福州市华伦中学数学圆 几何综合(篇)(Word版 含解析)
- 格式:doc
- 大小:1.33 MB
- 文档页数:25
福建省福州市台江区福州华伦中学2024-2025学年九年级上学期月考数学试题一、单选题1.已知A ∠是锐角,tan A =A ∠的度数是( )A .15︒B .30︒C .45︒D .60︒ 2.在Rt ABC △中,90C ∠=︒,那么BC AC 等于( ) A .tan A B .cot A C .sin A D .cos A 3.在Rt △ABC 中,∠C =90°,AB =5,AC =3,则下列等式正确的是( )A .sin A =35B .cos A =35C .tan A =35D .cos A =45 4.如图,有一斜坡AB 的长为10,坡角36B ∠=︒,则斜坡AB 的铅垂高度AC 为( )A .10tan36⋅︒B .10sin36⋅︒C .10sin 36︒D .10cos36⋅︒5.Rt ABC ∆中,390,sin ,10,5C A AB ∠=︒== 则AC 的长为( ) A .6 B .8 C .10D .126.如图,在菱形ABCD 中,AC =CD ,则cos B 的值为( )A .34BC .13D .127.如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB =AC ,27ABC ∠=︒,BC =44cm ,则高AD 约为( )(参考数据:sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .9.90cmB .11.22cmC .19.58cmD .22.44cm8.如图,已知点B ,D ,C 在同一直线的水平,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,CD a =,则建筑物AB 的高度为( )A .tan tan a αβ- B .tan tan a βα- C .tan tan tan tan a αβαβ- D .tan tan tan tan a αββα- 9.如图,ΔABC 中,AB AC =,30BAC ∠=︒,D 是AB 上一点,且2BD AD =,将ΔABC 沿过D 点的一条直线翻折,点B 恰好落在AC 边上的F 点处,折痕交BC 于点E ,则sin FEC ∠的值为( )A .13B .14 C D 10.已知抛物线2y ax bx c =++过(),a m ,()3,c n +,()4,c 三点.若0n >,则下列判断正确的是( )A .0a >B .0b <C .b n >D .c m <二、填空题11.计算:12cos60-+︒=.12.在ABC V 中,90C ∠=︒,4sin 5A =,则cos A =. 13.在锐角ABC V 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sin sin sin a b c R A B C===(其中R 为ABC V 的外接圆半径)成立.在ABC V 中,若75A ∠=︒,45B ∠=︒,4c =,则ABC V 的外接圆面积为.14.我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD 的面积是100,小正方形EFGH 的面积是4,那么tan ADF ∠=.15.如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点B 处,底端落在水平地面的点A 处,如果将梯子底端向墙面靠近,使梯子与地面所成角为β,且3sin cos 5αβ==,则梯子顶端上升了米.16.如图,已知28AC AO ==,平面内点P 到点O 的距离为2,连接AP ,若60APB ∠=︒且12BP AP =,连接AB ,BC ,则线段BC 的最小值为.三、解答题17.解方程:2430x x -+=.18.如图,在Rt ABC △中,90C ∠=︒,45A ∠=︒,2BC =,解这个直角三角形.19.如图所示,在ABC V 中,30B ∠=︒,3sin 5C =,10AC =,求AB 的长.20.平放在地面上的三角形铁板ABC 的一部分被沙堆掩埋,其示意图如图所示,量得∠A 为60︒,∠B 为30︒,边AB 的长为2m ,BC 边上露出部分BD 的长为0.8m ,求铁板BC 边被掩埋部分CD 的长.(结果精确到0.1m 1.4 1.73)21.如图,已知矩形ABCD .(1)尺规作图:在BC 上方求作△FBC ,使得FB =FC ,且点F 与点A 关于过点B 的直线对称;(保留作图痕迹,不写作法)(2)在(1)的条件下,若AB =3,BC =5,求sin ABF ∠的值.22.在Rt ABC △中,90C ∠=︒,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,请你确定式子22cos cos a b A B bc ac+是否为常数,并试证明你的结论. 23.“风电”是未来全球最重要的清洁能源之一,在我们的身边也经常能见到“风电”的身影,某数学兴趣小组测量一架风力发电机塔杆高度的活动报告如下:测量示意说明:塔杆度,利用无人机分别在端请利用表中提供的信息,求风力发电机的塔杆高度PD .(参考数据:sin180.309︒≈,cos180.951︒≈,tan180.325︒≈)24.如图,在Rt ABC △中,902ACB BC AC ∠=︒=,,D ,E 分别是边BA BC ,的中点,连接DE ,将BDE V 绕点B 顺时针旋转α 0°<α<90°得到BFG V ,点D 的对应点是点F ,连接AF CG ,.(1)求证:BFA BGC ∠=∠;(2)若90BFA ∠=︒,求sin CBF ∠的值.25.在平面直角坐标系中,O 为坐标原点,抛物线2y x c =+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且12OA OC =. (1)求抛物线的函数表达式;(2)点D 为线段AB 上的动点,过点D 作AC 的平行线交BC 于点E ,求C D E V面积的最大值; (3)点M是该抛物线上不同于A ,B 的一个动点,连接AM ,过点O 作AM 的平行线1l ,过点B 作y 轴的平行线2l ,交1l 于点N ,判断直线MN 是否恒过一定点,如果过定点,求出定点坐标;如果不过定点,说明理由.。
福建省福州市台江区华伦中学2024届数学七年级第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线2.按括号内的要求用四舍五入法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.02(精确到0.01)D.0.0136≈0.014(精确到0.0001)3.如图是一个正方体的表面展开图,则原正方体中与“我”字所在的面相对的面上标的字是().A.我B.的C.梦D.国4.下列语句中:①画直线AB=3cm;②直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;③延长直线OA;④在同一个图形中,线段AB与线段BA是同一条线段.正确的个数有()A.0 B.1 C.2 D.35.某几何体的展开图如图所示,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱6.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港7.如图是由5个大小相同的正方体组合而成的几何体,从正面看得到的图形是()A.B.C.D.8.如图所示,点O在直线AB上,∠EOD=90°,∠COB=90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOE与∠COD互余D.∠AOC与∠COB互补9.下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则a b c cB.若a=b,则ac=bcC.若a(x2+1)=b(x2+1),则a=bD.若x=y,则x﹣3=y﹣310.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b二、填空题(本大题共有6小题,每小题3分,共18分)11.点P在数轴上距原点6个单位长度,且位于原点的左侧,若将P向右移动5个单位长度,再向左移动2个单位长度,此时点P表示的数是_____.12.一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为_____分.13.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜间,温度可降至-183℃,则月球表面昼夜的温度差是_________℃.14.若3x =是关于x 的方程3216x k +-=的解,则k 的值为______________.15.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______. 16.按如图所示的程序计算,若开始输入的n 的值为2-,则最后输出的结果是__________.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.18.(8分)为提倡节约用水,我县自来水公司每月只给某单位计划内用水200吨,计划内用水每吨收费2.4元,超计划部分每吨按3.6元收费.⑴用代数式表示下列问题(最后结果需化简 ):设用水量为x 吨,当用水量小于等于200吨时,需付款多少元?当用水量大于200吨时,需付款多少元?⑵若某单位4月份缴纳水费840元,则该单位用水量多少吨?19.(8分)解下列方程:(1)4﹣4(x ﹣3)=2(9﹣x )(2)221153x x x ---=- 20.(8分)先化简,再求值:()111221x y x y x y y x y x ------⎛⎫⎛⎫++⋅÷ ⎪ ⎪--⎝⎭⎝+⎭,其中122,3x y -==-21.(8分)计算.2211312()()2323x x y x y --+-+ 22.(10分)先化简,再求值:()()2232322x xy x y xy y ⎡⎤---++⎣⎦,其中x=-4,y=1. 23.(10分)(1)先化简,再求值:,其中,满足. (2)关于的代数式的值与无关,求的值. 24.(12分)解方程:36x --234x -=1参考答案一、选择题(每小题3分,共30分)1、D【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【题目详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D .【题目点拨】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.2、C【分析】根据近似数的定义可以得到各个选项的正确结果,从而可以解答本题.【题目详解】解:403.53≈404(精确到个位),故选项A 错误,2.604≈2.6(精确到十分位),故选项B 错误,0.0234≈0.02(精确到0.01),故选项C 正确,0.0136≈0.0136(精确到0.0001),故选项D 错误,故选:C .【题目点拨】本题考查近似数的概念,解答本题的关键是明确近似数的定义.3、D【分析】利用正方体及其表面展开图的特点解题.【题目详解】这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:D.【题目点拨】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B【分析】根据射线的表示,线段的性质以及直线的性质对各小题分析判断即可得解.【题目详解】直线没有长度,故①错误,射线只有一个端点,所以射线AB与射线BA是两条射线,故②错误,直线没有长度,不能延长,故③错误,在同一个图形中,线段AB与线段BA是同一条线段,故④正确,∴正确的有④,共1个,故选B.【题目点拨】本题考查了直线、线段以及射线的定义,熟记概念与性质是解题的关键5、A【分析】侧面为三个长方形,底面为三角形,故原几何体为三棱柱.【题目详解】观察图形可知,这个几何体是三棱柱.故选:A.【题目点拨】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.6、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【题目点拨】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7、C【解题分析】根据三视图的定义:主视图是从正面观察得到的图形解答即可.【题目详解】从正面观察可知:图形有两层,下层有3个正方体,上层左边有1个正方体,观察4个选项,只有C符合上面的几何体,故选C.【题目点拨】本题考查了简单组合体的三视图,注意掌握主视图、俯视图、左视图的观察方向.8、C【分析】根据垂直的定义和互余解答即可.【题目详解】解:∵∠EOD=90°,∠COB=90°,∴∠1+∠DOC=∠2+∠DOC=90°,∴∠1=∠2,∴∠AOE+∠2=90°,∵∠1+∠AOE=∠1+∠COD,∴∠AOE=∠COD,故选:C.【题目点拨】本题考查了垂线的定义,关键是熟悉当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;平角的度数是180°.9、A【分析】通过等式的基本性质判断即可;【题目详解】解:∵若a=b,只有c≠0时,a bc c成立,∴选项A符合题意;∵若a=b,则ac=bc,∴选项B不符合题意;∵若a(x2+1)=b(x2+1),则a=b,∴选项C不符合题意;∵若x=y,则x﹣3=y﹣3,∴选项D不符合题意.故选:A.【题目点拨】本题主要考查了等式的基本性质,准确计算是解题的关键.10、C【分析】根据线段的和差关系即可求解.【题目详解】解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.【题目点拨】此题考查两点间的距离,解题关键是熟练掌握线段的和差关系.二、填空题(本大题共有6小题,每小题3分,共18分)11、-3【分析】先求出P点表示的数,再列出算式,最后求出即可.【题目详解】解:∵P在数轴上距原点6个单位长度,且位于原点的左侧,∴P点表示的数是﹣6,﹣6+5﹣2=﹣3,即此时点P所表示的数是﹣3,故答案为:﹣3【题目点拨】本题考查数轴和有理数的计算,能根据题意求出P点表示的数和列出算式是解题的关键.12、11【分析】根据超过96分,记为“+”,低于96分,记为“-”,即可得出答案.【题目详解】根据题意可得96-85=11故85分应记为-11分故答案为-11.【题目点拨】本题考查的是正负数在实际生活中的应用,比较简单,需要明确正负数在不同题目中代表的实际意义.13、1【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【题目详解】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至-183℃,所以月球表面昼夜的温差为:127℃-(-183℃)=1℃.故答案为1.【题目点拨】此题主要考查正负数在实际生活中的应用,温差=最高气温-最低气温.14、-1【分析】把x=3 代入方程得到以k 为未知数的方程,求解即可.【题目详解】∵3x =是关于x 的方程3216x k +-=的解,∴9+2k-1=6,解得,k=-1.故答案为:-1.【题目点拨】本题考查了一元一次方程的解法,本题相当于把k 看成未知数,解关于k 的一元一次方程.15、120182【分析】按照定义式()1f x x x=+,发现规律,首尾两两组合相加,剩下中间的12,最后再求和即可. 