核医学影像设备
- 格式:pptx
- 大小:19.41 MB
- 文档页数:79
医学影像设备操作说明书一、前言医学影像设备操作说明书旨在为使用者提供详细的操作指导,确保设备能够正常使用,以提高医学影像诊断效果。
本操作说明书包括设备介绍、设备操作说明、维护保养等内容。
二、设备介绍1. 设备概述医学影像设备是一种用于获取人体内部影像信息的工具,通常包括X射线、CT、MRI、超声、核医学等不同类型的设备。
本设备适用于医学影像科室,用于临床医学诊断。
2. 设备组成本设备主要由以下组成部分构成:(1)主机:负责设备的控制和数据处理。
(2)探头/感应器:根据设备类型不同,可包括X射线管、CT探测器、MRI线圈、超声探头等。
(3)操作台/控制面板:用于设备的功能选择、参数设定和图像显示。
(4)外围设备:包括打印机、存储介质等辅助设备。
三、设备操作说明1. 准备工作(1)设备接通电源并待机,确保电源稳定。
(2)检查设备各部分是否完好,无异常情况。
(3)准备相关耗材,如X射线片、注射剂等。
2. 设备开机(1)按下电源开关,等待设备开机自检。
(2)根据设备要求进行登录或身份验证。
3. 设备调试与准备(1)选择正确的检查类型和参数。
(2)调整探头位置和角度,确保能够获取清晰影像。
(3)根据需要选择辅助设备,如光栅、滤光片等。
4. 患者操作(1)根据患者情况指导其采取正确的体位。
(2)告知患者需要保持安静,避免晃动。
(3)根据检查要求在患者特定部位施行必要的准备工作,如消毒。
5. 设备操作(1)根据设备要求选择合适的检查模式,如平扫、增强、序列等。
(2)根据患者情况设定相关参数,如参数范围、层数等。
(3)按下开始按钮,设备开始进行图像采集。
6. 图像质量评估(1)获取的图像应满足特定质量标准,如分辨率、对比度、噪声等。
(2)根据需要进行再采集或调整参数,以获得满意的影像。
7. 图像存储与报告(1)将采集到的图像存储到指定位置或介质中,确保数据安全。
(2)对图像进行处理、测量和分析,以获得临床诊断所需信息。
医学影像设备学概述引言医学影像设备是现代医学中不可或缺的工具,它们通过利用不同的物理原理和技术手段,能够获取人体内部的结构和功能信息。
通过医学影像设备,医生可以准确地诊断疾病并制定合适的治疗方案。
本文将对医学影像设备学进行概述,包括常见的医学影像设备的分类、原理和应用等内容。
分类根据影像的获取方式和原理,医学影像设备可以分为以下几类:1.放射学影像设备:放射学影像设备利用不同类型的射线,如X射线和γ射线,通过透视或穿透身体来获取影像信息。
常见的放射学影像设备有X 射线机和CT扫描仪。
2.超声波影像设备:超声波影像设备利用高频声波的反射和传播特性,生成人体内部器官的影像。
它具有无辐射、便携、实时性强等优点,被广泛应用于妇产科、心脏科等领域。
3.磁共振影像设备:磁共振影像设备利用强磁场和无线电波来获取人体内部器官的影像。
它具有较高的分辨率和对软组织的良好显示效果,常用于检测脑部疾病、关节损伤等。
4.核医学影像设备:核医学影像设备利用放射性同位素的荧光特性,通过检测其在人体内部的分布和代谢,获得影像信息。
核医学影像设备包括单光子发射计算机断层扫描仪(SPECT)和正电子发射计算机断层扫描仪(PET)等。
工作原理和应用1. 放射学影像设备放射学影像设备主要通过射线的透射和吸收来获取影像信息。
X射线机是其中最常见的设备之一,它通过产生高能量的X射线束,并将其照射到患者身体上。
X射线束在不同组织和器官中的吸收程度不同,通过探测器接收被吸收后的射线,再通过图像处理系统生成图像。
X射线机常用于检查骨骼、胸部、腹部等部位的疾病。
CT扫描仪是一种利用X射线成像的设备,它通过连续的X射线束扫描患者身体,并通过计算机重建出横断面的影像。
CT扫描仪具有快速、高分辨率、多层次成像等优点,被广泛应用于各种疾病的检查和诊断。
2. 超声波影像设备超声波影像设备利用高频声波在人体组织中的传播和反射特性,通过探头发射和接收声波信号,生成实时的二维或三维图像。
