美加大停电简介
- 格式:pdf
- 大小:3.79 MB
- 文档页数:86
18.14美加大停电的经过和启示内容摘要1.基本情况2.事故起始及发展过程3.事故过程中的分析4.事故原因初步分析5.北美可靠性委员会采取措施细节6.美加大停电的启示1.基本情况美国东部时间2003年8月14日16时11分(北京时间8月15日4时11分)开始,美国和加拿大东北部联合电网发生大面积停电事故。
美国发生事故的电网,总装机容量为6.59亿千瓦。
在事故发生的最初3分钟内,就有21个电厂停止运行。
此后共造成约100个发电厂,其中包括22个核电站被迫停止运行。
停电范围约240万平方公里,美国8个州约70万平方公里受影响的居民人数共计5千万,加拿大两省约170万平方公里的地区受影响人口达1000万。
1.1.基本情况(续)¾PJM互联电网:400万千瓦(宾州-新泽西-马里兰联合电力系统)¾中西部ISO:1850万千瓦¾魁北克水电:10万千瓦¾安大略IMO:2100万千瓦¾新英格兰ISO :250万千瓦¾纽约ISO:2440万千瓦1.1.基本情况(续)1.1.基本情况(续)2.事故起始及发展过程¾正常情况下,潮流从南部和东部注入俄亥俄州北部和密执根州东部¾由于一条线路因灌木丛火灾而跳闸,俄亥俄州北部和东部系统隔离¾由于一条线路因过负荷而跳闸,俄亥俄州北部和密执根州东部均和南部系统隔离¾潮流走向变为逆时针倒转,从宾夕法尼亚州经过纽约州、安大略省、注入密执根州,从而向俄亥俄北部和密执根东部供电¾正如当天所发生的那样,因为纽约州内部电力需求相对较小,大量功率从纽约州输出到安大略省¾历史上,纽约州常常需要输入电能¾纽约州和安大略省解列¾由于纽约州和安大略省解列,大量潮流无处可去,突然触发了纽约州大停机¾东部互联电网解列¾大面积停电事故发展过程图示线路跳开通道断开发电机切机事件序号12:05:44 –1:31:34 PM 发电机切机1)12:05:44 –Conesville#5 (额定值375 MW)2)1:14:04 –Greenwood #1 (额定值785 MW)3)1:31:34 –Eastlake #5 (额定值597 MW)12:05:44 –1:31:34 PM 发电机切机Conesville电厂位于俄亥俄州中央;Greenwood 电厂位于底特律北部,Greenwood #1机组在1:14:04 跳开,1:57恢复运行;Eastlake#5机组位于俄亥俄州北部Erie湖南岸,与345 kV系统相连。
文章从调度的角度介绍了8.14美加大停电的过程,详细分析了事故中调度员在处理紧急事故,控制中心的自动化系统以及各级控制中心的协调中存在的问题,提出了在事故发展的各个阶段调度员可以采取控制事故的措施,指出若调度员采取有效措施,可以避免这次大停电事故。
文章还总结了我们应从本次事故中汲取的教训。
关键词:美加大停电;电力系统调度;控制中心1引言2003年8月14日,美国东北部、中西部及加拿大安大略省发生了一次大停电事故。
它造成的巨大损失和影响在美国电力史上是空前的,也引起了世界各国的高度关注。
联合调查组历时半年多时间,经过大量的现场调查和模拟计算,于2004年4月6日公布了有关美加大停电的最终调查报告[1]。
此次事故所揭示的电网运行中的问题,特别是在电网结构日益复杂、电网互联日益紧密、市场环境下交易电量巨大、输电裕度逐渐变小的情况下,如何从技术上确保电网安全、稳定、经济地运行,对我国的电网调度运行工作有着重大的借鉴意义,因而,这次事故也引起了国内许多专家和工程运行人员的极大关注。
我国学者从电网建设、自动装置的优化配置、电网监控和负荷模型研究等角度对该事故进行了反思[2,3]。