【题目详解】11111(1)(2)(2019)20192018201732f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋯⋯+++++⋯⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =11111122017201820192020201920184323201820192020+++⋯+++++⋯+++ =1201912018120171312120202020201920192018201844332⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++⋯+++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =120182+=120182故答案为:120182 【题目点拨】本题考查了定义新运算在有理数的混合运算中的应用,读懂定义,发现规律,是解题的关键.16、15【分析】根据运算程序,把2n =-代入计算,即可得到答案.【题目详解】解:当2n =-时,2192(2)1915n +=⨯-+=,∵1510>,∴输出的结果是15;故答案为:15.【题目点拨】本题考查了代数式求值,读懂图表运算程序是解题的关键.三、解下列各题(本大题共8小题,共72分)17、CE =10.4cm .【分析】根据中点的定义,可得AC 、BC 的长,然后根据题已知求解CD 、DE 的长,再代入CE=DE-CD 即可.【题目详解】∵AC=BC=12AB=12cm ,CD=13AC=4cm ,DE=35AB=14.4cm , ∴CE=DE ﹣CD=10.4cm.18、⑴当用水量小于等于200吨,需付款2.4x ,当用水量大于200吨,需付款(3.6240)x -元;⑵该单位用水量300吨.【分析】(1)根据计划内用水每吨收费2.4元,可求出用水量小于等于200吨时,需付款的钱数;再根据超计划部分每吨按3.6元收费,可求出用水量大于200吨时,需付款钱数;(2)先判断该单位4月份用水量是否超过200吨,再根据(1)中得出的关系式列方程求解即可.【题目详解】解:(1)由题意可知:当用水量小于等于200吨,需付款2.4x当用水量大于200吨,需付款2.4200 3.6(200)(3.6240)x x ⨯+-=-元(2)因为2.4200480840⨯=<所以该单位4月份用水量超过200吨根据题意得:3.6(200)840480x -=-解得:300x =答:该单位用水量300吨.【题目点拨】本题考查的知识点是列代数式以及一元一次方程的应用,解此题的关键是读懂题目,列出正确的代数式.19、(1)1x =-;(2)13x =-【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,然后移项合并,即可得到答案.【题目详解】解:(1)去括号得:4﹣4x +12=18﹣2x ,移项合并得:﹣2x =2,解得:x =﹣1;(2)去分母得:15x ﹣3x +6=10x ﹣5﹣15,移项合并得:2x =﹣26,解得:x =﹣1.【题目点拨】本题考查了解一元一次方程,解题的关键是熟练掌握运算法则进行解题.20、-xy ,92【分析】根据分式的混合运算以及负整数指数幂的性质,即可求解. 【题目详解】()111221x y x y x y y x y x ------⎛⎫⎛⎫++⋅÷ ⎪ ⎪--⎝⎭⎝+⎭ =()111111()()x y x y x y x y x y x y ------⎛⎫-+⋅⋅ ⎪+-⎝⎭++ =111()x y x y ---⋅- =()xy x y y x -⋅- =-xy .当122,3x y -==-时,原式=12192)(3)92(2-⨯-=⨯=-. 【题目点拨】本题主要考查分式的混合运算以及负整数指数幂的性质,掌握通分和约分以及负整数指数幂的性质,是解题的关键.21、23x y -+【分析】先去括号,再合并同类项即可求解. 【题目详解】解:原式22123122323x x y x y =-+-+ 22132122233x x x y y =--++ 23x y =-+.【题目点拨】本题考查整式的运算,掌握去括号法则是解题的关键.22、8xy -,64【分析】先去括号,再合并同类项,然后把x,y 的值代入化简后的式子计算即可.【题目详解】解:原式22363222x xy x y xy y =--+-- 8xy =-当x=-4,y=1时,原式()84264=-⨯-⨯=【题目点拨】本题考查了整式的化简求值,掌握整式的加减的计算法则是解题关键.23、(1)x 2y+xy 2 ;(2)【解题分析】原式去括号合并同类项得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【题目详解】(1)原式=∵∴∴原式==(2)原式 = =∵代数式的值与无关,∴4-k=0, ∴【题目点拨】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键. 24、94x =- 【分析】按照方程两边同乘以一个数去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【题目详解】解:方程两边同时乘以12得:2(x-3)-3(2x-3)=12去括号得:2x-6-6x+9=12 移项合并同类项得:-4x=9系数化为1得:x=-9 4【题目点拨】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键,去分母时注意方程两边都要乘以同一个数.。
福建省福州市台江区华伦中学2024年九上数学开学联考模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)能判定四边形ABCD 是平行四边形的是()A .AD //BC ,AB =CD B .∠A =∠B ,∠C =∠D C .∠A =∠C ,∠B =∠D D .AB =AD ,CB =CD 2、(4分)某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A .152块B .153块C .154块D .155块3、(4分)如图,矩形ABCD 的顶点A ,C 分别在直线a ,b 上,且a ∥b ,∠1=50°,则∠2的度数为()A .30°B .40°C .50°D .60°4、(4分)()A .B C D .5、(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是()A .253520x x =-B .253520x x =-C .253520x x =+D .253520x x=+6、(4分)甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是()统计量甲乙丙丁方差0.600.620.500.44A .甲B .乙C .丙D .丁7、(4分)设max{a ,b }表示a ,b 两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x 的函数y =max{2x ,x +2}可以是()A .()2(2)22x x y x x +<⎧=≥⎨⎩B .()2(2)22x x y x x <⎧=+≥⎨⎩C .2y x =D .2y x =+8、(4分)在平面直角坐标系中,点P (﹣3,2)在()A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)化简a b b a a b +--的结果是______10、(4分)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.11、(4分)当x =__________时,代数式223x x -+取得最小值.12、(4分)已知菱形ABCD 的对角线AC=10,BD=24,则菱形ABCD 的面积为__________。
2022-2023学年九上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥ B .1m C .1m D .1m <2.如图,AB 、AC 是O 的两条弦,若30A ∠=︒,则BOC ∠的度数为( )A .30B .50︒C .60︒D .70︒3.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,24.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A .抛一枚硬币,正面朝上的概率B .掷一枚正六面体的骰子,出现1点的概率C .转动如图所示的转盘,转到数字为奇数的概率D .从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率5.抛物线23y x =向左平移1个单位,再向下平移2个单位,所得到的抛物线是( )A .23(1)2=--y xB .23(1)2y x =+-C .23(1)2y x =++D .23(1)2y x =-+6.如图,点A ,B ,C 都在⊙O 上,若∠C=35°,则∠AOB 的度数为( )A .35°B .55°C .145°D .70°7.如图,在平面直角坐标系xOy 中,△ABC 顶点的横、纵坐标都是整数.若将△ABC 以某点为旋转中心,顺时针旋转90°,得到△A 1B 1C 1,则旋转中心的坐标是( )A .(0,0)B .(1,0)C .(1,﹣1)D .(1,﹣2)8.两个相似三角形的对应边分别是15cm 和23cm ,它们的周长相差40cm ,则这两个三角形的周长分别是( ) A .45cm ,85cm B .60cm ,100cm C .75cm ,115cm D .85cm ,125cm9.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC =( )A .30°B .40°C .50°D .60°10.抛物线22(2)3=--+y x 的顶点坐标是( )A .(2,3)-B .(2,3)-C .(2,3)--D .(2,3)二、填空题(每小题3分,共24分)11.计算2cos45°= ________________ 12383π)0+(12)﹣1=_____. 13.在平面直角坐标系xOy 中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB交x 轴于点1A ,作正方形111A B C C ,延长11C B 交x 轴于点2A ,作正方形2221A B C C ,…按这样的规律进行下去,第n 个正方形的面积为_____________.14.在平面直角坐标系中,点,A B 的坐标分别是()()4,25,0A B ,,以点O 为位似中心,相们比为12,把ABO 缩小,得到11A B O ,则点A 的对应点1A 的坐标为_____.15.一元二次方程x 2﹣x=0的根是_____.16.请写出一个开口向上,并且与y 轴交于点(0,-1)的抛物线的表达式:______ 17.在平面直角坐标系中,ABO ∆与11A B O ∆位似,位似中心为原点O ,点A 与点1A 是对应顶点,且点A ,点1A 的坐标分别是42A (,),121A --(,),那么ABO ∆与11A B O ∆的相似比为__________. 18.如图,分别以正三角形的 3 个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱 洛三角形.若正三角形边长为 3 cm ,则该莱洛三角形的周长为_______cm .三、解答题(共66分)19.(10分)综合与探究如图1,平面直角坐标系中,直线:24l y x =+分别与x 轴、y 轴交于点A ,B .双曲线()0k y x x=>与直线l 交于点(),6E n .(1)求k 的值;(2)在图1中以线段AB 为边作矩形ABCD ,使顶点C 在第一象限、顶点D 在y 轴负半轴上.线段CD 交x 轴于点G .直接写出点A ,D ,G 的坐标;(3)如图2,在(2)题的条件下,已知点P 是双曲线()0k y x x=>上的一个动点,过点P 作x 轴的平行线分别交线段AB ,CD 于点M ,N .请从下列A ,B 两组题中任选一组题作答.我选择组题.A .①当四边形AGNM 的面积为5时,求点P 的坐标;②在①的条件下,连接PB ,PD .坐标平面内是否存在点Q (不与点P 重合),使以B ,D ,Q 为顶点的三角形与PBD ∆全等?若存在,直接写出点Q 的坐标;若不存在,说明理由.B .①当四边形AGNM 成为菱形时,求点P 的坐标;②在①的条件下,连接PB ,PD .坐标平面内是否存在点Q (不与点P 重合),使以B ,D ,Q 为顶点的三角形与PBD ∆全等?若存在,直接写出点Q 的坐标;若不存在,说明理由.20.(6分)《海岛算经》第一个问题的大意是:如图,要测量海岛上一座山峰A 的高度AH ,立两根高3丈的标杆BC 和DE ,两竿之间的距1000BD =步,D B H 、、成一线,从B 处退行123步到F ,人的眼睛贴着地面观察A 点,A C F 、、三点成一线;从D 处退行127步到G ,从G 观察A 点,A E G 、、三点也成一-线.试计算山峰的高度AH 及HB 的长. (这里1步6=尺,1丈10=尺,结果用丈表示) .怎样利用相似三角形求得线段AH 及HB 的长呢?请你试一试!21.(6分)如图,A(8,6)是反比例函数y=mx(x>0)在第一象限图象上一点,连接OA,过A作AB∥x轴,且AB=OA(B在A右侧),直线OB交反比例函数y=mx的图象于点M(1)求反比例函数y=mx的表达式;(2)求点M的坐标;(3)设直线AM关系式为y=nx+b,观察图象,请直接写出不等式nx+b﹣mx≤0的解集.22.(8分)如图,平面直角坐标系xOy中点A的坐标为(﹣1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值.23.(8分)如图,有四张质地完全相同的卡片,正面分别写有四个角度,现将这四张卡片洗匀后,背面朝上.(1)若从中任意抽取--张,求抽到锐角卡片的概宰;(2)若从中任意抽取两张,求抽到的两张角度恰好互补的概率.24.(8分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=1.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.25.(10分)小王去年开了一家微店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同,试求每月盈利的平均增长率.26.(10分)在△ABC中,∠C=90°.(1)已知∠A=30°,BC=2,求AC、AB的长;(2)己知tan A=24,AB=2AC、BC的长.参考答案一、选择题(每小题3分,共30分)1、D【解析】由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1.故选D .【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键.2、C【分析】根据同弧所对的圆周角是圆心角的一半即可求出结论.【详解】解:∵30A ∠=︒∴∠BOC=2∠A=60°故选C .【点睛】此题考查的是圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.3、C【解析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.4、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A 、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意; B 、掷一枚正六面体的骰子,出现1点的概率为16,故此选项不符合题意;C 、转动如图所示的转盘,转到数字为奇数的概率为23,故此选项不符合题意; D 、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率为13,故此选项符合题意. 故选:D .【点睛】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键.5、B【分析】根据“左加右减、上加下减”的平移规律即可解答.【详解】解:抛物线23y x =向左平移1个单位,再向下平移2个单位,所得到的抛物线是23(1)2y x =+-, 故答案为:B .【点睛】本题考查了抛物线的平移,解题的关键是熟知“左加右减、上加下减”的平移规律.6、D【解析】∵∠C =35°, ∴∠AOB =2∠C =70°. 