方程即由于设则问题转化为方程在上有解.又方程对应的二次函数的对称轴为,故有,即解得故答案为:【点评】本题主要考查同角三角函数的基本关系,一元二次方程的根的分布与系数的关系,其中利用转化思想将问题转化为方程在上有解是解题的关键.16. 在中,内角的对边分别为,已知,且,则的面积是________.【答案】【解析】试题分析:根据题意由正弦定理得:即:,所以由余弦定理得:又因为:,所以,因为即:即:与联立解得:,所以的面积是:,所以答案为:.考点:1.正弦定理;2.余弦定理;3.三角形的面积公式.三.解答题(本大题共6小题,第17题10分,其余每题12分,解题写出详细必要的解答过程)17. 已知函数.求函数的最小正周期及单调减区间;(2)若,,求的值.【答案】(1) ,(2)【解析】试题分析:(Ⅰ)由二倍角及辅助角公式可得,故最小正周期,由得所以,函数的单调递减区间为;(Ⅱ)因为,所以可得,从而试题解析:(Ⅰ)..4分所以,的最小正周期..6分由..7分化简得所以,函数的单调递减区间为..9分(Ⅱ)因为,所以即..12分又因为所以..13分则,即..14分考点:三角函数及其性质18. 已知点是函数图象上的任意两点,若时,的最小值为,且函数的图象经过点,在中,角的对边分别为,且.(1)求函数的解析式;(2)求的取值范围.【答案】(1)(2)[0,2]【解析】试题分析:(1)根据三角函数的周期公式,结合题意得到,再根据和,得出即可得到函数的解析式;(Ⅱ)化简题中三角等式,得2,由正弦定理得,再利用余弦定理与基本不等式算出 ,从而可得,由题,而即可得到的取值范围试题解析:(1)由题意知, ,又且,,(2)即由,得=, 即为所求取值范围.【点睛】本题考查求三角函数式的表达式,并由此求的取值范围.其中三角函数的图象与性质、正余弦定理和基本不等式求最值等知识的应用是解题的关键.19. 已知为的内角的对边,满足,函数 在区间上单调递增,在区间上单调递减.证明:; (2)若,证明为等边三角形.【答案】(1)见解析(2)见解析【解析】试题分析:(1)通过已知表达式,去分母化简,利用两角和与差的三角函数,化简表达式通过正弦定理直接推出(2)利用函数的周期求出 ,通过 求出的值,利用余弦定理说明三角形是正三角形,即可.试题解析:,,所以..................20. 设函数(为自然对数的底数).(1)当时,求的最大值;(2)当时,恒成立,证明:.【答案】(Ⅰ)f(0)=0见解析(Ⅱ)见解析.【解析】试题分析:(1)求出当时,函数的导数,求得增区间和减区间,即可得到极大值,即为最大值;(2)①当时,即②当时,,分别求出右边函数的最值或值域,即可得证a=1.试题解析:(1)当a=1时,f′(x)=-e x+(1-x)e x=-xe x.当x>0时,f′(x)<0,f(x)在(0,+∞)上单调递减;当x<0时,f′(x)>0,f(x)在(-∞,0)上单调递增.故f(x)在x=0处取得最大值.(2)①当x∈(-∞,0)时,<1⇔(a-x)e x>x+1即a>x+,令g(x)=x+,g′(x)=1->0,则g(x)在(-∞,0)上是增函数,g(x)<g(0)=1,a≥1.②当x∈(0,+∞)时,<1⇔(a-x)e x<x+1,a<x+,由①知g′(x)=,令h(x)=e x-x,h′(x)=e x-1>0,则h(x)>h(0)=1,g′(x)>0,g(x)>g(0)=1,a≤1.故a=1.【点睛】本题考查导数的运用,求单调区间和极值、最值,主要考查函数的单调性的运用,解题时要注意不等式恒成立思想的运用.21. 已知函数.(1)若函数为偶函数,求的值;(2)若,直接写出函数的单调递增区间;(3)当时,若对任意的,不等式恒成立,求实数的取值范围.【答案】(1) (2) 和(3)【解析】试题分析:(1)因为函数为偶函数,所以可由定义得恒成立,然后化简可得(2)分将绝对值符号去掉,注意结合图象的对称轴和区间的关系,写出单调增区间,注意之间用“和”.(3)先整理的表达式,有绝对值的放到左边,然后分讨论,首先去掉绝对值,然后整理成关于x的一元二次不等式恒成立的问题,利用函数的单调性求出最值,从而求出的范围,最后求它们的交集.试题解析:(1)由于函数为偶函数,则,即恒成立,所以,则平方得恒成立,则(2)若,则,则单调递增区间为和(3)不等式转化为在上恒成立,由于则当时,原式为恒成立,即,即; 当时,原式为恒成立,即,解得或当时,原式为恒成立,即,解得或综上22. 已知函数,其中为常数.(1)当,且时,判断函数是否存在极值,若存在,求出极值点;若不存在,说明理由;(2)若,对任意的正整数,当时,求证:.【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】试题分析; (1)令,求出的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值即可;(Ⅱ)时,求的导数,通过讨论是奇数,偶数,结合函数的单调性证明结论即可.试题解析:(1)由已知得函数的定义域为,当时,,所以,当时,由得,此时当时,单调递减;当时,单调递增.当时,在处取得极小值,极小值点为.(2)证:因为,所以.当为偶数时,令,则∴所以当时,单调递增,的最小值为.因此所以成立.当为奇数时,要证,由于,所以只需证. 令,则,当时,单调递增,又,所以当时,恒有,命题成立.。