从调度的角度分析,值得我们深思的一个问题是:从13:31时Eastlake5号机跳闸开始到16:05时Sammis-Star线路跳闸、系统崩溃,事故的发展共持续了2h34min,在这样相当长的一段时间内,调度员在做什么?他们是否有机会采取一些有效措施制止事故的发展?还是他们已经采取了一切必要的措施而事故仍无可避免?本文试图从事故的演变过程和事故中调度的表现来进行分析。
2事故背景简介2.1故障区域电网的运行模式北美电网包括三个独立电网:①东部互联电网,包括美国东部2/3的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区;②西部互联电网,包括美国西部1/3的地区(不含阿拉斯加州)和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分;③相对较小的德克萨斯州电网。
另
停电事故:
印度于2012年7月30日、31日先后发生两次世界罕见的电网大面积停电事故。
1965年加拿大与美国东北部停电事件
2006年欧洲大停电
1977年纽约大停电
2003年美国东北部和加拿大大停电
2008年中国湖南省大停电
2009年巴西和巴拉圭停电事件
影响:
通讯,交通,供水,金融业、交通运输业、贸易和餐饮业,交通讯号灯熄灭,城市交通瘫痪;大部分地区生活、贸易设施受到影响,停电还造成不少商店停业,一些医院暂停手术,移动电话的使用也受到一定影响,黑暗,造成恐慌,等等。
美加“8.14大停电”原因及分析北美电力可靠性委员会(NERC)对有关8.14大停电原因的报告以及有关方面的资料清晰地给出了此次事故的起因和发展过程,现简述如下。
从2003年8月14日下午美国东部时间(EDT,下述均为此时间)15时06分开始,美国俄亥俄州的主要电力公司第一能源公司(First Energy Corp.,以下简记为FE)的控制区内发生了一系列的突发事件。
这些事件的累计效应最终导致了大面积停电。
其影响范围包括美国的俄亥俄州、密执安州、宾夕法尼亚州、纽约州、佛蒙特州、马萨诸塞州、康涅狄格州、新泽西州和加拿大的安大略省、魁北克省,损失负荷达61.8 Gw,影响了近5千万人口的用电。
事故演变过程可分为如下几个阶段:(1)事故发生前的阶段。
图1中,各系统之间靠345kV和138kV线路构成一个交直流混联的巨大电网,其总体潮流为自南向北传送。
属于事故源头的第一能源(FE)系统因负荷高,受入大量有功,系统负荷约为12.635GW,受电约2.575GW(占总负荷的21%),导致大量消耗无功。
尽管此时系统仍然处于正常的运行状态,但无功不足导致系统电压降低。
其中FE管辖的俄亥俄州的克力夫兰-阿克伦(Cleveland-Akron)地区为故障首发地点。
在事故前,供给该地区有功及无功的重要电源:机组戴维斯-贝斯机组(Davis-Besse)和东湖4号机(Eastlake4)已经停运。
在13∶31东湖5号机(Eastlake5)的停运,进一步耗尽了克力夫兰-阿克伦地区的无功功率,使该系统电压进一步降低。
(2)短路引起的线路开断阶段。
15∶05俄亥俄州的一条345kV(Chamberlin-Harding)输电线路在触树短路后跳闸(线路开断前潮流仅为正常裕量的43.5%),致使由南部向克力夫兰-阿克伦地区送电的另外3条345kV线路(Hanna-Juniper、Star-South Canton和Sammis-Star,如图2所示)的负荷加重(其中Hanna-Juniper线路上增加的负荷最多,同时向该地区送电的138kV线路的潮流也随之增加,如图3所示。
美国东部时间2003年8月14日下午约4时20分开始,美国东北部和加拿大部分地区发生大面积停电。
初步调查显示,停电是由于纽约一家发电厂遭雷击起火所致,美国官方已否认这与恐怖活动有关。
目前,部分地区已开始恢复供电。
这次历史上最大规模的停电波及美国的很多城市,加拿大安大略省的部分城市也受到影响。
停电影响了地铁、电梯以及机场的正常运营,在一些地方造成了交通拥堵,给成千上万市民的工作和生活造成了极大不便。