故选D .7、C【解析】先根据旋转的性质得到点A 的对应点为点1A ,点B 的对应点为点1B ,点C 的对应点为点1C ,再根据旋转的性质得到旋转中心在线段1AA 的垂直平分线上,也在线段1CC 的垂直平分线上,即两垂直平分线的交点为旋转中心,而易得线段1AA 的垂直平分线为直线x=1,线段1CC 的垂直平分线为以1CC 为对角线的正方形的另一条对角线所在的直线上.【详解】∵将△ABC 以某点为旋转中心,顺时针旋转90°得到△111A B C ,∴点A 的对应点为点1A ,点B 的对应点为点1B ,点C 的对应点为点1C作线段1AA 和1CC 的垂直平分线,它们的交点为P (1,-1),∴旋转中心的坐标为(1,-1).故选C .【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 8、C【解析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm ,则大三角形的周长为(x+40)cm , 由题意得,154023x x =+, 解得,x=75,则x+40=115,故选C .9、C【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得∠BOC ,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算.【详解】解:根据圆周角定理,得∠BOC =2∠A =80°∵OB =OC∴∠OBC =∠OCB =1802BOC ︒-∠=50°, 故选:C .【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,掌握圆周角定理是解题的关键.10、D【分析】当2x = 时,是抛物线的顶点,代入2x =求出顶点坐标即可.【详解】由题意得,当2x = 时,是抛物线的顶点代入2x =到抛物线方程中 22(22)33y =-⨯-+=∴顶点的坐标为(2,3)故答案为:D .【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】将cos45°=2代入进行计算即可.cos45°1= 故答案为:1.【点睛】此题考查的是特殊角的锐角三角函数值,掌握cos45°=2是解决此题的关键. 12、1 【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.﹣π)0+(12)﹣1 =2﹣1+2=1.故答案为:1.【点睛】此题考查的是实数的混合运算,掌握立方根的定义、零指数幂的性质和负指数幂的性质是解决此题的关键. 13、2235()2n -⨯【分析】推出AD=AB ,∠DAB=∠ABC=∠ABA 1=90°=∠DOA ,求出∠ADO=∠BAA 1,证△DOA ∽△ABA 1,得出1012BA A AB OD ,求出AB ,BA 1,求出边长A 1,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n 个正方形的边长,求出面积即可.【详解】∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=∠ABC=∠ABA 1=90°=∠DOA , ∴∠ADO+∠DAO=90°,∠DAO+∠BAA 1=90°,∴∠ADO=∠BAA 1,∵∠DOA=∠ABA 1,∴△DOA ∽△ABA 1,∴1012BA A AB OD ,∵=∴BA 1∴第2个正方形A 1B 1C 1C 的边长A 1C=A 153522, 面积是22353522; 同理第3232⎛⎫==⎪⎝⎭面积是22433522⎡⎛⎫⎛⎫=⨯⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎣; 第4个正方形的边长是3352 ,面积是6352…, 第n 个正方形的边长是1352n ,面积是2235()2n -⨯ 故答案为: 2235()2n -⨯【点睛】 本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目14、()2,1或()2,1--【解析】利用位似图形的性质可得对应点坐标乘以12和-12即可求解. 【详解】解:以点O 为位似中心,相似比为12,把ABO 缩小,点A 的坐标是()4,2A 则点A 的对应点1A 的坐标为114,222⎛⎫⨯⨯ ⎪⎝⎭或114,222⎛⎫-⨯-⨯ ⎪⎝⎭,即()2,1或()2,1--, 故答案为:()2,1或()2,1--.【点睛】本题考查的是位似图形,熟练掌握位似变换是解题的关键.15、x 1=0,x 2=1【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x (x ﹣1)=0,可得x=0或x ﹣1=0,解得:x 1=0,x 2=1.故答案为x 1=0,x 2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.16、y=x 2-1(答案不唯一).【解析】试题分析:抛物线开口向上,二次项系数大于0,然后写出即可. 抛物线的解析式为y=x 2﹣1.考点:二次函数的性质.17、2【分析】分别求出OA 和OA 1的长度即可得出答案.【详解】根据题意可得,OA ==1OA ==2=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.18、3π【分析】直接利用弧长公式计算即可.【详解】解:该莱洛三角形的周长=3×603=3180ππ⨯. 故答案为:3π.【点睛】本题考查了弧长公式:=180n R l π(弧长为l ,圆心角度数为n ,圆的半径为R ),也考查了等边三角形的性质.三、解答题(共66分)19、(1)6;(2)()2,0A -,()0,1D -,1,02G ⎛⎫ ⎪⎝⎭;(3)A.①()3,2P ,②()13,2Q -,2(3,Q 1),()33,1Q -;B.①P ,②1Q ⎛ ⎝,2Q ,3Q ⎛ ⎝. 【分析】(1)根据点(),6E n 在24y x =+的图象上,求得n 的值,从而求得k 的值;(2)点A 在直线l 上易求得点A 的坐标,证得~AOB DOA 可求得点D 的坐标,证得AOB GOD ∆∆即可求得点G 的坐标;(3)A.①作NH x ⊥轴,利用平行四边的面积公式先求得点P 的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;B.①作MF x ⊥轴,根据菱形的性质结合相似三角形的性质先求得点P 的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;【详解】(1)(),6E n 在24y x =+的图象上,624n ∴=+,1n ∴=,∴点E 的坐标是()16, , ()1,6E 在k y x =的图象上, ∴61k =, ∴6k =;(2)对于一次函数24y x =+,当0x =时,4y =,∴点B 的坐标是()04,, 当0y =时,2x =-,∴点A 的坐标是()20-,, ∴4OB =,2OA =,在矩形ABCD 中,90BAO OAD ∠+∠=︒, 90ADO OAD ∠+∠=︒,∴BAO ADO ∠=∠,∴~Rt AOB Rt DOA ,AO OB DO AO∴= , 242DO ∴= , 1DO ∴=,∴点D 的坐标是()01-,, 矩形ABCD 中,AB ∥DG ,∴AOB GOD ∆∆AO OB GO OD∴=241GO ∴= 12GO ∴= ∴点G 的坐标是102⎛⎫ ⎪⎝⎭,, 故点A ,D ,G 的坐标分别是:()20-,,()01-, ,102⎛⎫ ⎪⎝⎭, ; (3)A :①过点N 作NH x ⊥轴交x 轴于点H , //MN x 轴,//AB CD ,∴四边形AGNM 为平行四边形,AGNM S AG NH ∴=⋅平行四边形552NH ∴= 2NH ∴=P ∴的纵坐标为2,∴62x=, ∴3x =,∴点P 的坐标是()32,,②当1BQ D BPD ≅时,如图1,点1Q 与点P 关于y 轴对称,由轴对称的性质可得:点1Q 的坐标是() 32-,;当2DQ B BPD ≅时,如图2,过点2Q 作2Q L ⊥y 轴于L ,直线PM 交 y 轴于R , ∵2DQ B BPD ≅,∴2Q BL PDR ∠∠=,2Q B PD =,∴2Rt Q BL Rt PDR ≅, ∴2Q L PR =,BL DR =, ∵点P 的坐标是()32,,点D 的坐标是()01-, , ∴23Q L PR ==,()213BL DR ==--=,431LO OB BL =-=-=, 点2Q 的坐标是()31-, ,当3DQ B BPD ≅时,如图3,点3Q 与点2Q 关于y 轴对称,由轴对称的性质可得:点3Q 的坐标是() 31,;B :①过点M 作MF x ⊥轴于点F()2,0A -,()0,4B ,1 02G ⎛⎫ ⎪⎝⎭, , ∴2OA =,4OB =,12OG =, 22222425AB OA OB ∴++=四边形AGNM 为菱形,15222AM AG AO OG ∴==+=+=, ∵MF x ⊥轴,∴ME ∥BO ,∴AMF ABO ∆∆ ,AM MF AB OB∴=, 52425MF =, 5MF ∴=P ∴5 65x =, ∴655x = ∴点P 的坐标是65,55;②当1BQ D BPD ≅时,如图4,点1Q 与点P 关于y 轴对称,由轴对称的性质可得:点1Q 的坐标是6 555⎛⎫- ⎪⎝⎭,;当2DQ B BPD ≅时,如图5,过点2Q 作2Q L ⊥y 轴于L ,直线PM 交 y 轴于R , ∵2DQ B BPD ≅,∴2Q BL PDR ∠∠=,2Q B PD =,∴2Rt Q BL Rt PDR ≅, ∴2Q L PR =,BL DR =, ∵点P 的坐标是6555, ,点D 的坐标是()01-, ,1 02G ⎛⎫ ⎪⎝⎭, ,∴26 55Q L PR ==,()5151BL DR ==--=+,35LO OB BL =-=-, 点2Q 的坐标是65355⎛⎫-- ⎪⎝⎭, ,当3DQ B BPD ≅时,如图6,点3Q 与点2Q 关于y 轴对称,由轴对称的性质可得:点3Q 的坐标是6 5355⎛⎫- ⎪⎝⎭,;【点睛】本题考查了反比例函数与一次函数的综合应用,运用待定系数法求反比例函数与一次函数的解析式,掌握函数图象上点的坐标特征和矩形、菱形的性质;会运用三角形全等的知识解决线段相等的问题;理解坐标与图形性质,综合性强,有一定的难度.20、BH=18450丈,AH=753丈.【分析】根据“平行线法”证得△BCF ∽△HAF 、△DEG ∽△HAG ,然后由相似三角形的对应边成比例即可求解.【详解】∵AH ∥BC ,∴△BCF ∽△HAF , ∴BF BC HF AH=, 又∵DE ∥AH ,∴△DEG ∽△HAG , ∴DG DE HG AH=, 又∵BC=DE , ∴BF DG HF HG=, 即1231271231271000HB HB =+++, ∴BH=30750(步),30750步=18450丈,BH=18450丈, 又∵BF BC HF AH=,35BC ==丈步, ∴AH=()()3075012353087351255123123BH BF BC HF BC BF BF ++⨯⨯====(步),1255步=753丈, AH=753丈.【点睛】本题主要考查了相似三角形的应用,得出△FCB ∽△FAH ,△EDG ∽△AHG 是解题关键.21、 (1)y =48x;(2)M(1,4);(3)0<x≤8或x≥1. 【分析】(1)根据待定系数法即可求得;(2)利用勾股定理求得AB =OA =10,由AB ∥x 轴即可得点B 的坐标,即可求得直线OB 的解析式,然后联立方程求得点M 的坐标;(3)根据A 、M 点的坐标,结合图象即可求得.【详解】解:(1)∵A(8,6)在反比例函数图象上∴6=8m ,即m =48, ∴反比例函数y =的表达式为y =48x; (2)∵A(8,6),作AC ⊥x 轴,由勾股定理得OA =10,∵AB =OA ,∴AB =10,∴B(18,6),设直线OB的关系式为y=kx,∴6=18k,∴k=13,∴直线OB的关系式为y=13 x,由1348y xyx⎧=⎪⎪⎨⎪=⎪⎩,解得x=±1又∵在第一象限∴x=1故M(1,4);(3)∵A(8,6),M(1,4),观察图象,不等式nx+b﹣mx≤0的解集为:0<x≤8或x≥1.【点睛】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标.22、(1)E点坐标为(0,32);(2)21122y x x=-;(3)四边形ABNO面积的最大值为7516,此时N点坐标为(32,38).【分析】(1)先利用待定系数法求直线AB的解析式,与y轴的交点即为点E;(2)利用待定系数法抛物线的函数解析式;(3)先设N(m,12m2−12m)(0<m<3),则G(m,m),根据面积和表示四边形ABNO的面积,利用二次函数的最大值可得结论.【详解】(1)设直线AB的解析式为y=mx+n,把A(-1,1),B(3,3)代入得133m nm n-+⎧⎨+⎩==,解得1232mn⎧⎪⎪⎨⎪⎪⎩==,所以直线AB的解析式为y=12x+32,当x=0时,y=12×0+32=32,所以E点坐标为(0,32 );(2)设抛物线解析式为y=ax2+bx+c,把A(-1,1),B(3,3),O(0,0)代入得1933a b ca b cc-+⎧⎪++⎨⎪⎩===,解得1212abc⎧⎪⎪⎨-⎪⎪=⎩==,所以抛物线解析式为y=12x2−12x;(3)如图,作NG∥y轴交OB于G,OB的解析式为y=x,设N(m,12m2−12m)(0<m<3),则G(m,m),GN=m−(12m2−12m)=−12m2+32m,S△AOB=S△AOE+S△BOE=12×32×1+12×32×3=3,S△BON=S△ONG+S BNG=12•3•(−12m2+32m)=−34m2+94m所以S四边形ABNO=S△BON+S△AOB=−34m2+94m+3=−34(m−32)2+7516当m=32时,四边形ABNO面积的最大值,最大值为7516,此时N点坐标为(32,38).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数和一次函数的性质;理解坐标与图形性质,利用面积的和差计算不规则图形的面积. 23、(1)12;(2)13. 【分析】(1)用锐角卡片的张数除以总张数即可得出答案;(2)根据题意列出图表得出所有情况数和两张角度恰好互补的张数,再根据概率公式即可得出答案. 【详解】解:(1)一共有四张卡片,其中写有锐角的卡片有2张,因此, P (抽到锐角卡片)= 24=12; (2)列表如下:一共有12种等可能结果,其中符合要求的有4种结果, 即()()(36,144,54,126,144,36,126,)()54︒︒︒︒︒︒︒ 因此,P (抽到的两张角度恰好互补) =41=123. 【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、 (1)点C 的坐标为(2,;(2)OA =;(3)OC 的最大值为8,cos ∠OAD【分析】(1)作CE ⊥y 轴,先证∠CDE =∠OAD =30°得CE =12CD =2,DE =OAD =30°知OD =12AD =3,从而得出点C 坐标; (2)先求出S △DCM =1,结合S 四边形OMCD =212知S △ODM =92,S △OAD =9,设OA =x 、OD =y ,据此知x 2+y 2=31,12xy=9,得出x 2+y 2=2xy ,即x =y ,代入x 2+y 2=31求得x 的值,从而得出答案;(3)由M 为AD 的中点,知OM =3,CM =5,由OC ≤OM+CM =8知当O 、M 、C 三点在同一直线时,OC 有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CMON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA=22ON AN+及cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE-3在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3;(2)∵M为AD的中点,∴DM=3,S△DCM=1,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=31,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=31得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265ON AN+=,∴cos∠OAD=5 ANOA=【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.25、20%【分析】设该商店的每月盈利的平均增长率为x,根据“2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同”,列出关于x的一元二次方程,解之即可.【详解】设该商店的每月盈利的平均增长率为x,根据题意得:2400(1+x)2=3456,解得:x1=0.2,x2=−2.2(舍去),答:每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.26、(1)AB =4,AC =(2)BC =,AC =1. 【分析】(1)根据含30°角的直角三角形的性质即可得到结论; (2)解直角三角形即可得到结论.【详解】(1)在△ABC 中,∠C =90°,∠A =30°,BC =2,∴AB =2BC =4,AC =;(2)在△ABC 中,∠C =90°,tan A ,AB =,∴BC AC∴设BC k ,AC =4k ,∴AB k =, ∴k =2,∴BC k =,AC =4k =1. 【点睛】本题考查了含30°角的直角三角形,解直角三角形,正确的理解题意是解题的关键.。
