电位滴定法测定氯离子浓度及AgCl的KspPPS
- 格式:ppt
- 大小:170.50 KB
- 文档页数:6
实验5 电位滴定法测定氯、碘离子浓度及AgI和AgCl的K sp一、实验目的1.掌握电位滴定法测量离子浓度的一般原理;2.学会用电位滴定法测定难溶盐的溶度积常数。
二、方法原理当银丝电极插入含有Ag+的溶液时,其电极反应的能斯特响应可表示为:如果与一参比电极组成电池可表示为:进一步简化为:式中包括和r(Ag+)常数项。
银电极不仅可指示溶液中Ag+的浓度变化,而且也能指示与Ag+反应的阴离子的浓度变化。
例如,卤素离子。
本实验利用卤素阴离子(I-、Cl-)与银离子生成沉淀的溶度积K sp非常小,在化学计量点附近发生电位突跃,从而通过测量电池电动势的变化来确定滴定终点。
在终点时:其中X-为Cl-、I-,代入终点时的滴定电池方程:用该式即可计算出被滴定物质难溶盐的K sp。
而式中K′和S值可利用第二终点之后过量的[Ag+]与E(电池)关系作图求得,由直线的截距确定K′,斜率确定S。
通常的电位滴定使用甘汞或AgCl/Ag参比电极,由于它们的盐桥中含有氯离子会渗漏于溶液中,不适合在这个实验中使用,故可选用甘汞双液接硝酸盐盐桥,或硫酸亚汞电极。
三、仪器设备与试剂材料1.pH/mV计,电磁搅拌器。
2.银电极,双液接饱和甘汞电极。
3.硝酸银标准溶液,0.100mol∙L-1:溶解8.5g AgNO3于500mL去离子水中,将溶液转入棕色试剂瓶中置暗处保存。
准确称取1.461g基准NaCl,置于小烧杯中,用去离子水溶解后转入250mL容量瓶中,加水稀释至刻度,摇匀。
准确移取25.00mL NaCl标准溶液于锥形瓶中,加25mL水,加1mL15% K2CrO4,在不断摇动下,用AgNO3溶液滴定至呈现砖红色即为终点。
根据NaCl标准溶液浓度和滴定中所消耗的AgNO3体积(mL),计算AgNO3的浓度。
4.Ba(NO3)2(固体)。
5.硝酸,6mol∙L-1。
6.试样溶液(其中含Cl-和I-分别都为0.05mol∙L-1左右)。
电位滴定法测定氯离子数据记录和处理一、原始数据记录和计算1、NaCl标准溶液称取氯化钠质量 m=0.2941g,容量瓶体积:100mlC NaCl = m NaClM?V = 0.294158.5?0.1=0.05 mol/L2、手动标定硝酸银溶液(1)原始数据表格1银离子滴定氯离子数据滴定体积/ml电位/mV滴定体积/ml电位/mV滴定体积/ml电位/mV 0172 2.90218 4.204430.30176 3.00221 4.304480.60180 3.10227 4.404500.90182 3.20234 4.504531.20186 3.30239 4.604561.50190 3.40246 4.704581.80185 3.50257 5.004632.101993.60277 5.304672.402053.70354 5.604702.502063.80400 5.904732.602113.90423 6.204752.70213 4.00433 6.504772.80214 4.10438(2)二阶微商法计算滴定终点为方便计算,挑选原始实验数据中的部分数据整理如下:滴定体积/ml电位φ/mVΔV/(V2-V1)Δφ/(φ2-φ1)ΔφΔV Δ2φΔV20.30176————1.201860.901011.11—3.102270.904145.5634.453.202340.1077024.44 3.302390.10550-20 3.402460.1077020 3.502570.101111040 3.602770.102020090 3.703540.1077770570 3.804000.1046460-3103.904230.1023230-2304.004330.1010100-1304.104380.10550-505.30467 1.202924.17-25.836.50477 1.202016.67-7.5去掉一个坏值(3.30,239),找出二阶微商为零的两个数据点(3.70,354)和(3.80,400)。