新华社记者在纽约街头看到,城市交通已基本瘫痪,街上人头攒动,车流和人流都在艰难地缓慢移动,但人们都显得比较平静,没有出现恐慌。
由于停电使收款机无法使用,绝大部分商店都关门停业。
记者在街边接连询问了几家仍在营业的小商店,被告知电池、蜡烛等应急物品都已脱销。
在付费电话前,人们排成了长队,因为大部分手机因为停电而无法接通。
新泽西州北部、佛蒙特州的部分地方和康涅狄格州也发生了停电事故。
停电发生后,美国关闭了俄亥俄州和纽约州等4个州的7座核电站,医院、监狱等不少机构纷纷启用备用电源应急。
加拿大总理府官员14日说,当天美国东北部和加拿大的大面积停电是因闪电击中美国纽约州北部一家电厂引起火灾造成的。
纽约州和新泽西州都因停电宣布进入紧急状态。
纽约市市长布隆伯格说,没有迹象表明这是一起恐怖袭击事件。
“或许这是一起自然事故导致电力系统的中断”。
美联邦调查局、国土安全部和纽约警方一致认为,没有证据表明这次大面积停电是恐怖分子发动的袭击,也没有证据表明这是一起犯罪案件。
联邦调查局发言人比尔·卡特说:“目前我们还没有任何东西表明这起事故具有犯罪性质或是一起恐怖行动。
”纽约市警察局的一位发言人说:“我们现在更关心的是如何使路灯亮起来,使城市恢复正常,而不是事故的原因。
”美国总统布什14日晚(北京时间15日早上)在圣地亚哥发表讲话说,受停电影响的市民的生活可能马上恢复正常,但政府“正在逐步、有效地处理这一全国性问题”。
美国上一次大规模停电发生在1996年8月。
8。
14美加大停电事故原因分析及启示美加大停电事故原因作初步分析(1)电网结构方面北美电网包括三个独立电网①东部互联电网,包括美国东部的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区②西部互联电网,包括美国西部的地区不含阿拉斯加州和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分③相对较小的德克萨斯州电网。
这三个互联系统在电气上相互独立,通过少数几条输送容量较小的直流联络线相连.这次发生大面积停电事故在东部地区。
被认为造成大停电的主要导火线是包括底特律、多伦多和克利夫兰地区的Erie 湖大环网,沿该环网流动的潮流经常无任何预警地发生转向,造成下方城市负荷加重。
此次系统潮流突然发生转向时,控制室的调度员面对这一情况束手无策。
(2)电网设备方面美国高压主干电网至少已有四五十年的历史,一些早期建设的线路及设备比较陈旧,而更新设备又需要大量资金投入.投资电网建设的资金回报周期长、回报率低。
例如在20世纪90年代,投资发电厂资金回报率常常在12%~15%,而投资输电线路只有8%左右。
因此,只有当供电可靠性问题非常严重,或是供电要求迫切时,电力公司才会考虑投资修建输电线路。
另外,环保方面的限制也增加了输电线路建设的难度.(3)电网调度方面由于没有统一调度的机制,各地区电网之间缺乏及时有效的信息交换,因此在事故发展过程中,无法做到对事故处理的统一指挥,导致了事故蔓延扩大.国际电网公司(ITC)追踪到大停电以前1h 5min的数据,认为如果能够早一点得到系统发生事故的一些异常信号,就可能及时采取应急措施,制止大停电事故的发生。
(4)保护控制技术方面美国电网结构复杂,容易造成运行潮流相互窜动,增加了电网保护、控制以及解列的难度。
这次停电事件中,在事故发生初期FE与AEP公司的多条联络线跳闸(有些在紧急额定容量以下),对事故扩大起到推波助澜的作用。
NERC在对事故记录的调查中发现许多“时标”不准确,原因是记录信息的计算机发生信息积压,或者是时钟没有与国家标准时间校准。
第一部分案例描述摘要:2003年8月14日下午,美国东北部和加拿大安大略省电网发生大面积停电事故。