福建省福州市台江区福州华伦中学2024届中考数学模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22±D.3×27=92.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10123.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<04.若a与5互为倒数,则a=()A.15B.5 C.-5 D.15-5.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD6.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线7.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a48.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个黄球的概率为()A.14B.13C.512D.129.如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x10.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-4二、填空题(共7小题,每小题3分,满分21分)11.已知一组数据1,2,x,2,3,3,5,7的众数是2,则这组数据的中位数是.12.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)13.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为.14.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.15.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.16.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.17.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为________元。
一、选择题1.圆心在曲线()30y x x=>上,且与直线3430x y ++=相切的面积最小的圆的方程为( )A .((229x y +=B .()()22216315x y ⎛⎫-+-= ⎪⎝⎭C .()()22218135x y ⎛⎫-+-= ⎪⎝⎭D .()223292x y ⎛⎫-+-= ⎪⎝⎭ 2.1m =-是直线(21)10mx m y +-+=和直线390x my ++=垂直的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C D 4.圆C :x 2+y 2-6x -8y +9=0被直线l :ax +y -1-2a =0截得的弦长取得最小值时,此时a 的值为( ) A .3B .-3C .13D .-135.设有一组圆()()()224*:1k C x y k k k N -+-=∈,给出下列四个命题:①存在k ,使圆与x 轴相切 ②存在一条直线与所有的圆均相交 ③存在一条直线与所有的圆均不相交 ④所有的圆均不经过原点 其中正确的命题序号是( ) A .①②③B .②③④C .①②④D .①③④6.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .47.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±8.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3B .5,2C .5,1D .7,19.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条 B .2条C .3条D .4条10.曲线214y x 与直线(2)4y k x =-+有两个相异交点,则k 的取值范围是( )A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎤ ⎥⎝⎦C .53,124D .5,12⎛⎫+∞⎪⎝⎭11.过点(0,2)P 的直线l 与以(1,1)A ,(2,3)B -为端点的线段有公共点,则直线l 的斜率k 的取值范围是( )A .5[,3]2- B .5(,][3,)2-∞-⋃+∞ C .3[,1]2-D .1(,1][,)2-∞-⋃-+∞ 12.已知点(1,1)A - 和圆221014700C x y x y +--+=: ,一束光线从点A 出发,经过x 轴反射到圆C 的最短路程是( ) A .6B .7C .8D .9二、填空题13.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.14.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.15.已知直线l 经过点(1,2)P -,且垂直于直线2310x y ,则直线l 的方程是________.16.已知圆C 的方程是2220x y y +-=,圆心为点C ,直线:20λλ+-=l x y 与圆C 交于A 、B 两点,当ABC 面积最大时,λ=______.17.已知直线y x b =+与曲线x =恰有两个交点,则实数b 的取值范围为______. 18.过点()4,1P 作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点.当OA OB +取最小值时,直线l 的方程为___________.19.已知m ,n 为正数,且直线()250x n y --+=与直线30nx my +-=互相垂直,则2m n +的最小值为______.20.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN+的最小值为_____.参考答案三、解答题21.已知直线l 经过点(2,5)P -,l 的一个方向向量为(4,3)d =-. (1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.22.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆.已知动点M 到点()1,0A -与点()2,0B 的距离之比为2,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点()5,4P -作曲线C 的切线,求切线方程. 23.已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 24.已知圆221:4C x y +=和直线:1()l y kx k R =-∈. (1)若直线l 与圆C 相交,求k 的取值范围;(2)若1k =,点P 是直线l 上一个动点,过点P 作圆C 的两条切线PM 、PN ,切点分别是M 、N ,证明:直线MN 恒过一个定点.25.已知圆C :x 2+y 2+Dx +Ey -12=0过点(P -,圆心C 在直线l :x -2y -2=0上. (1)求圆C 的一般方程.(2)若不过原点O 的直线l 与圆C 交于A ,B 两点,且12OA OB ⋅=-,试问直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.26.在①经过直线1:20l x y -=与直线2:210l x y +-=的交点.②圆心在直线20x y -=上.③被y 轴截得弦长AB =;从上面这三个条件中任选一个,补充下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问题:是否存在圆Q ,且点()2,1A --,()1,1B -均在圆上?【参考答案】***试卷处理标记,请不要删除1.D解析:D【分析】设圆心为(),a b,利用圆心到直线的距离求出半径,利用基本不等式可求出最小半径,即可求出该圆.【详解】设圆心为(),a b,半径为r,则满足条件的圆面积最小时即r最小时,343355a br+++==≥,∵圆心(),a b在()3y xx=>上,∴3ba=,即3ab=,∴min3r==,当且仅当34a b=,即2a=,32b=时取等号,∴此时圆的方程为()223292x y⎛⎫-+-=⎪⎝⎭.故选:D.【点睛】本题考查直线与圆的相切问题,解题的关键是利用基本不等式求出半径的最小值.2.A解析:A【分析】因为直线(21)10mx m y+-+=和直线390x my++=垂直,所以0m=或1m=-,再根据充分必要条件的定义判断得解.【详解】因为直线(21)10mx m y+-+=和直线390x my++=垂直,所以23(21)0,220,0m m m m m m⨯+-⨯=∴+=∴=或1m=-.当1m=-时,直线(21)10mx m y+-+=和直线390x my++=垂直;当直线(21)10mx m y+-+=和直线390x my++=垂直时,1m=-不一定成立.所以1m=-是直线()2110mx m y+-+=和直线390x my++=垂直的充分不必要条件,【点睛】方法点睛:充分必要条件的常用的判断方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件选择合适的方法求解.3.D解析:D【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果.【详解】22640x y x+-+=,即()2235x y-+=,圆心为()3,0,半径为5,y x 的几何意义是圆上一点(),x y与()0,0连线的斜率,如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大,令此时直线的倾斜角为α,则5tan2α=,yx5,故选:D.【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.4.C解析:C【分析】先判断直线l恒过点(2,1)P,可得直线l垂直于直线PC时,截得的弦长最短,利用直线垂直的性质可得答案.【详解】直线:120+--=l ax y a 可化为:(2)(1)0-+-=l a x y , 故直线l 恒过点(2,1)P .圆22:6890+--+=C x y x y 的圆心为(3,4)C ,半径为4. 当直线l 垂直于直线PC 时,截得的弦长最短, 因为直线PC 的斜率41332PC k -==-, ax +y -1-2a =0的斜率为a -, 此时1313PC l k k a a ⋅=-=-⇒=.故选:C . 【点睛】方法点睛:判断直线过定点主要形式有: (1)斜截式,0y kx y =+,直线过定点()00,y ; (2)点斜式()00,y y k x x -=-直线过定点()00,x y ;(3)化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解. 5.C解析:C 【分析】取特殊值1k =,圆与x 轴相切,①正确;利用圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,可判定②③的正误;利用反证法说明④错误. 【详解】选项①中,当1k =时,圆心()1,1,半径1r =,满足与x 轴相切,正确; 选项②③中,圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,故②正确,③错误;选项④中,若()0,0在圆上,则241k k +=,而*k N ∈,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,正确. 故选:C. 【点睛】本题解题关键是发现圆心()1,k 恒在直线0kx y 上,确定该线与圆一定相交,再结合特殊值法和反证法逐个击破即可.6.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.7.A解析:A 【分析】先根据半径和周长计算弦长AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.8.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=,即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.9.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.10.C解析:C 【分析】曲线214y x 表示半圆,作出半圆,直线过定点(2,4),由直线与圆的位置关系,通过图形可得结论.【详解】 曲线214y x 是半圆,圆心是(0,1)C ,圆半径为2,直线(2)4y k x =-+过定点(2,4)P ,作出半圆与过P 的点直线,如图,PD 与圆相切,由221421k k --+=+,解得512k =,即512PD k =, (2,1)A -,4132(2)4PA k -==--,∴53,124k ⎛⎤∈⎥⎝⎦. 故选:C .【点睛】本题考查直线与圆的位置关系,数形结合思想是解题关键,由于题中曲线是半圆,因此作出图形,便于观察得出结论.11.D解析:D 【分析】画出图形,设直线l 的斜率为k ,求出PA k 和PB k ,由直线l 与线段AB 有交点,可知PA k k ≤或PB k k ≥,即可得出答案.【详解】直线过定点(0,2)P ,设直线l 的斜率为k , ∵12110PA k -==--,321202PB k -==---, ∴要使直线l 与线段AB 有交点,则k 的取值范围是1k ≤-或12k ≥-,即1(,1][,)2k ∈-∞-⋃-+∞.故选:D. 【点睛】方法点睛:求直线的斜率(或取值范围)的方法:(1)定义法:已知直线的倾斜角为α,且90α︒≠,则斜率tan k α=; (2)公式法:若直线过两点()11,A x y ,()22,B x y ,且12x x ≠,则斜率2121y y k x x -=-; (3)数形结合方法:该法常用于解决下面一种题型:已知线段AB 的两端点及线段外一点P ,求过点P 且与线段AB 有交点的直线l 斜率的取值范围.若直线,PA PB 的斜率都存在,解题步骤如下: ①连接,PA PB ; ②由2121y y k x x -=-,求出PA k 和PB k ; ③结合图形写出满足条件的直线l 斜率的取值范围.12.C解析:C 【分析】先将圆221014700C x y x y +--+=:化为标准方程,求出圆心和半径,再找出圆心O 关于x 轴对称的点'O ,最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离. 【详解】解:由题可知,圆221014700C x y x y +--+=:,整理得()()222572C x y -+-=:,圆心()5,7O ,半径2r最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离, 所以()()22151721028d =--++=-=.故选:C 【点睛】本题主要考查圆的方程和直线与圆的位置关系,考查两点间的距离公式,属于简单题.二、填空题13.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与解析:(,11,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.14.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB 面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.15.【分析】根据题意设直线的方程是代入点求得的值即可求解【详解】由题意所求直线垂直于直线设直线的方程是又由直线过点代入可得解得故的方程是【点睛】与直线平行的直线方程可;与直线垂直的直线方程可 解析:3270x y -+=【分析】根据题意,设直线l 的方程是320x y c -+=,代入点(1,2)P -,求得c 的值,即可求解. 【详解】由题意,所求直线l 垂直于直线2310x y , 设直线l 的方程是320x y c -+=,又由直线l 过点(1,2)P -,代入可得340c --+=,解得7c =, 故l 的方程是3270x y -+=. 【点睛】与直线220(0)Ax By C A B ++=+≠平行的直线方程可0()Ax By n n c ++=≠;与直线220(0)Ax By C A B ++=+≠垂直的直线方程可0Bx Ay M -+=。