大庆实验中学二部2024-2025学年度上学期第一次阶段检测试题高一数学注意事项1.考试时间120分钟,满分150分2.答题前,考生务必先将自己的姓名、班级、准考证号填写在答题卡上,并准确填涂。
3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦净后,再选涂其他答案的标号。
非选择题答案使用0.5毫米中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
4.按照题号在各答题区域内作答,超出答题区域书写答案无效。
一、单选题(本题共8小题,共40分。
每题只有一个选项符合题意)1.已知全集,,,则( )A .B .C .D .2.函数)A .B .C .D .3.二次函数,若,则函数在此区间上的值域为( )A .B .C .D .4.使得不等式“”成立的一个必要不充分条件是( )A .B .C .D .5.设,且,则( )A .B .C .D .6.已知,,则的最小值为( )A .13B .16C .3D .67.已知,不等式恒成立,则x 的取值范围为( )A .B .C .D .{}1,2,3,4,5U ={}2,3A ={}1,3,5B =()U A B =U ð{}2,3,4{}2{}1,5{}1,3,4,5()f x =[)()1,22,+∞U (1,)+∞[)1,2[1)+∞()22f x x x =-+-[]1,1x ∈-()f x 74,4⎡⎤--⎢⎥⎣⎦54,4⎡⎤--⎢⎥⎣⎦[]4,2--72,4⎡⎤--⎢⎥⎣⎦24x ≤22x -≤≤2x <2x ≤02x <<,,a b c R ∈a b >ac bc>11a b<22a b>33a b>(),0,m n ∈+∞11n m +=9m n+[]1,1m ∈-()24420x m x m +-+->(],1-∞()1,3()(),13,-∞+∞U []1,38.已知函数对任意,且时,有,则实数a 的取值范围为( )A .B .C .D .二、多选题(本题共3小题,共18分。
大庆实验中学2015—2016高三上半学年数学(理)开学考试第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2C .3D .42.若i(x +y i)=3+4i ,x ,y ∈R,则复数x +y i 的模是( ) A .2 B .3 C .4 D .53.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π4.如图,若依次输入的x 分别为5π6、π6,相应输出的y 分别为y 1、y 2,则y 1、y 2的大小关系是( )A .y 1=y 2B .y 1>y 2C .y 1<y 2D .无法确定5.已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( )A .2B .4C .5D.526.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则a <b 的概率为( )A.45B.35C.25D.157.若函数f (x )=sinx +φ3(φ∈)是偶函数,则φ=( )A.π2B.2π3 C.3π2D.5π38. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间1(0,)2内恒有()0,f x >则()f x 的单调增区间为( ) A.B.C.D.9.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为45的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )A .2BC1D.210.函数|1|||ln --=x e y x 的图象大致是( )1(,)2-∞-11. 已知某几何体的三视图如图所示,其中正视图、侧视图均由直角三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得几何体的体积为( )A.2π3+12B.4π3+16C.2π6+16D.2π3+1212. 已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++, R λ∈, 则动点P 的轨迹一定通过△ABC 的( ) A. 重心 B. 垂心 C. 外心 D. 内心第Ⅰ卷(非选择题 共90分)二、 填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13. 圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________.14. 