电位滴定法测定氯、碘离子浓度及AgI和AgCl的K sp一、实验目的1.掌握电位滴定法测量离子浓度的一般原理;2.学会用电位滴定法测定难溶盐的溶度积常数。
二、方法原理当银丝电极插入含有Ag+的溶液时,其电极反应的能斯特响应可表示为:如果与一参比电极组成电池可表示为:进一步简化为:式中包括和r(Ag+)常数项。
银电极不仅可指示溶液中Ag+的浓度变化,而且也能指示与Ag+反应的阴离子的浓度变化。
例如,卤素离子。
本实验利用卤素阴离子(I-、Cl-)与银离子生成沉淀的溶度积K sp非常小,在化学计量点附近发生电位突跃,从而通过测量电池电动势的变化来确定滴定终点。
在终点时:其中X-为Cl-、I-,代入终点时的滴定电池方程:用该式即可计算出被滴定物质难溶盐的K sp。
而式中和S值可利用第二终点之后过量的[Ag+]与E(电池)关系作图求得,由直线的截距确定,斜率确定S。
通常的电位滴定使用甘汞或AgCl/Ag参比电极,由于它们的盐桥中含有氯离子会渗漏于溶液中,不适合在这个实验中使用,故可选用甘汞双液接硝酸盐盐桥,或硫酸亚汞电极。
三、仪器设备与试剂材料1.pH/mV计,电磁搅拌器。
2.银电极,双液接饱和甘汞电极。
3.硝酸银标准溶液,0.100mol∙L-1:溶解8.5g AgNO3于500mL去离子水中,将溶液转入棕色试剂瓶中置暗处保存。
准确称取1.461g基准NaCl,置于小烧杯中,用去离子水溶解后转入250mL容量瓶中,加水稀释至刻度,摇匀。
准确移取25.00mL NaCl标准溶液于锥形瓶中,加25mL水,加1mL15% K2CrO4,在不断摇动下,用AgNO3溶液滴定至呈现砖红色即为终点。
根据NaCl标准溶液浓度和滴定中所消耗的AgNO3体积(mL),计算AgNO3的浓度。
4.Ba(NO3)2(固体)。
5.硝酸,6mol∙L-1。
6.试样溶液(其中含Cl-和I-分别都为0.05mol∙L-1左右)。
四、实验步骤1.按图示安装仪器。
自动电位滴定仪氯离子含量原理
自动电位滴定仪是一种用于测定溶液中某种离子含量的仪器。
它基于滴定的原理,通过自动添加滴定剂直至滴定终点,然后根据滴定过程中溶液电位变化来计算出溶液中目标离子的含量。
在测定氯离子含量时,通常使用银离子作为滴定剂。
银离子与氯离子反应生成沉淀(AgCl),反应方程式为:
Ag+ + Cl- -> AgCl
滴定过程中,溶液中的氯离子逐渐与滴定剂中的银离子反应生成沉淀。
当氯离子完全被滴定剂反应完时,溶液中不再存在可与银离子反应生成沉淀的氯离子,滴定终点也就达到了。
自动电位滴定仪通过电势计测量滴定过程中溶液的电位变化。
在滴定开始时,溶液中银离子的浓度很低,因此溶液的电位较低。
随着滴定剂的添加,溶液中银离子的浓度逐渐增加,从而导致溶液的电位逐渐上升。
当氯离子完全滴定完毕时,溶液中不再存在与银离子反应生成沉淀的氯离子,银离子的浓度不再增加,溶液的电位达到最高点,也就是滴定终点。
根据滴定过程中溶液电位的变化,可以确定滴定终点的位置,从而计算出溶液中氯离子的含量。
滴定水份应用报告A-T-CN(sh)-电位滴定法测定电镀铜槽液中氯离子含量应用领域:电镀关键词氯离子/809/银电极摘要Ag电极经电镀上Ag2S(或AgCl)后用于强酸性环境下氯离子的滴定分析样品硫酸铜槽液试剂- 滴定剂:AgNO3溶液c=0.1mol/L- 氯化钠(AR)- 5mol/L 硝酸溶液- D.I. 