2025届福建福州市台江区华伦中学七年级数学第一学期期末达标检测模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分) 1.以下问题,适合用普查的是( ) A .调查某种灯泡的使用寿命 B .调查中央电视台春节联欢会的收视率 C .调查我国八年级学生的视力情况 D .调查你们班学生早餐是否有喝牛奶的习惯2.下列方程变形中正确的是( ) A .2x-1=x+5移向得2x+x=5+1 B .+=1去分母得3x+2x=1C .(x+2)-2(x-1)=0,去括号得x+2-2x+2=0D .-4x=2,系数化为1得 x=-2 3.2的绝对值是( ). A .2B .-2C .-12D .±24.有理数a ,b 在数轴上的位置如图所示,则下列式子错误的是( )A .ab <0B .a +b <0C .|a |<|b |D .a ﹣b <|a |+|b |5.在数轴上,到表示5-的点的距离等于5个单位的点所表示的数是( ) A .10 B .10-C .0或10-D .10-或106.已知12a b +=,则代数式223a b +﹣的值是( ) A .2B .-2C .-4D .132- 7.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时B .2小时20分C .2小时24分D .2小时40分8.2020年某市各级各类学校学生人数约为1 580 000人,将1 580 000 这个数用科学记数法表示为( ) A .0.158×107 B .15.8×105 C .1.58×106D .1.58×1079.OB 是∠AOC 内部一条射线,OM 是∠AOB 平分线,ON 是∠AOC 平分线,OP 是∠NOA 平分线,OQ 是∠MOA 平分线,则∠POQ ∶∠BOC =( )A .1∶2B .1∶3C .2∶5D .1∶410.已知关于x 的方程250x m -+=的解是3x =-,则m 的值为( ) A .1B .1-C .11-D .11二、填空题(本大题共有6小题,每小题3分,共18分)11.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 12.如果+5表示收入5元.那么-1表示__________________.13.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为_____元. 14.当a =_________时,两方程232x a +=与22x a +=的解相同. 15.按一定顺序的一列数叫做数列,如数列:12,16,112,120,,则这个数列前2019个数的和为____.16.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .三、解下列各题(本大题共8小题,共72分)17.(8分)我们知道:若数轴上点A ,点B 表示的数分别为a ,b ,则A ,B 两点之间的距离ABa b ,如图1,数轴上点A 表示的数为10-,点B 表示的数为20,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向右匀速运动,设运动时间为t 秒(0)t >(1)①A ,B 两点间的距离AB = .②用含t 的代数式表示:t 秒后,点P 表示的数为 ,点Q 表示的数为 . (2)求当t 为何值时,点P 追上点Q ,并写出追上点C 所表示的数; (3)求当t 为何值时,15PQ AB =拓展延伸:如图2,若点P 从点A 出发,点Q 从点M 出发,其它条件不变,在线段AB 上是否存在点M ,使点P 在线段AM 上运动且点Q 在线段MB 上运动的任意时刻,总有32PM BQ =?若存在,请求出点M 所表示的数;若不存在,请说明18.(8分)如图1,将一段长为60cm 绳子AB 拉直铺平后折叠(绳子无弹性,折叠处长度忽略不计),使绳子与自身一部分重叠.(1)若将绳子AB 沿M 、N 点折叠,点A 、B 分别落在A '、B '处. ①如图2,若A '、B '恰好重合于点О处,MN = cm ;②如图3,若点A '落在点B '的左侧,且20cm A B ='',求MN 的长度;③若cm A B n ''=,求MN 的长度.(用含n 的代数式表示)(2)如图4,若将绳子AB 沿N 点折叠后,点B 落在B '处,在重合部分B N '上沿绳子垂直方向剪断,将绳子分为三段,若这三段的长度由短到长的比为3:4:5,直接写出AN 所有可能的长度.19.(8分)下表是中国电信两种”4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)月基本费/元主叫通话/分钟上网流量MB 接听主叫超时部分/(元/分钟)超出流量部分/(元/MB )(1)若某月小萱主叫通话时间为220分钟,上网流量为800MB,则她按方式一计费需元,按方式二计费需元;若她按方式二计费需129元,主叫通话时间为240分钟,则上网流量为MB.(2)若上网流量为540MB,是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB,直接写出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.20.(8分)某水果商店以每箱200元价格从市场上购进一批苹果共8箱,若以每箱苹果净重30千克为标准,超过千克数记为正数,不足千克数记为负数,称重后记录如下:1.5, 3.5,2,2.5, 1.5,4,2,1+-++---+(1)这8箱苹果一共中多少千克,购买这批苹果一共花了多少钱?(2)若把苹果的销售单价定为每千克x元,那么销售这批苹果(损耗忽略不计)获得的总销售金额为_____元,获得利润为____________元(用含字母x的式子表示);32.75,请你通过列方程并求出x的值.(3)在(2)条件下,若水果商店计划共获利0021.(8分)一种商品按销售量分三部分制定销售单价,如表:(1)若买100件花元,买300件花元;买350件花元;(2)小明买这种商品花了338元,列方程求购买这种商品多少件?(3)若小明花了n元(n>250),恰好购买0.45n件这种商品,求n的值.22.(10分)某铁路桥长1000米.现有一列火车从桥上匀速通过.测得火车从开始上桥到完全通过桥共用了1分钟(即从车头进入桥头到车尾离开桥尾),整个火车完全在桥上的时间为40秒.(1)如果设这列火车的长度为x米,填写下表(不需要化简):(2)求这列火车的长度.23.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?24.(12分)解方程:(1) 5x-6=3x-4 (2) 123173x x-+-=参考答案一、选择题(每小题3分,共30分)1、D【分析】根据被调查对象较小时,宜使用普查,可得答案.【详解】解:A、调查某种灯泡的使用寿命,不能使用普查,错误;B、调查中央电视台春节联欢会的收视率被调查的对象都较大,不能使用普查,错误;C、调查我国八年级学生的视力情况被调查的对象都较大,不能使用普查,错误;D、调查你们班学生早餐是否有喝牛奶的习惯被调查的对象较小,故D宜使用普查;故选:D.【点睛】本题考查了全面调查与抽样调查,被调查对象较小时宜使用普查.2、C【解析】将各项中方程变形得到结果,即可做出判断.【详解】A、2x-1=x+5,移项得:2x-x=5+1,错误;B 、+=1去分母得:3x+2x=6,错误;C 、(x+2)-2(x-1)=0去括号得:x+2-2x+2=0,正确;D 、-4x=2系数化为“1”得:x=-,错误. 故选C . 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解. 3、A【解析】根据绝对值的含义指的是一个数在数轴上的点到距离,而正数的绝对植是一个正数,易找到2的绝对值. 【详解】A 选项根据正数的绝对值是它本身得∣2∣=2,正确;B 选项-2是2的相反数,错误;C 选项 12-是2的相反数的倒数,错误;D 选项既是2的本身也是2的相反数,错误. 故选:A . 【点睛】本题考查的知识点是绝对值的概念,牢记绝对值的概念并能与相反数、倒数等概念加以区分是关键. 4、D【分析】根据图形可知0b a <<,且||||b a >,对每个选项对照判断即可. 【详解】解:由数轴可知b <0<a ,且|b |>|a |, ∴ab <0,答案A 正确; ∴a +b <0,答案B 正确; ∴|b |>|a |,答案C 正确;而a ﹣b =|a |+|b |,所以答案D 错误; 故选:D . 【点睛】本题考查的有理数及绝对值的大小比较,把握数形结合的思想是解题的关键. 5、C【分析】借助数轴可知这样的点在-5的左右两边各一个,分别讨论即可.【详解】若点在-5左边,此时到表示5-的点的距离等于5个单位的点所表示的数是-5-5=-10; 若点在-5右边,此时到表示5-的点的距离等于5个单位的点所表示的数是-5+5=0; 综上所述,到表示5-的点的距离等于5个单位的点所表示的数是-10或0 故选:C . 【点睛】本题主要考查数轴与有理数,注意分情况讨论是解题的关键. 6、B【分析】把2a+2b 提取公因式2,然后把12a b +=代入计算即可. 【详解】∵()22323a b a b +-=+-, ∴将12a b +=代入得:12322⨯-=- 故选B . 【点睛】本题考查了因式分解的应用,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 7、C【分析】设停电x 小时.等量关系为:1-粗蜡烛x 小时的工作量=2×(1-细蜡烛x 小时的工作量),把相关数值代入即可求解.【详解】解:设停电x 小时. 由题意得:1﹣14x =2×(1﹣13x ), 解得:x =2.1. 2.1h =2小时21分.答:停电的时间为2小时21分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键. 8、C【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数. 【详解】解:61580000 1.5810=⨯. 故选:C . 【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法. 9、D【分析】依据OM 是∠AOB 平分线,OQ 是∠MOA 平分线,可得∠AOQ=12∠AOM=14∠AOB ,依据ON 是∠AOC平分线,OP 是∠NOA 平分线,可得∠AOP=12∠AON=14∠AOC=14(∠AOB+∠BOC ),进而得出∠POQ :∠BOC=1:1.【详解】解:∵OM 是∠AOB 平分线,OQ 是∠MOA 平分线,∴∠AOQ=12∠AOM=14∠AOB , ∵ON 是∠AOC 平分线,OP 是∠NOA 平分线, ∴∠AOP=12∠AON=14∠AOC=14(∠AOB+∠BOC ), ∴∠POQ=∠AOP-∠AOQ=14(∠AOB+∠BOC )-14∠AOB , =14∠BOC , ∴∠POQ :∠BOC=1:1, 故选D . 【点睛】本题主要考查了角平分线的定义的运用,解决问题的关键是利用角的和差关系进行推算. 10、B【分析】根据一元一次方程的解定义,将3x =-代入已知方程列出关于m 的新方程,通过解新方程即可求得m 的值. 【详解】∵关于x 的方程250x m -+=的解是3x =- ∴()2350m ⨯--+= ∴1m =- 故选:B 【点睛】本题考查了一元一次方程的解.方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题(本大题共有6小题,每小题3分,共18分) 11、-5【解析】分别解出两方程的解,两解相等,就得到关于a 的方程,从而可以求出a 的值.【详解】解方程21x a +=,得12ax -=, 解方程3122x x -=+,得3x =,∴132a-=, 解得:5a =-. 故答案为:5-. 【点睛】此题考查同解方程的解答,解决的关键是能够求解关于x 的方程,同时正确理解“解相同”的含义. 12、支出1元【分析】此题主要用正负数来表示具有意义相反的两个量,根据正数与负数的意义即可得出. 【详解】收入与支出是具有相反意义的量, 若+5表示收入5元,则-1表示支出1元, 故答案为:支出1元. 【点睛】本题考查了正数与负数的意义,掌握与理解正数与负数的意义是解题的关键. 13、65【分析】根据题意,实际售价=进价+利润,八折即标价的80%;可得一元一次的等量关系式,求解可得答案. 【详解】设标价是x 元,根据题意有: 0.8x =40(1+30%), 解得:x =65. 故标价为65元. 故答案为65. 【点睛】考查一元一次方程的应用,掌握利润=售价-进价是解题的关键. 14、53【分析】先求出每个方程的解,根据同解方程得出关于a 的方程,求出即可. 【详解】解2x+3=2a 得:232a x -=, 解2x+a=2得:22ax -=, ∵方程2x+3=2a 与2x+a=2的解相同,∴22322a a --=, 解得:53a = .【点睛】本题考查了一元一次方程相同解问题,根据两个方程的解相同建立关于a 的方程是解决本题的关键. 15、20192020【分析】根据数列得出第n 个数为()11n n +,据此可得前2019个数的和为111 (122320192020)+++⨯⨯⨯,再用裂项求和计算可得.【详解】解:由数列知第n 个数为()11n n +,则前2019个数的和为:11111...26122020192020+++++⨯ =111...122320192020+++⨯⨯⨯ =11111111...2233420192020-+-+-++-=112020-=20192020故答案为:20192020.【点睛】本题主要考查数字的变化类,解题的关键是根据数列得出第n 个数为()11n n +,并熟练掌握裂项求和的方法.16、40%【解析】试题分析:从条形统计图可知:甲、乙、丙、丁四个兴趣小组的总人数为200人,甲、丙两个小组的人数为80人,所以报名参加甲组和丙组的人数之和占所有报名人数的百分比为80÷200×100%=40%.