事故原因为一系列偶然事件的叠加,该事故是北美历史上最大规模的停电事故,经济损失高达300亿美元,5000万人的生活受到影响,大停电至少造成8人死亡,21座发电站受损。
一、背景信息在美国东北部地区,这里是美国的心脏,是全美工商业最为发达的地区,拥有世界上最大的都市群——纽约市。
在其北部的加拿大安大略省,这里是加拿大的制造业中心,是加拿大工业的命脉,并且有着渥太华等大都会。
电力能源是21世纪最重要的能源,美国是世界上最大的电力消费国。
在美国,有着不同于中国的电网运营模式,美国没有所谓的公有制的“国家电网”公司,只有2家大型电网和3个小型电网组成,分别是北美东部电网、北美西部电网两大同步电网,德克萨斯州电网、阿拉斯加电网和加拿大魁北克电网三个规模较小的运营公司,这5大电网覆盖了本土48个州、超过3200套配电设施、1万多个发电机组、数十万里的输配电线和数百万用电客户,而这5大网络又存在为数众多的运营管理者。
国电网的运行主要是由电力可靠性组织(Electric Reliability Organization, ERO)统筹。
ERO是电力行业的自律机构,受联邦能源调整委员会 (Federal Energy Regulatory Commission, FERC)委托实施对电网的监管职能,它有美电力可靠性委员会(NERC)等下设机构来加强电网的可靠性和安全性,北美电力可靠性委员会(NERC)在北美设立了18个可靠性协调员,如MISO。
二、情境导入俄亥俄州的克利夫兰市与阿克伦市这两个地方,在2003年夏天有一个共同点,即该地区的电压异常不稳定,而负责运营这一地区电力的第一能源公司对此事无动于衷。
判断一个地区的电力供应是否处于可靠状态是十分重要的,美国电网在设计之初就考虑到了未来可能面临的意外状况,制定了一整套机制与标准来对抗意外情况(如大型发电机组或者关键变电设备的故障)。
美加8.14大停电电力实09马剑2003年8月14日,美国中西部、东北部及加拿大安大略省遭受了大面积停电事件。
事故开始于美国东部时间16时左右,在美国部分地区,电力供应在4日后仍未恢复,而在全部电力供应恢复之前,安大略省部分地区的停电持续了一个多星期。
一、事件全过程1、事故的发展过程[1]:事件发生前,停电地区中西部正值高温天气,电网负荷很大。
潮流方向是从印第安纳州和俄亥俄州南部通过密歇根州和俄亥俄州北部向底特律地区送电,并通过底特律地区送往加拿大的安达略省。
14时左右,俄亥俄北部属FE电网公司的Eastlake5号机组(597MW)跳闸。
15时05分,俄亥俄南北联络断面上送克里夫兰的一条345千伏线路跳闸,其输送的功率转移到相邻的345kV线路(Hanna–Juniper)上。
15时32分,俄亥俄另一条南北联络线Ohio Hanna—Juniper345千伏线路因对树放电跳闸,这是因为上一事件引起该线路长时间过热并下垂,从而接触线下树木。
当时由于警报系统失灵没能及时报警并通知运行人员,15:32该线路因短路故障而跳闸,使得克利夫兰失去第二回电源线,系统电压降低。
[2] 15时41分,俄亥俄又有两条南北联络线相继跳闸,克里夫兰地区出现严重低电压。
16时06分,俄亥俄南北联络断面又有一条345千伏线路跳闸。
此时潮流反向从底特律地区向俄亥俄州北部送电。
16时09分,俄亥俄南北联络最后两条345千伏联络线跳闸。
俄亥俄州南北联络断面全部断开,潮流发生大范围转移,通过印第安纳州经密歇根州与底特律地区向俄亥俄州北部送电。
大约30-45秒后,因电压下降,密歇根州中部电网大约180万千瓦机组相继跳闸,密歇根州中部电网电压开始崩溃。
16时10分,底特律地区电压全面快速崩溃,在8秒钟之内约30条密歇根州和底特律间的联络线跳闸,潮流再次发生大范围转移,从俄亥俄州南部经宾西法尼亚、纽约州、安达略、底特律向克里夫兰送电。
美加大停电及加州电力危机的深层教训2511203077崔荣坤本文介绍了2003年8月14日美国东北部和加拿大部分地区发生大面积停电。