设备学考点第一章1.现代医学影像设备:1.诊断设备(X线设备丶MRI设备丶US设备丶核医学设备丶热成像设备丶医用光学设备)2.治疗设备(介入放射学设备丶影像引导放射治疗设备丶立体定向放射外科设备)。
第二章1.X线发生装置:用于产生X线的装置,由X线管丶高压发生器和控制台三部分组成,是X 线机丶CT的主要组成部分之一。
2.X线管逐步向大功率丶小焦点和专用化方向发展。
产生条件:1.足够数目的电子2.高电压产生的电压场3.适当的障碍物。
3.固定阳极X线管:由阳极丶阴极和玻璃壳等三部分组成。
阳极:产生X线并散热,其次是吸收二次电子和散乱射线。
阳极头:由靶面和阳极体组成,靶面的作用是承受高速运动的电子束轰击,产生X线。
靶面材料常采用产生X线效率高且熔点高的金属钨。
阳极体由导热率较大的无氧铜组成。
4.阴极:发射电子并使电子束聚焦5.玻璃壳:将阳极和阴极固定在一起并保持管内的高真空度。
6.实际焦点:靶面瞬间承受高速运动电子束的轰击面积。
7.有效焦点:实际焦点在X线投照方向上的投影。
设实际焦点的宽度为a,长度为b,则投照后的长度为bsinθ,宽度不变。
有效焦点=实际焦点Xsinθθ为阳极靶面与X线投照方向的夹角。
有效焦点越小,影像质量越好。
8.投照时应保持实际焦点中心丶X线输出窗中心与投影中心三点一线。
9.旋转阳极X线管的阳极由靶面丶转子丶转轴和轴承等组成。
10.软X线管:X线输出窗的固有过滤小丶在低管电压时能产生较大的管电流丶焦点小结构特点:铍窗,钼靶,极间距离短。
软X线极易通过铍窗,可获得大量的软X线。
摄影时主要利用钼靶辐射的特征X线。
X线分为特征丶持续X线。
11.CT用X线管:1.要求有较大的热容量2.金属或陶瓷外壳3.油循环系统散热。
12.管电压:阴极和阳极之间的直流电压,是电子具有较大的动能。
13.管电流:阴极发射的热电子在电场作用下高速奔向阳极形成电流,管电流越大,产生的X光子的数目越大。
14.阳极特性曲线P1815.容量:在X线管安全使用条件下,单次曝光或连续曝光而无任何损坏时能承受的最大负荷量16.标称功率:同一只X线管的容量是一个不确定量,为了便于比较,通常将一定整流方式和一定曝光时间下X线管的最大负荷称为X线管的标称功率。
医学影像设备分类医学影像设备分为两大类:医学影像诊断设备和医学影像治疗设备。
一、医学影像诊断设备1、X线成像设备:有普通X线机、数字X线摄影设备、X-CT等。
特点:•信息载体:X线•检测信号:透过X线•获得信息:吸收系数•显示信息:物体组成密度•影像特点:形态学•信号源:X线管•探测器:•安全性:有辐射2、MRI设备特点•信息载体:电磁波•检测信号:MR信号•获得信息:质子密度、T1、T2、流速等•显示信息:物体组成、生理、生化变化•影像特点:形态学•信号源:氢质子•探测器:射频线圈•安全性:无辐射,但有强磁场3、超声成像设备•回波类A型:幅度显示,B型:切面显示,C型:亮度显示,M型:运动显示,P型:平面目标显示等。
•透射类超声CT特点•信息载体:超声波,大于0.15MHz•检测信号:反射回波•获得信息:密度、传导率•显示信息:组织弹性及密度变化•影像特点:线性动态•信号源:压电换能器•探测器:压电换能器•安全性:安全4、核医学成像设备• 相机:显像和功能•SPECT:具有γ相机的全部功能,增加了体层成像•PET:使用FDG-18 氟葡萄糖特点•信息载体:γ射线•检测信号:511keV湮灭光子(PET)•获得信息:RI分布•显示信息:标志物的不同浓度•影像特点:生理学•信号源:摄取标志物•探测器:闪烁计数器•安全性:有辐射5、热成像设备•信息载体:红外线、微波•检测信号:红外线•获得信息:组织温度•显示信息:组织血流、神经活动等•影像特点:生理学•信号源:组织器官•探测器:温度传感器•安全性:安全6、内窥镜•光导纤维内窥镜•电子内窥镜:由内镜、光源、视频处理、显示、记录等组成。