水仪器及附件Titrando 809 2.809.0010801 Stirrer 2.801.0010800 Dosino 2.800.0010Dosing unit 6.3032.220Electrode with Ag2S coating 6.0430.100Electrode cable 6.2104.020分析0.1mol/L AgNO3标定滴定参数Parameters DETU>titration parametersmeas.pt.density 4Dos.rate max.ml/minsignal drift 50 mV/minMin waiting time 0sMax waiting time 26stemperature 25.0 °C>stop conditionsstop V 10mlStop measured value offstop EP 1Stop after EP 1.5mlPotentiometricEvaluationEP Criterion 5EP Recognition Greatest分析步骤取100ml干燥烧杯,准确称取约0.04g 经烘干处理的氯化钠,分别加入60ml DI水中、1ml 硝酸溶液,用0.1mol/L AgNO3溶液滴定至电位突跃点。
计算AgNO3(mol/L)=Sample size×1000/58.44/EP1样品测试滴定参数Parameters DETU>titration parametersmeas.pt.density 2Dos.rate max.ml/minsignal drift 20 mV/minMin waiting time 0sMax waiting time 38stemperature 25.0 °C>stop conditionsstop V 10mlStop measured value offstop EP 1Stop after EP 1.5ml PotentiometricEvaluationEP Criterion 5EP Recognition Greatest分析步骤将0.1mol/L AgNO3用容量瓶定量稀释10倍待用。
电位滴定法测定水质中的氯离子发表时间:2018-11-22T19:02:00.833Z 来源:《防护工程》2018年第22期作者:林朝红[导读] 建立了自动电位滴定仪测定水质中氯离子的方法。
以Ag Titrode电极作指示电极,选择DET动态等当点滴定模式深圳市华保科技有限公司 518057摘要:建立了自动电位滴定仪测定水质中氯离子的方法。
以Ag Titrode电极作指示电极,选择DET动态等当点滴定模式,用硝酸和氢氧化钠溶液调节PH<4,在乙醇—水溶液中滴定测得结果。
该方法适用于地表水、海水、生活污水和工业废水等氯离子的测定,相对标准偏差0.28~1.23%,回收率为98~102%。
关键词:自动电位滴定仪;水质;氯离子前言1、意义氯离子(Cl-)是水质中一种常见的无机阴离子[1]。
几乎所有的天然水中都有它的存在,含量范围变化很大,河流、湖泊及部分排放水的氯离子含量一般很低,生活污水、工业废水和海水、盐湖及部分地下水的氯离子,含量可高达数千克/升。
水中氯化物含量高时,会损害金属管道和构筑物,并妨碍植物的生长。
2、方法选择测定氯离子的方法很多[2],其中离子色谱法适合于洁净水样中包括氯离子在内的多种阴离子的同时检测,硫氰酸汞分光光度法适合于大气和废气吸收液中氯离子的测定,以上两种方法适合于低含量氯离子的测定。
离子选择电极法适合的测定范围也比较广泛,但测定时间长,操作步骤繁琐。
硝酸银滴定法所需仪器设备简单,适合于清洁水测定,且终点较难判断。
本文采用自动电位滴定仪测定水质中的氯离子[3],以复合银电极作为指示电极,用硝酸银标准滴定液滴定,通过电脑绘制U—V曲线和△U/△V—V曲线,控制滴定速度,电位变化最大时仪器的体积读数即为滴定终点。
3.实验部分3.1主要仪器及试剂3.1.1主要仪器设备:905自动电位滴定仪(瑞士万通);交换单元20mL(瑞士万通);Ag Titrode电极6.0430.100(瑞士万通);电子分析天平(分度值0.1mg)。
使⽤⾃动电位滴定仪测定⽔中氯离⼦含量使⽤⾃动电位滴定仪测定⽔中氯离⼦含量和COD Mn值1.相关标准《GB/T 13025.5-2012 制盐⼯业通⽤试验⽅法氯离⼦的测定》《GB/T 15453-2008 ⼯业循环冷却⽔和锅炉⽤⽔中氯离⼦的测定》《GB/T 24890-2010 复混肥料中氯离⼦含量的测定》《NY/T 1121.17-2006 ⼟壤检测第17部分:⼟壤氯离⼦含量的测定》《MT/T 201-2008 煤矿⽔中氯离⼦的测定》《ASTM D4458-2009 半咸⽔、海⽔和盐⽔中氯离⼦的试验⽅法》2.测量原理样品溶液调⾄中性,⽤硝酸银标准溶液滴定溶液,通过离⼦选择性电极的电位突变指⽰终点。