这次历史上最大规模的停电波及美国纽约等许多城市,加拿大安大略省的部分城市也受到影响。
停电影响了地铁、电梯以及机场的正常运营,在一些地方造成交通拥堵,影响了5000万人口的正常生活,损失达300亿美元。
他反映出许多共性的教训是深刻而沉重的【关键词】电力危机停电深层分析如果没有加州电力危机,如果没有美加大停电,我们很有可能对某些问题的认识还统一不起来,并为此支付学费。
我们必须改革和发展电力工业,我们希望少走弯路,少付点学费。
2003年8月14日美国东北部和加拿大部分地区发生大面积停电。
这次历史上最大规模的停电波及美国纽约等许多城市,加拿大安大略省的部分城市也受到影响。
停电影响了地铁、电梯以及机场的正常运营,在一些地方造成交通拥堵,影响了5000万人口的正常生活,损失达300亿美元。
美国从20世纪60年代以来,大停电至少有6次,其中5次都是美加大停电。
1965年11月9日发生的美国纽约市、加拿大安大略省等地的大停电,影响了3000万个用户,持续时间13个小时;1977年7月13日纽约市大停电,影响了900万人口,持续时间达26小时;1996年7月2日美国加利福尼亚等西部与加拿大艾伯特等地的大停电,影响200万人口,持续时间从几分钟到几个小时;1996年8月10日几乎与上次停电同样的地方,影响人口750万,持续时间长达9小时;1998年6月25日美国明尼苏达州等地和加拿大的安大略等地又发生大停电,影响15.2万人,持续19小时。
除了这些大停电事故外,还有为数众多的事故和故障,美国能源部在2000年曾对以上各次停电事故和故障作过研究,提出了不少有见地的措施,但都没有能够阻止停电事故的发生。
联系美国加州电力危机,它反映出许多共性的教训是深刻而沉重的。
一、对加州电力危机教训的深层分析1. 经过近年来的反思和调查研究,发现加州所发生的电力危机不是偶然的,而是许多因素集合促成的,这些因素有:(1)电力需求预测严重偏低,发输电设施没有增长,造成严重缺电。
美加大停电及加州电力危机的深层教训2511203077崔荣坤本文介绍了2003年8月14日美国东北部和加拿大部分地区发生大面积停电。
这次历史上最大规模的停电波及美国纽约等许多城市,加拿大安大略省的部分城市也受到影响。
停电影响了地铁、电梯以及机场的正常运营,在一些地方造成交通拥堵,影响了5000万人口的正常生活,损失达300亿美元。
他反映出许多共性的教训是深刻而沉重的【关键词】电力危机停电深层分析如果没有加州电力危机,如果没有美加大停电,我们很有可能对某些问题的认识还统一不起来,并为此支付学费。
我们必须改革和发展电力工业,我们希望少走弯路,少付点学费。
2003年8月14日美国东北部和加拿大部分地区发生大面积停电。
这次历史上最大规模的停电波及美国纽约等许多城市,加拿大安大略省的部分城市也受到影响。
停电影响了地铁、电梯以及机场的正常运营,在一些地方造成交通拥堵,影响了5000万人口的正常生活,损失达300亿美元。
美国从20世纪60年代以来,大停电至少有6次,其中5次都是美加大停电。
1965年11月9日发生的美国纽约市、加拿大安大略省等地的大停电,影响了3000万个用户,持续时间13个小时;1977年7月13日纽约市大停电,影响了900万人口,持续时间达26小时;1996年7月2日美国加利福尼亚等西部与加拿大艾伯特等地的大停电,影响200万人口,持续时间从几分钟到几个小时;1996年8月10日几乎与上次停电同样的地方,影响人口750万,持续时间长达9小时;1998年6月25日美国明尼苏达州等地和加拿大的安大略等地又发生大停电,影响15.2万人,持续19小时。
除了这些大停电事故外,还有为数众多的事故和故障,美国能源部在2000年曾对以上各次停电事故和故障作过研究,提出了不少有见地的措施,但都没有能够阻止停电事故的发生。