三、解下列各题(本大题共8小题,共72分)17、(1)①30;②103t -+;202t +;(2)30()t s =;C 点表示的数是80;(3)24t s =或36s ;拓展延伸:存在;点M 所表示的数是8.【分析】(1)①利用题目中给出的距离公式计算即可;②利用代数式表示即可;(2)根据题意列方程,点P 追上点Q 时,多运动30个单位长度;(3)分类讨论,P 、Q 两点相距15AB 时,可能在相遇前也可能在相遇后; 拓展延伸:根据两点间距离公式,再找出等量关系列方程求解即可.【详解】解:(1)①=-10-20=30ABa b , 故填:30;②点P 表示的数为:103t -+,点Q 表示的数为:202t +,故填:103t -+,202t +;(2)依题意得,3302t t =+解得:30t =此时,C 点表示的数是80(3)依题意得情况1:相遇前12303305t t +-=⨯ 解得,24t =情况2:相遇后13(230)305t t -+=⨯ 解得:36t =所以24t s =或36s 时,15PQ AB =拓展延伸: 32PM BQ = 3()2AM AP AB AM MQ -=-- 33(302)2AM t AM t -=-- 18AM =所以点M 所表示的数是8.【点睛】本题考查了数轴、绝对值与一元一次方程的应用,是一个综合问题,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,进而求解.18、(1)①30;②40cm ;③(30)2ncm +或(30)2n cm -;(2)AN 所有可能的长度为:25cm ,27.5cm ,32.5cm ,35cm .【分析】(1)①根据折叠可得,AM OM BN ON ==,再利用线段的和差即可得出MN 的长度;②根据折叠可得,AM A M BN B N ''==,再利用线段的和差即可得出MN 的长度;③分点A '落在点B '的左侧时和点A '落在点B '的右侧两种情况讨论,利用线段的和差即可得出MN 的长度;(2)分别计算出三段绳子的长度,再分类讨论,利用线段的和差即可得出AN 的长度.【详解】解:(1)①因为A '、B '恰好重合于点О处,所以,AM OM BN ON ==, ∴11()3022MN OM ON OA OB AB =+=+==cm , 故答案为:30; ②由题意得:,AM A M BN B N ''==,因为60AM A M A B B N BN AB ''''++++==cm,所以220260A M B N ''++=cm,即20A M B N ''+=cm ,所以40MN A M B N A B cm ''''=++=;③当点A '落在点B '的左侧时,由②得6060()22A B n A M B N cm ''--''+==, 60(30)22n n MN A M B N A B n cm -''''=++=+=+; 当点A '落在点B '的右侧时,如下图,可知2260A M B N A B cm ''''+-=,所以60()2n A M B N cm +''+=, 所以(30)2nMN A M B N A B cm ''''=+-=-,综上所述,MN 的长度是(30)2ncm +或(30)2n cm -; (2)根据题意,这三段长度分别为:3456015,6020,6025121212cm cm cm ⨯=⨯=⨯=, 所以AN 的长度可以为:2015252cm +=; 251527.52cm +=; 252032.52cm +=; 152027.52cm +=; 152532.52cm +=; 2025352cm +=; 故AN 所有可能的长度为:25cm ,27.5cm ,32.5cm ,35cm .【点睛】本题考查线段的和差.掌握数形结合思想,能结合图形分析是解题关键.注意分情况讨论.19、(1)1;2;3;(2)见解析;(3)见解析.【解析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可; (2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可;(3)本题结论可由(2)中结果直接得出.【详解】(1)方式一:49+0.2(220﹣200)+0.3(800﹣500)=49+0.2×20+0.3×300 =49+4+901.方式二:69+0.2(800﹣600)=69+0.2×200 =69+40=2.设上网流量为xMB ,则69+0.2(x ﹣600)=129解得x =3.故答案为1;2;3.(2)当0≤t <200时,49+0.3(540﹣500)=61≠69∴此时不存在这样的t .当200≤t ≤250时,49+0.2(t ﹣200)+0.3(540﹣500)=69解得t =4.当t >250时,49+0.2(t ﹣200)+0.3(540﹣500)=69+0.15(t ﹣250)解得t =210(舍).故若上网流量为540MB ,当主叫通话时间为4分钟时,两种方式的计费相同.(3)由(2)可知,当t <4时方式一省钱;当t >4时,方式二省钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.本题难度中等偏大.20、 (1)这8箱苹果一共重236千克,购买这批苹果一共花了1600元.(2)236x ;2361600x -;(3) 若水果商店要获利0032.75,则销售单价应定为9元每千克.【分析】(1)将8筐苹果质量相加可得出购进苹果的总重量,再利用总价=每筐价格×8可得出购买这批苹果的总钱数; (2)根据销售总价=销售单价×数量,以及结合利润=销售总价-成本,即可得出结论;(3)由(2)的结论结合水果商店共获利0032.75,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)由题意得,8箱苹果一共重:830( 1.5 3.52 2.5 1.5421)⨯++-++---+=236(千克)购买这批苹果一共花了20081600⨯=(元)答:这8箱苹果一共重236千克,购买这批苹果一共花了1600元.(2)已知苹果的销售单价定为每千克x 元,依题意得销售金额为236x 元;获得利润为(2361600x -)元;(3)由题意得:002361600160032.75x -=⨯解得9x =(元)答:若水果商店要获利0032.75,则销售单价应定为9元每千克.【点睛】本题考查一元一次方程的应用以及列代数式,解题的关键是首先根据数量关系,列式计算;然后根据各数量之间的关系,利用含x的代数式表示出总销售金额及利润;最终找准等量关系,正确列出一元一次方程即可.21、(1)250;690;790;(2)140件;(3)1【分析】(1)根据总价=单价×数量结合表格中的数据,即可求出分别购买100件、300件、350件时花费的总钱数;(2)设小明购买这种商品x件,由250<338<690可得出100<x<300,根据100×2.5+(购买件数-100)×2.2=总钱数(338元),即可得出关于x的一元一次方程,解之即可得出结论;(3)分250<n<690及n>690两种情况,找出关于n的一元一次方程,解之即可得出结论.【详解】(1)250;690;790(2)设小明购买这种商品x件∵250<338<690,∴100<x<300根据题意得100×2.5+(x﹣100)×2.2=338解得x=140答:小明购买这种商品140件(3)当250<n<690时,有250+2.2(0.45n﹣100)=n解得:n=3000(不合题意,舍去)当n>690时,有690+2(0.45n﹣300)=n,解得:n=1.答:n的值为1【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据总价=单价×数量结合表格中的数据,列式计算;(2)根据100×2.5+(购买件数-100)×2.2=总钱数,列出关于x的一元一次方程;(3)分250<n<690及n>690两种情况,列出关于n的一元一次方程.22、(1)1000+x,100060x+,1000-x,100040x-;(2)200米【分析】(1)根据题意列出代数式即可.(2)通过理解题意可知本题存在两个等量关系,即整列火车过桥通过的路程=桥长+车长,整列火车在桥上通过的路程=桥长-车长,根据这两个等量关系可列出方程求解.【详解】解:(1)火车行驶过程 路程(米) 速度(米/秒) 完全通过桥 1000x + 100060x + 整列车在桥上1000x -100040x - (2)解:设这列火车的长度为x 米依题意得100010006040x x +-= 解得200x =答:这列火车的长度为200米.【点睛】本题考查了一元一次方程以及速度公式的应用.解题关键是弄清题意,合适的等量关系,列出方程.弄清桥长、车长以及整列火车过桥通过的路程,整列火车在桥上通过的路程之间的关系.23、(3)3;(2)﹣3.3或3.3.(3)P 对应的数﹣43,点Q 对应的数﹣2.【分析】(3)根据两点间的距离公式即可求解;(2) 分两种情况: ①点P 在点M 的左边; ②点P 在点N 的右边; 进行讨论即可求解;(3) 分两种情况: ①点P 在点Q 的左边;②点P 在点Q 的右边; 进行讨论即可求解.【详解】解:(3)﹣3+4=3.故点N 所对应的数是3;(2)(3﹣4)÷2=0.3,①﹣3﹣0.3=﹣3.3,②3+0.3=3.3.故点P 所对应的数是﹣3.3或3.3.(3)①(4+2×3﹣2)÷(3﹣2)=32÷3=32(秒),点P 对应的数是﹣3﹣3×2﹣32×2=﹣37,点Q 对应的数是﹣37+2=﹣33;②(4+2×3+2)÷(3﹣2)=36÷3=36(秒);点P 对应的数是﹣3﹣3×2﹣36×2=﹣43,点Q 对应的数是﹣43﹣2=﹣2.【点睛】本题考查的是数轴,注意分类导论思想在解题中的应用.24、(1)x=1;(2)x=-1.【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1) 5x -6=1x -4解:5x -1x =-4+62x =2x =1 (2) 123173x x -+-= 解:()()3122173x x --=+3621721x x --=+6721213x x --=+-1339x -=3x =-【点睛】本题考查的是一元一次方程的解法,解题中注意移项要变号,去括号是要注意括号前的符号,去分母时防止漏乘是关键.。
2025届福建福州市台江区华伦中学数学八年级第一学期期末综合测试模拟试题 合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,阴影部分搪住的点的坐标可能是( )A .(6,2)B .(-5,3)C .(-3,-5)D .(4,-3)2.下列式子可以用平方差公式计算的是( ) A .()()m n n m --+ B .(23)(23)x y y x -+ C .(67)(67)x y x y -+- D .(23)(32)a b b a +-34 ) A .16 B .2C .2±D .2±4.化简()23- )A .3B .3-C .9-D .95.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF ,AD∥CE,连接BC,CD,则∠A的度数是()A.40°B.45°C.50°D.60°7.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15°B.20°C.25°D.30°8.若数a关于x的不等式组11(2)2332(1)xxx a x⎧--⎪⎨⎪--⎩恰有两个整数解,且使关于y的分式方程13211y ay y----=﹣2的解为正数,则所有满足条件的整数a的值之和是()A.4 B.5 C.6 D.39.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,问:乙校开学时的人数与原有的人数相差多少?( ) A .6 B .9C .12D .1810.若把分式6445x yx y--中的x 、y 都扩大4倍,则该分式的值( )A .不变B .扩大4倍C .缩小4倍D .扩大16倍二、填空题(每小题3分,共24分) 11.若x ,y 为实数,且230x y -++=,则()2019x y +的值为____12.如图所示,已知△ABC 和△BDE 均为等边三角形,且A 、B 、E 三点共线,连接AD 、CE ,若∠BAD=39°,那么∠AEC= 度.13.如图,线段BC 的垂直平分线分别交AB 、BC 于点D 和点E ,连接CD ,AC DC =,25B ∠=︒,则ACD ∠的度数是_____________︒.14.如图,在平面直角坐标系中,点123,,...A A A 都在x 轴上,点123,,...B B B 都在第一象限的角平分线上,112223334,,...B A A B A A B A A ∆∆∆都是等腰直角三角形,且11OA =,则点2020B 的坐标为_________________.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .16.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩的值为_____.17.点(2+a ,3)关于y 轴对称的点的坐标是(﹣4,2﹣b ),则a b =_____. 18.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 三、解答题(共66分) 19.(10分)如图,等边△ABC 中,AD 是∠BAC 的角平分线,E 为AD 上一点,以BE 为一边且在BE 下方作等边△BEF ,连接CF.(1)求证:AE =CF ; (2)求∠ACF 的度数.20.(6分)如图,已知正比例函数12y x =和一个反比例函数的图像交于点(2A ,)m .(1)求这个反比例函数的解析式;(2)若点B 在x 轴上,且△AOB 是直角三角形,求点B 的坐标. 21.(6分)计算:(1)534153a b c a b -÷; (2)()()()2212y y y --+-.22.(8分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.(3)若P点在x轴上,当BP+CP最小时,直接写出BP+CP最小值为.23.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,求∠BDA的度数为多少时,△ADE是等腰三角形.24.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.25.(10分)计算题:(1)+-(2)×÷(﹣2)26.(10分)(1)如图1,在△ABC中,D是BC的中点,过D点画直线EF与AC相交于E,与AB的延长线相交于F,使BF=CE.①已知△CDE的面积为1,AE=kCE,用含k的代数式表示△ABD的面积为;②求证:△AEF是等腰三角形;(2)如图2,在△ABC中,若∠1=2∠2,G是△ABC外一点,使∠3=∠1,AH∥BG 交CG于H,且∠4=∠BCG﹣∠2,设∠G=x,∠BAC=y,试探究x与y之间的数量关系,并说明理由;(3)如图3,在(1)、(2)的条件下,△AFD是锐角三角形,当∠G=100°,AD=a 时,在AD上找一点P,AF上找一点Q,FD上找一点M,使△PQM的周长最小,试用含a、k的代数式表示△PQM周长的最小值.(只需直接写出结果)参考答案一、选择题(每小题3分,共30分)1、D【分析】根据坐标系可得阴影部分遮住的点在第四象限,再确定答案即可.【详解】阴影部分遮住的点在第四象限,A、(6,2)在第一象限,故此选项错误;B、(-5,3)在第二象限,故此选项错误;C、(-3,-5)在第三象限,故此选项错误;D、(4,-3)在第四象限,故此选项正确;故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号.2、D【分析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.【详解】A、两个都是相同的项,不符合平方差公式的要求;B、不存在相同的项,不符合平方差公式的要求;C、两个都互为相反数的项,不符合平方差公式的要求;D、3b是相同的项,互为相反项是2a与-2a,符合平方差公式的要求.