3.仪器设备实验仪器:ZDJ-5型⾃动滴定仪,或其他型号⾃动电位滴定仪。
实验电极:216-01型银电极+217-01型参⽐电极(⼆级参⽐填充液:饱和硝酸钠溶液)。
其他⼀般实验室仪器。
4.试剂和溶液4.10.01mol/L氯化钠标准溶液:称取0.5844克已于600℃灼烧⾄恒重的氯化钠基准试剂,溶解于去离⼦⽔中,移⼊1000ml容量瓶中,并⽤⽔稀释⾄刻度,摇匀。
氯化钠标准溶液的浓度按式(1)计算:(1)式中:c(NaCl),氯化钠标准溶液的浓度,单位为摩尔每升(mol/L);m,称取氯化钠的质量,单位为克(g)V,配制溶液的体积,单位为升(L)4.20.01mol/L硝酸银溶液:称取1.70克分析纯的硝酸银,溶解于去离⼦⽔中,移⼊1000ml容量瓶中,并⽤⽔稀释⾄刻度,摇匀,溶液保存在棕⾊瓶中。
5.操作过程5.1仪器准备,参照ZDJ-5或其他型号⾃动滴定仪说明书5.2参数设置(推荐参数)最⼩滴定体积:0.02ml。
最⼤滴定体积:0.2ml,预滴定突跃量:中,80mV。
5.3氯化钠标准溶液的标定:吸取10.00 ml 氯化钠标准溶液,置于150 ml 烧杯中,使⽤硝酸银溶液滴定,同时需进⾏空⽩实验。
硝酸银溶液的浓度按式(2)计算:(2)式中:c(AgNO3),硝酸银滴定剂的浓度,单位摩尔每升(mol/L)c(NaCl),氯化钠标准溶液的浓度,单位摩尔每升(mol/L)V1,吸取氯化钠标准溶液的体积,单位毫升(ml)V2,硝酸银滴定剂的⽤量,单位毫升(ml)V0,空⽩试验硝酸银标准滴定溶液的⽤量,单位毫升(ml)5.4⽤移液管吸取分析样品20ml于反应杯中,加⼊30ml去离⼦⽔,加⼊搅拌⼦,放在搅拌器上,将电极及滴液管插⼊溶液,开始对样品进⾏滴定。
自动电位滴定法测定未知样中的Cl-离子一、实验目的1 探讨测定未知样中的氯离子的方法2 比较各种方法的优缺点3 深入掌握自动电位滴定的原理、方法与使用4 加强小组协作解决问题的能力二、实验原理将指示电极银电极与参比电极甘汞电极浸入被测溶液中,在滴定过程中,参比电极的点位保持恒定,指示电极的电位不断发生改变。
在化学计量点前后,溶液中被测物质浓度的微小变化,会引起指示电极电位的急剧变化,指示电极电位的突跃点就是滴定终点。
其电极电位与银离子的浓度的关系符合能斯特方程三、仪器与试剂仪器:自动电位滴定仪银电极甘汞电极(外盐桥为浓度为0.1mol/L的硝酸钾溶液)试剂:氯化钠硝酸银未知样四、实验步骤1 标准溶液的配制将氯化钠置于坩埚内,在500~6000C加热50min,冷却后称取1.4625g 溶于蒸馏水中定容于250ml容量瓶中。
制得浓度为0.1000mol/L的氯化钠标准溶液。
2 标定硝酸银溶液(1)开启自动电位滴定仪,预热。
(2)用蒸馏水清洗仪器3次,再用滴定剂清洗3次(3)平行移取三份氯化钠标准溶液10mL置于烧杯中,放入磁子,放置在自动电位滴定仪的电磁搅拌处(4)设置滴定参数,建立滴定模式(5)将指示电极、参比电极及滴定管插入溶液中按启动键开始3 未知样的测定平行移取三份稀释10倍未知样溶液10mL置于烧杯中,按2中操作步骤进行测定4 回收率实验平行移取2份10mL未知样置于烧杯中,依次加入氯化钠标准溶液3mL,10mL,用自动电位滴定仪重复2中操作步骤进行测定五、数据处理表1. 标定硝酸银的浓度氯化钠标准溶液的体积(mL) 10 10 10消耗硝酸银的体积(mL) 9.896 9.828 9.974硝酸银的浓度(mol/L) 0.1010 0.1018 0.1002平均浓度(mol/L) 0.1010表2. 未知样的测定未知样编号 1 2 3未知样的体积(mL) 10 10 10消耗硝酸银的体积(mL) 2.679 2.651 2.711未知样的浓度(mol/L) 0.02706 0.02678 0.02738平均浓度(mol/L) 0.02707标准偏差0.024%RSD /(%) 0.91表3. 加标回收率实验样品加标体积(mol/L) 消耗硝酸银体积(mol/L) 加标回收率10 3 5.840 105%10 10 13.269 106%未知样的浓度为0.02707*10=0.2707mol/L质量摩尔浓度为0.2707*58.5=15.84g/L质量分数为1.58%六、分析与讨论1 样品中氯离子的测定方法可分为直接测定与间接测定,直接测定可用莫尔法、电位滴定,间接测定可用沉淀法、用原子吸收或ICP测Ag+。