联系美国加州电力危机,它反映出许多共性的教训是深刻而沉重的。
一、对加州电力危机教训的深层分析1. 经过近年来的反思和调查研究,发现加州所发生的电力危机不是偶然的,而是许多因素集合促成的,这些因素有:(1)电力需求预测严重偏低,发输电设施没有增长,造成严重缺电。
2003年8.14美加大停电¾北美历史上最严重的停电事故:>30h,波及美8州和加,受灾5千万人,每天直接损失近300亿美元
¾停电引起纽约、渥太华等多个大型城市完全瘫痪,“感觉比9
交通瘫痪
恐慌:打手电抢购
垃圾成堆,环境问题
停电后的曼哈顿月亮
美国互联电力系统的运行风险!
2003年8.28伦敦大停电下午6点,下班高峰,持续两个多小时地
铁
骤
停
7
9.23瑞典丹麦大停电
9.28意大利全国大停电
2003年我国21个省拉闸限电
2004年7月12日雅典奥运开幕前一月大停电 2005年8月18日印尼大停电,1亿多人受灾,国会大厦,
一些议员因停电被困电梯
2005年5月25日莫斯科大停电
2005年9月26
日海南电网由于台风袭击全面瓦解
复杂性:人造的最大机器,庞大,机理复杂,每秒30万公里,发输用同时性
基础性:现代都市的基础、“软肋”
“大电网控制”04年被美国《技术评论》杂志评为十大开拓性新兴科技领域之一(技术评论)
2批国家重点基础研究计划973计划资助(98、04年)
国家自然科学重大基金资助(05年)
老学科:科技热点和前沿
“全国大联网、西电动送、电力体制改革”重大需求,电力企业人才需求量上升。
8。
18.14美加大停电的经过和启示内容摘要1.基本情况2.事故起始及发展过程3.事故过程中的分析4.事故原因初步分析5.北美可靠性委员会采取措施细节6.美加大停电的启示1.基本情况美国东部时间2003年8月14日16时11分(北京时间8月15日4时11分)开始,美国和加拿大东北部联合电网发生大面积停电事故。
美国发生事故的电网,总装机容量为6.59亿千瓦。
在事故发生的最初3分钟内,就有21个电厂停止运行。
此后共造成约100个发电厂,其中包括22个核电站被迫停止运行。
停电范围约240万平方公里,美国8个州约70万平方公里受影响的居民人数共计5千万,加拿大两省约170万平方公里的地区受影响人口达1000万。
1.1.基本情况(续)事故发生时,瞬时停电的用户总计2800万千瓦,同时有500~1000万千瓦的用户陆续停电,据统计共损失负荷6180万千瓦,其中¾PJM互联电网:400万千瓦(宾州-新泽西-马里兰联合电力系统)¾中西部ISO:1850万千瓦¾魁北克水电:10万千瓦¾安大略IMO:2100万千瓦¾新英格兰ISO :250万千瓦¾纽约ISO:2440万千瓦1.1.基本情况(续)1.1.基本情况(续)2.事故起始及发展过程¾正常情况下,潮流从南部和东部注入俄亥俄州北部和密执根州东部¾由于一条线路因灌木丛火灾而跳闸,俄亥俄州北部和东部系统隔离¾由于一条线路因过负荷而跳闸,俄亥俄州北部和密执根州东部均和南部系统隔离¾潮流走向变为逆时针倒转,从宾夕法尼亚州经过纽约州、安大略省、注入密执根州,从而向俄亥俄北部和密执根东部供电¾正如当天所发生的那样,因为纽约州内部电力需求相对较小,大量功率从纽约州输出到安大略省¾历史上,纽约州常常需要输入电能¾纽约州和安大略省解列¾由于纽约州和安大略省解列,大量潮流无处可去,突然触发了纽约州大停机¾东部互联电网解列¾大面积停电事故发展过程图示线路跳开通道断开发电机切机事件序号12:05:44 –1:31:34 PM 发电机切机1)12:05:44 –Conesville#5 (额定值375 MW)2)1:14:04 –Greenwood #1 (额定值785 MW)3)1:31:34 –Eastlake #5 (额定值597 MW)12:05:44 –1:31:34 PM 发电机切机Conesville电厂位于俄亥俄州中央;Greenwood 电厂位于底特律北部,Greenwood #1机组在1:14:04 跳开,1:57恢复运行;Eastlake#5机组位于俄亥俄州北部Erie湖南岸,与345 kV系统相连。