CCD(Charges Coupled Device)•超声内镜二、医学影像治疗设备•介入放射学系统:Interventional radiology•立体定向放射外科SRS:Stereotactic Radiosugery•立体定向放射治疗SRT:Stereotactic Radiotherapy•X-刀、γ刀。
北京滨松光子技术股份有限公司核医学影像设备产品介绍1.北京滨松的历史及现状北京滨松公司成立于1988年3月22日,为日本滨松光子学株式会社与中国核工业总公司北京核仪器厂合资组建,注册资本为2亿元人民币。
北京滨松公司总部设于北京市丰台区,下辖廊坊第一事业部、永清第二事业部、中关村营业本部及一个技术研究院。
公司总部廊坊第一事业部(核医学影像设备生产基地)北京滨松公司经营领域包括:光探测器用电子玻璃材料、光子探测器件、发光器件及其应用的医疗器械等光子技术领域高新技术产品的仪器装置的研究、开发、设计、生产、销售、售后服务及技术咨询等业务。
其中生产经营的光电倍增管目前占全球销售额的25%,全国销售额的90%以上。
2.北京滨松公司核医学影像设备简介2000年初北京滨松公司依托日本滨松光子学株式会社的技术支持,同时与清华大学、北京大学、解放军总医院、协和医院及北大医院等单位开展广泛密切的合作交流,针对中国临床医生使用、操作习惯研发、生产了一系列核医学影像设备。
目前已经推出BHP6601型单探头SPECT、BHP6602型小型GAMMA相机及BHP6603型双探头固定角SPECT(心脏专用)。
BHP6602型小型GAMMA相机小型伽玛相机的分辨率优于SPECT,因此在甲状腺、肾脏、股骨头等小脏器的核素显像中尽显清晰优势。
它的整体造价经济,外型小巧美观,目前被国内众多大型医院用作小脏器核素显像的专用机。
此外,对于计划初步涉足于核素显像工作的医院,它也是不错的选择。
2007年它顺利通过FDA认证并在美国市场形成了批量销售。
BHP6601型单探头SPECT在SPECT所有产品级别中,它具有最高的性价比,在保持经济性的同时可进行所有核素显像工作,因此成为国内省市级三甲医院的普及型设备。
可变角双探头SPECT可变角双探头SPECT的工作效率比单探头SPECT高出几乎一倍,断层检查时间缩短1/3,适用于核素显像检查病例较多、对检查时患者的舒适度有较高要求的医疗机构。
医学影像设备的主要技术参数医学影像设备是现代医学诊断中不可或缺的工具,它可以帮助医生观察人体内部的结构和功能,从而更准确地诊断和治疗疾病。
下面将介绍一些医学影像设备的主要技术参数。
1. X射线设备:X射线设备是最常见的医学影像设备之一。
它通过发射X射线并记录其在人体内部的传播情况来生成影像。
X射线设备的主要技术参数包括:最大输出功率、最大电压、最大电流、曝光时间等。
这些参数决定了设备的成像质量和辐射剂量。
2. CT扫描设备:CT扫描设备通过旋转X射线源和探测器来获取大量的断层影像,然后通过计算机重建这些影像,生成精细的三维图像。
CT扫描设备的主要技术参数包括:扫描范围、扫描速度、图像分辨率、辐射剂量等。
这些参数影响着设备的成像能力和安全性能。
3. MRI设备:MRI设备利用强磁场和无线电波来获取人体各部位的详细结构和功能信息。
MRI设备的主要技术参数包括:磁场强度、梯度系统性能、脉冲序列、重建算法等。
这些参数决定了设备的成像分辨率、灵敏度和对不同组织的对比度。
4. 超声设备:超声设备利用超声波在人体内部的传播和反射来生成影像。
超声设备的主要技术参数包括:频率范围、探头类型、扫描模式、信号处理算法等。
这些参数影响着设备的成像深度、分辨率和对不同组织的识别能力。
5. 核医学设备:核医学设备利用放射性同位素在人体内部的分布情况来诊断疾病。
核医学设备的主要技术参数包括:同位素类型、探测器类型、成像方式、计数率等。
这些参数决定了设备的成像灵敏度、分辨率和辐射剂量。
医学影像设备的主要技术参数直接影响着设备的成像质量、安全性能和临床应用价值。
医学影像师和医生需要根据具体的临床需求选择合适的设备,并合理使用设备的参数,以提高诊断和治疗的准确性和效果。