Hans Journal of Civil Engineering 土木工程, 2016, 5(1), 21-26Published Online January 2016 in Hans. /journal/hjce/10.12677/hjce.2016.51003Utilization of Precipitation-PotentiometricMethod for the Measurement of Chloride Ion Content in ConcreteLin Yang*, Wei Sun, Yunsheng Zhang#, Guojian LiuJiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing JiangsuReceived: Dec. 10th, 2015; accepted: Jan. 23rd, 2016; published: Jan. 29th, 2016Copyright © 2016 by authors and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/AbstractPrecipitation-Potentiometric Method was used for the measurement of chloride ion content in concrete. Effect of solution alkalinity on the testing results was investigated, meanwhile, which was also compared with the results obtained by ion chromatography (IC). The research indicates that the results obtained by Precipitation-Potentiometric Method have great difference with the IC results when the solution was not neutralized by dilute sulphuric acid, and the maximum devia-tion is closed to 30%. After neutralizing, however, the titration results are very near to the IC re-sults and the maximum deviation is merely 5.3%. All of these show that the Precipitation-Poten- tiometric Method has the features of high reliability, low cost and easy operation, which can be used as the standard method for measuring the chloride ion content in cement-based materials.KeywordsConcrete, Chloride Ion, Corrosion of Steel Bar, Durability沉淀–电位滴定法测定混凝土中氯离子含量杨林*,孙伟,张云升#,刘国建东南大学,江苏省土木工程材料重点实验室,江苏南京*第一作者。