设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值 .15. 若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列.记数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________.2006(,,,_____.x x S x S ==16.在的二项展开式中含的奇次幂的项之和为当三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程和演算步骤.) 17.(本小题满分12分)已知ABC △1,且sin sin A B C +=. (1)求边AB 的长;(2)若ABC △的面积为1sin 6C ,求角C 的度数.18. (本小题满分12分)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中任取3所学校做进一步数据分析,①求取出的3所学校中没有小学的概率;②设取出的小学个数为随机变量X ,求X 的分布列和数学期望.19. (本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA=AB =12PD .(1)证明:平面PQC ⊥平面DCQ ;(2)求二面角Q -BP -C 的余弦值.20.(本小题满分12分)在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为圆C :x 2+y 2-4x +2=0 的圆心.(1)求椭圆E 的方程;(2)是否存在点P ,P 是椭圆E 上一点,过P 作两条斜率之积为12的直线l 1,l 2,且直线l 1,l 2都与圆C 相切.若存在,求P 的坐标,若不存在,说明理由.21.(本小题满分12分)函数1()ln ,x e f x x-=数列{}n a 满足111,()n n a a f a +==. (1)试求()f x 的单调区间;(2)求证:数列{}n a 为递减数列,且0n a >恒成立.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。
大庆实验中学月考试题一选择题1.已知集合{}{}2cos0,sin 2700A B x x x A B ==+=⋂o o ,,则为( ) A .{}01-, B .{}11-, C .{}1- D .{}02.用反证法证明命题“若0a b c ++≥,0abc ≤,则,,a b c 三个实数中最多有一个小于零”的反设内容为( )A .,,a b c 三个实数中最多有一个不大于零B .,,a b c 三个实数中最多有两个小于零C .,,a b c 三个实数中至少有两个小于零D .,,a b c 三个实数中至少有一个不大于零 3.用数学归纳法证明不等式“241321...2111>++++n n n (n >2)”过程中,由k n =到1+=k n 时,不等式的左边( )A.增加了一项)1(21+k B.增加了两项++121k )1(21+kC.增加了两项++121k )1(21+k ,又减少了一项11+k D.增加了一项)1(21+k ,又减少了一项11+k4.若两个正数b a ,满足, 24a b +<,则222-+=a b z 的取值范围是( )A.{}|11z z -≤≤ B.{}|11z z -≥≥或z C.{}|11z z -<< D.{}|11z z ->>或z5.已知函数()cos f x x x ωω=+(0ω>)的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向左平移6π个单位,得到函数()g x 的图象.关于函数()g x , 下列说法正确的是( ) A .在,42ππ⎡⎤⎢⎥⎣⎦上是增函数 B .其图象关于直线4x π=-对称C .函数()g x 是奇函数D .当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域是[]2,1-6.,,,a b c d R +∈设a b c dS a b c b c d c d a d a b=+++++++++++则下列判断中正确的是( )A .01S <<B .12S <<C .23S <<D .34S <<7.已知等差数列{}n a 的等差0≠d ,且1331,,a a a 成等比数列,若11=a ,n S 为数列{}n a 的前n 项和,则3162++n n a S 的最小值为( )A .4B .3 C.2- D8.如下图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n (n>1,n∈ N *)个点,相应的图案中总的点数记为n a( )A.20102011 D .201120129.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )A.C.