故选:D.【点睛】此题考查平方差公式,熟记公式结构是解题的关键.运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.3、B【分析】根据算术平方根的定义求值即可.=1.故选:B.【点睛】本题考查算术平方根,属于基础题型.4、Ba进行化简.=-【详解】解:3故选:B.【点睛】本题考查二次根式的化简,掌握二次根式的性质2a a =,正确化简是解题关键. 5、C【分析】根据函数图形,结合选项进行判断,即可得到答案.【详解】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选C . 【点睛】本题考查函数图象,解题的关键是读懂函数图象的信息. 6、D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠. 【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠, ∵ADCE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒, ∴60BAD FCE ∠=∠=︒, 故选D . 【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型. 7、B【分析】根据三角形的外角性质即可求出答案. 【详解】解:延长AC 交BD 于点E , 设∠ABP =α, ∵BP 平分∠ABD , ∴∠ABE =2α,∴∠AED =∠ABE +∠A =2α+60°, ∴∠ACD =∠AED +∠D =2α+80°, ∵CP 平分∠ACD , ∴∠ACP =12∠ACD =α+40°, ∵∠AFP =∠ABP +∠A =α+60°, ∠AFP =∠P +∠ACP ∴α+60°=∠P +α+40°, ∴∠P =20°, 故选B .【点睛】此题考查三角形,解题的关键是熟练运用三角形的外角性质,本题属于基础题型. 8、B【分析】解不等式组得225a a +,根据其有两个整数解得出2015a +<,解之求得a 的范围;解分式方程求出21y a =-,由解为正数且分式方程有解得出210211a a ->⎧⎨-≠⎩,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:解不等式11(2)23x x --,得:2x ,解不等式32(1)x a x --,得:25a x +, 不等式组恰有两个整数解, 2015a +∴<, 解得23a -<,解分式方程132211y ay y--=---得21y a =-, 经检验,y=2a-1是原分式方程的解,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足23a -<,且12a >且1a ≠的所有整数有2、3, 所以所有满足条件的整数a 的值之和是235+=, 故选:B . 【点睛】本题主要考查一元一次不等式组的整数解,解题的关键是掌握根据不等式组整数解的个数得出a 的范围,根据分式方程解的情况得出a 的另一个范围. 9、D【分析】分别设设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,根据寒假结束开学时甲、乙两校人数相同,可列方程求解即可解答.【详解】设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,∵寒假结束开学时甲、乙两校人数相同, ∴1016102833x y x y -+=-+, 整理得:6x y -=,开学时乙校的人数为:()102833102831028181010x y x y -+=--=-=(人), ∴乙校开学时的人数与原有的人数相差;1028-1010=18(人), 故选:D . 【点睛】本题考查了二元一次方程的应用,解决本题的关键是根据题意列出方程. 10、A【分析】把x 换成4x ,y 换成4y ,利用分式的基本性质进行计算,判断即可.【详解】644464445445x y x yx y x y⨯-⨯-=⨯-⨯-,∴把分式6445x yx y--中的x ,y 都扩大4倍,则分式的值不变.故选:A . 【点睛】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.二、填空题(每小题3分,共24分) 11、1-【分析】根据非负数(式)的性质先求出x,y 的值,再代入式中求值即可.【详解】解:∵20x -=,2,3,x y ∴==-则()2019x y += 20192019(23)(1) 1.-=-=-故答案为-1 【点睛】本题考查了绝对值和算术平方根非负性的应用,能正确把x,y 的值求出是解题关键. 12、21【分析】根据△ABC 和△BDE 均为等边三角形,可得∠ABC=∠DBE=60°,AB=BC,BE=BD,由此证明∠CBD=60°,继而得到∠ABD=∠CBE=120°,即可证明△ABD ≌△CBE ,所以∠ADB=∠AEC ,利用三角形内角和代入数值计算即可得到答案. 【详解】解:∵△ABC 和△BDE 均为等边三角形, ∴∠ABC=∠DBE=60°,AB=BC ,BE=BD , ∴∠CBD=60°,∴∠ABD=∠CBE=120°, 在△ABD 和△CBE 中,AB BC ABD CBE BE BD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CBE ,(SAS ) ∴∠AEC=∠ADB ,∵∠ADB=180°-∠ABD-∠BAD=21°, ∴∠AEC=21°.【点睛】此题主要考查了三边及其夹角对应相等的两个三角形全等的判定方法以及全等三角形的对应角相等的性质,熟记特殊三角形的性质以及证明△ABD ≌△CBE 是解题的关键. 13、1【分析】先根据垂直平分线的性质可得DC DB =,再根据等腰三角形的性质可得BCD ∠的度数,从而可得ADC ∠的度数,最后根据等腰三角形的性质、三角形的内角和定理即可得.【详解】由题意得,DE 为BC 的垂直平分线DC DB ∴=25BCD B ∴∠=∠=︒50ADC BCD B ∴∠=∠+∠=︒ AC DC =50A ADC ∴∠=∠=︒180180505080ACD A ADC ∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:1. 【点睛】本题考查了垂直平分线的性质、等腰三角形的性质(等边对等角)、三角形的内角和定理等知识点,熟记等腰三角形的性质是解题关键. 14、()201920192,2【分析】因点123,,...B B B 都在第一象限的角平分线上,11OA B ∆是等腰直角三角形,1111OA B A ==,()11,1B ,以此类推得出()22,2B ,()34,4B ,()48,8B 从而推出一般形式()112,2n n n B --,即可求解.【详解】解:∵123,,...B B B 都在第一象限的角平分线上 ∴11OA B ∆是等腰直角三角形11=1OA BA =∴()11,1B同理可得:()22,2B ,()34,4B ,()48,8B ∴()112,2n n n B --当2020n =时,代入得()2019201920202,2B故答案为:()201920192,2.【点睛】本题主要考查的是找规律问题,先写出前面几个值,在根据这几个值找出其中的规律扩展到一般情况是解题的关键. 15、12°.【解析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A , ∴∠A=∠AP 2P 1=∠AP 13P 14=x . ∴∠P 2P 1P 3=∠P 13P 14P 12=2x , ∠P 2P 3P 4=∠P 13P 12P 10=3x , ……,∠P 7P 6P 8=∠P 8P 9P 7=7x . ∴∠AP 7P 8=7x ,∠AP 8P 7=7x .在△AP 7P 8中,∠A+∠AP 7P 8+∠AP 8P 7=180°,即x+7x+7x=180°. 解得x=12°,即∠A=12°.16、9727x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据二元一次方程组的加减消元法,即可求解.【详解】345254x y x y +=⎧⎨+=⎩①②,①×5﹣②×4,可得:7x =9, 解得:x =97, 把x =97代入①,解得:y =27,∴原方程组的解是:9727x y ⎧=⎪⎪⎨⎪=⎪⎩.故答案为:9727xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.17、12.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵点(2+a,3)关于y轴对称的点的坐标是(-4,2-b),∴2+a=4,2-b=3,解得a=2,b=-1,所以,a b=2-1=12,故答案为1 2【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.18、假若a>b则a1>b1【分析】a1大于b1则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a1>b1”.【详解】①当a=-1,b=1时,满足a1>b1,但不满足a>b,所以是假命题;②命题“若a1>b1则a>b”的逆命题是若“a>b则a1>b1”;故答案为:假;若a>b则a1>b1.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)∠ACF=90°.【解析】(1)根据△ABC是等边三角形,得出AB=BC,∠ABE+∠EBC=60°,再根据△BEF是等边三角形,得出EB=BF ,∠CBF+∠EBC=60°,从而求出∠ABE=∠CBF ,最后根据SAS 证出△ABE ≌△CBF ,即可得出AE=CF ;(2)根据△ABC 是等边三角形,AD 是∠BAC 的角平分线,得出∠BAE=30°,∠ACB=60°,再根据△ABE ≌△CBF ,得出∠BCF=∠BAE=30°,从而求出∠ACF 的度数. 【详解】(1)证明:∵△ABC 是等边三角形, ∴AB =BC ,∠ABE +∠EBC =60 °. ∵△BEF 是等边三角形,∴EB =BF ,∠CBF +∠EBC =60 °. ∴∠ABE =∠CBF.在△ABE 和△CBF 中,{AB BCABE CBF EB BF=∠=∠= ,∴△ABE ≌△CBF(SAS). ∴AE =CF ;(2)∵等边△ABC 中,AD 是∠BAC 的角平分线, ∴∠BAE =12∠BAC=30 °,∠ACB =60°. ∵△ABE ≌△CBF , ∴∠BCF =∠BAE =30 °. ∴∠ACF =∠BCF +∠ACB =30 °+60 °=90 °. 【点睛】此题考查了等边三角形的性质和全等三角形的判定,关键是根据等边三角形的性质得出∠ABE=∠CBF ,掌握全等三角形的判定,角平分线的性质等知识点.20、(1)2y x =;(2)点B 的坐标为(2,0)或5,02⎛⎫⎪⎝⎭【分析】(1)先由点A 在正比例函数图象上求出点A 的坐标,再利用待定系数法解答即可;(2)由题意可设点B 坐标为(x ,0),然后分∠ABO =90°与∠OAB =90°两种情况,分别利用平行于y 轴的点的坐标特点和勾股定理建立方程解答即可. 【详解】解:(1)∵正比例函数12y x =的图像过点(2,m ), ∴m =1,点A (2,1), 设反比例函数解析式为k y x=,∵反比例函数图象都过点A (2,1), ∴12k=,解得:k =2, ∴反比例函数解析式为2y x=; (2)∵点B 在x 轴上,∴设点B 坐标为(x ,0), 若∠ABO =90°,则B (2,0);若∠OAB =90°,如图,过点A 作AD ⊥x 轴于点D ,则222OA AB OB +=, ∴()2222121x x ++-+=,解得:52x =,∴B 5,02⎛⎫⎪⎝⎭; 综上,点B 的坐标为(2,0)或5,02⎛⎫ ⎪⎝⎭.【点睛】本题是正比例函数与反比例函数综合题,主要考查了待定系数法求函数的解析式、函数图象上点的坐标特点以及勾股定理等知识,属于常考题型,熟练掌握正比例函数与反比例函数的基本知识是解题的关键. 21、(1)25ab c -;(2)36y -+.【分析】(1)根据单项式除以单项式的法则计算,把系数、相同底数的幂分别相除作为商的因式,对于只在被除数里含有的字母,连同他的指数作为商的一个因式; (2)完全平方公式的应用,多项式乘以多项式的应用,合并同类项的化简. 【详解】(1)原式5431(153)ab c --=-÷25ab c =-;(2)原式2244(22)y y y y y =-+--+-22442y y y y =-+-++36y =-+,故答案为:(1)25ab c -;(2)36y -+. 【点睛】(1)利用单项式除以单项式法则计算,要注意系数的符号问题,同底数幂相除,底数不变,指数相减;(2)完全平方公式的应用,多项式乘以多项式的法则,以及合并同类项,注意括号前面是负号时,去括号变符号的问题. 22、(1)见解析;(2)2;(3)10【分析】(1)△ABC 关于y 轴对称图形为△A 1B 1C 1,根据轴对称的性质画出三个点的对称点再连接即可作出△A 1B 1C 1; (2)用割补法求△ABC 的面积即可;(3)P 点在x 轴上,当BP +CP 最小时,即可求出BP +CP 最小值. 【详解】解:如图所示,(1)如图,△A 1B 1C 1即为所求; (2)△ABC 的面积为:11123221113=2222⨯-⨯⨯-⨯⨯-⨯⨯; (3)作点B 关于x 轴的对称点B ′, 连接CB ′交x 轴于点P ,此时BP +CP 最小, BP +CP 的最小值即为CB ′2213=10+. 10 【点睛】本题结合网格图和平面直角坐标系考查了作已知图形的对称图形,割补法求三角形面积,简单的动点与最值问题,熟练掌握相关知识点是解答关键.23、(1)30,110,小;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)∠BDA =80°或110°.【分析】(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数,由三角形内角和定理可判断∠BDA的变化;(2)当DC=2时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE两种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA的度数.【详解】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°,∴∠EDC=180°-∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°-∠BAD,∵点D从B向C的运动过程中,∠BAD逐渐变大,∴∠BDA逐渐变小,故答案为:小;(2)当DC=2时,△ABD≌△DCE.理由如下∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA);(3)若AD=DE时.∵AD=DE,∠ADE=40°,∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC,∴∠EDC=30°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时.∵AE=DE,∠ADE=40°,∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC,∴∠EDC=60°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形.【点睛】本题是三角形综合题,考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,灵活运用相关的性质定理、综合运用知识是解题的关键,注意分情况讨论思想的应用.24、(1)平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可. 25、 (1);(2)-1.【解析】(1)先化简各二次根式,再合并同类二次根式即可得; (2)根据二次根式的混合运算顺序和运算法则计算可得. 