这些机组跳开后使系统潮流方式发生了变化。
2:02 PM 俄亥俄州西南部线路断开4)Stuart –Atlanta 345 kV线路这条线路是从俄亥俄州西南部至俄亥俄州北部输电通道的一部分,由于线路经过部分地区发生灌木着火而导致线路断开。
着火产生的过热空气使线路上方空气电离而发生导线短路。
2:02 PM 俄亥俄州西南部线路断开2:36 从Cinergy 打向MISO 的电话记录:“I hate to worry you, but I think we’re a trip away from …. setting a little history.”z Coordinating the response to Cinergy's troubles involved at least six officials at Midwest ISO.对Cinergy的问题作出正确的响应,至少涉及6位Midwest ISO的官员的协调z Actions hindered by failure of an ISO program, called a state estimator, that helps to monitor grid conditions.由于ISO一个程序的失败,阻碍了采取一系列操作,该程序称为状态估计器,帮助监视电网运行条件z"The state estimator has been down for an hour and a half," said MISO at 2:36.俄亥俄州东部和北部之间的线路断开5)3:05:41 –Harding-Chamberlain 345 kV线路6)3:32:03 –Hanna-Juniper 345 kV线路7)3:41:33 –Star-South Canton 345 kV线路俄亥俄州东部和北部之间的线路断开由于这三条线路跳闸,从俄亥俄州东部至俄亥俄州北部输电通道的输送能力被削弱,原来流经这三条线路的潮流立刻转移至其它线路,包括低电压等级的连接俄亥俄州北部与电网的138kV 系统。
但是,这种新的潮流运行方式使另外一些线路也过负荷。
随着电压降低,俄亥俄州北部的600MW工业负荷失电(由于电压低,电机停机),138kV及69kV系统配网用户也自动的与系统隔离。
俄亥俄州东部和北部之间的线路断开3:36 MISO Calls FirstEnergyz MISO asks “…what is going on over there?”FirstEnergysays they are unsure.z"I wonder what is going on here," MISO says at 3:36 p.m."Something strange is happening.“PJM 打电话给MISO这时, PJM and MISO 都认为仅仅两条线路退出运行。
实际上,已经有八条线路退出运行。
当提及关于第一条线路退出的问题时,一个MISO 管理员回答道, “我没有机会调查详情,太多的事件顷刻间发生。
”俄亥俄州东部到北部的剩余线路跳闸8)3:45:33 –Canton Central-Tidd345 kV线路9)4:06:03 –Sammis-Star 345 kV线路俄亥俄州东部到北部的剩余线路跳闸Canton Central-Tidd线路3:45:33跳开,58s后重合,但Canton Central 345/138 kV变压器断开后没能再投入,使通过Canton Central变电站支持的138 kV系统与345 kV网络隔离。
Sammis-Star 345 kV线路随后于4:06:03跳开,这完全阻断了从俄亥俄州东部至俄亥俄州北部的345 kV通道。