(9题) (10题) 10.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值 D .异面直线E A '与BD 不可能垂直 11.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)21(21f a =,)2(2--=f b ,)21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( )A .b c a <<B .a c b <<C .c b a <<D .b a c <<12.分析函数()f x 的性质:①的图象是中心对称图形;②的图象是轴对称图形;③函数的值域为;④方程有两个解.其中描述正确个数是( )A.1B.2C.3D.4 二填空题13.已知与的夹角为,且,求_________.14.在等式的分母上的三个括号中各填入一个正整数,使得该等式成立,则所填三个正整数的和的最小值是_________.15.如图所示,正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、分别交于两点,设,,给出以下四个结论:①平面平面;②直线∥平面始终成立;③四边形周长,是单调函数;④四棱锥的体积为常数;以上结论正确的是___________.16.若关于的不等式在(0,+)上恒成立,则实数的取值范围是.三解答题17.已知锐角中内角、、所对边的边长分别为、、,满足,且.(Ⅰ)求角的值;(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围18.已知命题:函数在内有且仅有一个零点.命题:在区间[]内有解.若命题“且”是假命题,求实数的取值范围.19.(本小题满分12分)数列的前项和为,且(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的前项和. 20.如图,多面体中,四边形是边长为的正方形,,且,,.(Ⅰ)求证:平面垂直于平面;(Ⅱ)若分别为棱和的中点,求证:∥平面;(Ⅲ)求多面体的体积.21.设函数.(1)若函数是定义域上的单调函数,求实数的取值范围;(2)若,试比较当时,与的大小;(3)证明:对任意的正整数,不等式成立.22.已知函数,在处的切线与直线垂直,函数.(1)求实数的值;(2)设是函数的两个极值点,若,求的最小值.数学(理)答案选择:CCCDD BAACD AB填空: 13.2 14.64 15. ①②④ 16.17(Ⅰ);(Ⅱ) .试题解析:(Ⅰ)因为,由余弦定理知所以又因为,则由正弦定理得:,所以,所以 6分(Ⅱ)由已知,则 8分因为,,由于,所以10分所以,根据正弦函数图象,所以 12分18【解析】解:先考查命题p:若a=0,则容易验证不合题意;故解得a<-1或解得a>1因此a<-1或a>1再考查命题q:因为x∈,所以a≤-(x+)在上有解.可知当且仅当时等号成立,因此当命题p和命题q都真时因为命题“p且q”是假命题,所以命题p和命题q中一真一假或都为假综上,a的取值范围为.19【答案】(1);(2);(3).试题解析:(1)当n=1时,a1=S1=2,当n≥2时,a n=S n-S n-1=n(n+1)-(n-1)n =2n,a1=2满足该式,∴数列{a n}的通项公式为a n=2n 3分(2),①②②-①得,,得b n+1=2(3n+1+1),又当n=1时,b1=8,所以.(3)=n(3n+1)=n·3n+n, 8分∴T n=c1+c2+c3++c n=(1×3+2×32+3×33++n×3n)+(1+2++n),令H n=1×3+2×32+3×33++n×3n,①则3H n=1×32+2×33+3×34++n×3n+1②,-②得,-2H n=3+32+33++3n-n×3n+1=-n×3n+1∴, .10分∴数列{c n}的前n项和. 12分20(1)略(Ⅱ)作,,,是垂足.在中,,.在直角梯形中,.∴,∴四边形是平行四边形,∴.而平面,∴平面. 9分(Ⅲ)21. 试题解析:(1)∵又函数在定义域上是单调函数.∴或在上恒成立若在上恒成立,即函数是定义域上的单调地增函数,则在上恒成立,由此可得;若在上恒成立,则在上恒成立.即在上恒成立.∵在上没有最小值∴不存在实数使在上恒成立.综上所述,实数的取值范围是.(2)当时,函数.令则显然,当时,,所以函数在上单调递减又,所以,当时,恒有,即恒成立.故当时,有(3)法1:证明:由(2)知即令,,即有所以()因此故对任意的正整数,不等式成立.法2:数学归纳法证明:1、当时,左边=,右边=,原不等式成立.2、设当时,原不等式成立,即则当时,左边=只需证明即证,即证由(2)知即令,即有所以当时成立由1、2知,原不等式成立考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、恒成立问题.22. (1)由题可得由题意知,即(2)由,令即而由,即,解上不等式可得:而构造函数由,故在定义域内单调递减,所以的最小值为。