【详解】解: (1)原式=1+﹣2=;(2)原式=÷(﹣2)=÷(﹣) =﹣=﹣ =﹣1. 故答案为:(1);(2)-1. 【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.26、(1)①k +1;②见解析;(2)y =34x +45°,理由见解析;(3)2(1)(1)k k k a +-【分析】(1)①先根据AE 与CE 之比求出△ADE 的面积,进而求出ADC 的面积,而D 中BC 中点,所以△ABD 面积与△ADC 面积相等;②延长BF 至R ,使FR =BF ,连接RC ,注意到D 是BC 中点,过B 过B 点作BG ∥AC 交EF 于G .得BGD CED ≅,再利用等腰三角形性质和判定即可解答;(2)设∠2=α.则∠3=∠1=2∠2=2α,根据平行线性质及三角形外角性质可得∠4=α,再结合三角形内角和等于180°联立方程即可解答;(3)分别作P 点关于FA 、FD 的对称点P '、P '',则PQ +QM +PM =P 'Q +QM +MP “≥P 'P ''=FP ,当FP 垂直AD 时取得最小值,即最小值就是AD 边上的高,而AD 已知,故只需求出△ADF 的面积即可,根据AE =kEC ,AE =AF ,CE =BF ,可以将△ADF 的面积用k 表示出来,从而问题得解.【详解】解:(1)①∵AE =kCE ,∴S △DAE =kS △DEC ,∵S △DEC =1,∴S △DAE =k ,∴S △ADC =S △DAE +S △DEC =k +1,∵D 为BC 中点,∴S △ABD =S △ADC =k +1.②如图1,过B 点作BG ∥AC 交EF 于G .∴BGD CED ∠=∠,BGF AED ∠=∠在△BGD 和△CED 中,BGD CED BD CD BDG CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BGD CED ≅(ASA ),∴BG =CE ,又∵BF =CE ,∴BF =BG ,∴BGF F ∠=∠,∴F AED ∠=∠∴AF =AE ,即△AEF 是等腰三角形.(2)如图2,设AH 与BC 交于点N ,∠2=α.则∠3=∠1=2∠2=2α,∵AH ∥BG ,∴∠CNH =∠ANB =∠3=2α,∵∠CNH =∠2+∠4,∴2α=α+∠4,∴∠4=α,∵∠4=∠BCG ﹣∠2,∴∠BCG =∠2+∠4=2α,在△BGC 中,3180BCG G ∠+∠+∠=︒,即:4180x α+=︒,在△ABC 中,12180BAC ∠+∠+∠=︒,即:3180y α+=︒,联立消去α得:y =34x +45°. (3)如图3,作P 点关于FA 、FD 的对称点P '、P '',连接P 'Q 、P 'F 、PF 、P ''M 、P ''F 、P 'P '',则FP '=FP =FP '',PQ =P 'Q ,PM =P ''M ,∠P 'FQ =∠PFQ ,∠P ''FM =∠PFM , ∴∠P 'FP ''=2∠AFD ,∵∠G =100°,∴∠BAC =34∠G +45°=120°, ∵AE =AF ,∴∠AFD =30°,∴∠P 'FP ''=2∠AFD =60°,∴△FP 'P ''是等边三角形,∴P 'P ''=FP '=FP ,∴PQ +QM +PM =P 'Q +QM +MP ''≥P 'P ''=FP ,当且仅当P '、Q 、M 、P ''四点共线,且FP ⊥AD 时,△PQM 的周长取得最小值. AE kCE =,AF AE =,BF CE =,1AB k AF k-∴=, ()111ADF ABD k k k S S k k +∴==--,∴当FP AD ⊥时,()()2121ADF k k S FP AD k a+==-, PQM ∴的周长最小值为()()211k k k a +-.【点睛】 本题是三角形综合题,涉及了三角形面积之比与底之比的关系、全等三角形等腰三角形性质和判定、轴对称变换与最短路径问题、等边三角形的判定与性质等众多知识点,难度较大.值得强调的是,本题的第三问实际上是三角形周长最短问题通过轴对称变换转化为两点之间线段最短和点到直线的距离垂线段最短.。
福州市华伦中学数学圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==3.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.4.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.5.四边形ABCD 内接于⊙O ,连接AC 、BD ,2∠BDC +∠ADB =180°.(1)如图1,求证:AC =BC ;(2)如图2,E 为⊙O 上一点,AE =BE ,F 为AC 上一点,DE 与BF 相交于点T ,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)82【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=或﹣(舍弃),∴DE=2m=.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.6.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.7.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,610PQ OQ +=,求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据610PQ OQ +=,即可分别求出a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG∵BD 是O 的切线∴∠OBD=90°∴∠DBC +∠CBG=90°∵BG 为直径∴∠BCG=90°∴∠CBG +∠G=90°∴∠DBC=∠G∵四边形ABGC 为O 的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB 上截取一点H ,使AM=MH ,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45°∴△NQC为等腰直角三角形∴NC=NQ=3a,∴BC=2NC=6a在Rt△CFN中,CF=2210+=NC FN a∵PQ OQ⊥∴PQ∥BC∴∠PQE=∠BCG∵PE∥BG∴∠PEQ=∠BGC∴△PQE∽△BCG∴=PQ PEBC BG即126=+PQ rra r解得:PQ=4a∵610PQ OQ+=,∴4a+2a=610解得:a=10∴CF=1010⨯=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.8.已知ABD△内接于圆O,点C为弧BD上一点,连接BC AC AC、,交BD于点E,CED ABC∠=∠.(1)如图1,求证:弧AB=弧AD;(2)如图2,过B作BF AC⊥于点F,交圆O点G,连接AG交BD于点H,且222EH BE DH=+,求CAG∠的度数;(3)如图3,在(2)的条件下,圆O上一点M与点C关于BD对称,连接ME,交∥交AD于点Q,交BD的延长线于点R,AB于点N,点P为弧AD上一点,PQ BG=,ANE的周长为20,52AQ BNDR=,求圆O半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62【解析】【分析】(1)证∠ABD=∠ACB可得;(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合,证△ALE≌△AHE,利用勾股定理逆定理推导角度;(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD.先证△AEN≌△QUD,再证△NVE≌△RKU,可得到NV=KR=DK,进而求得OB的长.【详解】(1)∵∠CED是△BEC的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合∵△ALB是△AHD旋转所得∴∠ABL=∠ADB,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222=+EH BE DH∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE,∵△ANE的周长为20∴QD+QR=20在△DQR中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE≌△RKU∴NV=KR=DK=2 2∴BN=5∴22r【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形9.如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连接CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)连结BC,求证:△BCD≌△DFB;(2)求证:PC是⊙O的切线;(3)若tan F=23,AG﹣BG=533,求ED的值.【答案】(1)详见解析;(2)详见解析;(3)DE=133.【解析】【分析】(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.(3)由于∠BCD=∠F,于是tan∠BCD=tanF=23=BGCG,设BG=2x,则CG=3x.注意到AB是直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG•AG,可得出AG的表达式(用x表示),再根据AG-BG=533求出x的值,从而CG、CB、BD、CD的长度可依次得出,最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC =∠EDB+∠EBD =2∠EDB , ∠COB =2∠EDB ,所以∠COB =∠PEC ,因为PE =PC ,所以∠PEC =∠PCE ,所以∠PCE =∠COB ,因为AB ⊥CD 于G ,所以∠COB+∠OCG =90°,所以∠OCG+∠PEC =90°,即∠OCP =90°,所以OC ⊥PC ,所以PC 是圆O 的切线.(3)因为直径AB ⊥弦CD 于G , 所以BC =BD ,CG =DG ,所以∠BCD =∠BDC ,因为∠F =∠BCD ,tanF =23, 所以∠tan ∠BCD =23=BG CG, 设BG =2x ,则CG =3x .连接AC ,则∠ACB =90°,由射影定理可知:CG 2=AG•BG ,所以AG =229922x C x G x G B ==,因为AG ﹣BG =3,所以292x x -=解得x ,所以BG =2x CG =3x =所以BC 3=,所以BD =BC , 因为∠EBD =∠EDB =∠BCD , 所以△DEB ∽△DBC ,所以B DB DC DE D =, 因为CD =2CG =43,所以DE =2133DB CD =. 【点睛】本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG 、CG 、BC 、BD 、CD 的值,最后利用“共边子母型相似”(即△DEB ∽△DBC )列比例方程求解ED .10.如图.在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,DE 是ABC 的中位线,连结BD ,点F 是边BC 上的一个动点,连结AF 交BD 于H ,交DE 于G .(1)当点F 是BC 的中点时,求DH BH的值及GH 的长 (2) 当四边形DCFH 与四边形BEGH 的面积相等时,求CF 的长:(3)如图2.以CF 为直径作O . ①当O 正好经过点H 时,求证:BD 是O 的切线: ②当DH BH的值满足什么条件时,O 与线段DE 有且只有一个交点.【答案】(1)12DH BH =,133GH =;(2)83CF =;(3)①见解析;②当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【解析】【分析】(1)根据题意得H 为ABC 的重心,即可得DH BH的值,由重心和中位线的性质求得16=GH AF ,由勾股定理求得AF 的长,即可得GH 的长; (2)根据图中面积的关系得S 四边形DCFG =DEB S,列出关系式求解即可得CF 的长; (3)根据O 与线段DE 有且只有一个交点,可分两类情况讨论:当O 与DE 相切时,求得DH BH 的值;当O 过点E ,此时是O 与线段DE 有两个交点的临界点,即可得出O 与线段DE 有且只有一个交点时DH BH 满足的条件. 【详解】解:(1)∵DE 是ABC 的中位线,∴,D E 分别是,AC AB 的中点,//DE BC ,又∵点F 是BC 的中点,∴BD 与AF 的交点H 是ABC 的重心,:1:2DH BH ∴=,即12DH BH =;:1:2=HF AH , ∴13=HF AF , 在ACF 中,D 为AC 中点,//DE BC ,则//DG CF ,∴DG 为ACF 的中位线,G 为AF 的中点,12∴=GF AF , 111236∴=-=-=GH GF HF AF AF AF , 在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,8BC ∴===, 则142==CF BC ,AF ∴=163∴=⨯=GH ; (2)∵四边形DCFH 与四边形BEGH 的面积相等,∴S 四边形DCFH +DGH S=S 四边形BEGH +DGH S , 即S 梯形DCFG =DEB S ,∵6AC =,8BC =,DE 是ABC 的中位线,∴3CD =,4DE =, ∵1143622=⋅⋅=⨯⨯=DEB S DE CD ,设2CF a =,∵DG 为ACF 的中位线, ∴12==DG CF a , 则S 梯形DCFG ()3(2)622+⋅==+=DG CF CD a a , 解得:43a =, 823∴==CF a ; (3)①证明:如图2,连结、CH OH ,CF 为O 的直径,O 经过点H ,90∴∠=︒FHC , ∴90∠=∠=︒AHC FHC ,AHC 为直角三角形,D 为AC 的中点,12∴==DH AC CD , ∠∠∴=DCH DHC .又OC OH =,∴∠=∠OCH OHC ,∴∠+=∠+OCH DCH OHC DHC ,即90∠=∠=︒DHO ACB ,∴BH BD ⊥,即BD 是O 的切线;②如图3-1,当O 与DE 相切时,O 与线段DE 有且只有一个交点,设O 的半径为r ,圆心O 到DE 的距离为d ,∴当r=d 时,O 与DE 相切, ∵//DE CF ,90ACB ∠=︒,3CD =,∴两平行线、DE CF 之间的距离为3CD =,∴3r =,则6CF =,1862,32=-=-===BF BC CF DG CF , 由//DE CF 得:DGH BFH ,32DH DG BH BF ∴==; 如图3-2,当O 经过点E 时,连接OE 、OG , 设O 的半径为r ,即==OE OC r ,∵G 为AF 的中点,O 为CF 的中点,∴//OG CD ,∴四边形COGD 为平行四边形,又∵90ACB ∠=︒,∴四边形COGD 为矩形,∴90∠=︒DGO ,则90∠=︒OGE ,OGE 为直角三角形,∴=3=OG CD ,==DG OC r ,则4=-=-GE DE DG r ,由勾股定理得:222+=OG GE OE ,即2223(4)+-=r r , 解得:258r =,则258==OE OC ,2524==CF r 257258,448∴=-=-===BF BC CF DG OC ,由//DE BC 得:DGH BFH ,252514874∴===DH DG BH BF, 则当2514DH BH >时,O 与线段DE 有且只有一个交点; 综上所述,当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【点睛】本题属于圆综合题,考查了切线的性质与判定、中位线的性质等知识,解题的关键是灵活添加常用的辅助线,属于中考压轴题.。