这样只剩3条向北部输送功率的路径了(1. 围绕Erie湖南岸,从俄亥俄州东北部及宾夕法尼亚州到俄亥俄州北部;2.从俄亥俄州南部到北部,但是随着Stuart-Atlanta线路2:02跳闸,这条路径已很脆弱;3.从密歇根州东部到俄亥俄州北部)。
这也极大的削弱了俄亥俄州东北部作为密歇根州东部电源的输送能力,使底特律地区更加依赖于密歇根从西向东的线路以及俄亥俄州南部和西部的线路。
在3:42:49-4:08:58期间,多条穿过俄亥俄州北部的138 kV线路断开,这使Akron及西部、南部停电。
3:57 FirstEnergy 打电话给MISO¾FirstEnergy 告诉MISO 说一条主要线路的电压很低,面临危险。
“你知道怎么一回事吗?”MISO 回答说Hanna-Juniper 线路退出运行,又说, “我不清楚这条线路是否还处于退出状态。
“"We have no clue," FirstEnergy replied. "Ourcomputer is giving us fits too. We don't even know the status of some of the stuff around us. "MISO 解释道: “我根本弄不清知道发生了什么,奇怪的事情全部发生在同一时间”3:45:33 –4:08:58 PM俄亥俄州东部到北部的剩余线路跳闸歇根中部发电机跳开10)4:08:58 –Galion-Ohio Central-Muskingum 345kV线路11)4:09:06 –East Lima-Fostoria Central 345 kV线路12)4:09:23-4:10:27Kinder Morgan机组(额定:500MW;负荷:200 MW)歇根中部发电机跳开当Galion-Ohio Central-Muskingum、East Lima-Fostoria Central线路跳开后,阻断了从俄亥俄州南部、西部到俄亥俄州北部、密歇根州东部的输电通道。
这样俄亥俄州北部及歇根州东部负荷中心仅通过3条通道(1.沿Erie湖南岸从俄亥俄东北及宾夕法尼亚;2.密歇根西部通过由西向东线路;3.安大略)连接。
密歇根东部与俄亥俄北部仅通过靠近Erie湖西南部弯曲处的3条345 kV线路连接。
歇根中部的Kinder Morgan发电机跳开(负荷为200MW)。
从印第安纳通过密歇根东西线路向俄亥俄州北部及密歇根州东部负荷供电的潮流加重。
印第安纳向俄亥俄州北部负荷中心供电的输电能力降低,那个区域由于负荷超过了急速下降的供电能力,电压开始下降。
约4:09,东部互联系统的频率升高了0.02~0.027Hz,表明损失了约700~950 MW负荷。
路跳开,密歇根北部、俄亥俄北部发电机跳开,俄亥俄北部与宾夕法尼亚分离13)4:10 –Harding-Fox 345 kV线路14)4:10:04 –4:10:45 –俄亥俄州北部沿Erie 湖的20台发电机(共带负荷2174MW)15)4:10:37 –West-East Michigan345kV线路16)4:10:38 –Midland CogenerationVenture (共带负荷1265 MW)17)4:10:38 –底特律西北输电系统分离18)4:10:38 –Perry-Ashtabula-ErieWest 345 kV线路4:10:04 –4:10:45期间,俄亥俄州北部Erie 湖沿岸的20台发电机(共带负荷2174MW )跳开。
这些发电容量的损失,加大了向俄亥俄州北部及歇根州东部负荷中心送电的剩余通道的潮流,包括穿越密歇根的由西向东的送电线路。
接着在4:10:37,密歇根由西向东的345 kV 送电线路跳开,密歇根东部只剩一条围绕密歇根北部的迂回路径连接,这条线路以及安大略与俄亥俄北部的联络线在1s 后跳开。