各矿种矿床勘查类型与参考工程间距对比表
- 格式:doc
- 大小:59.00 KB
- 文档页数:2
立志当早,存高远
稀土矿勘查类型的划分参考工程间距和勘查类型实例
1、确定勘查类型的主要地质依据(1)稀土内生矿床
4-31 稀土内生矿床勘查类型划分依据表
(2)风化壳离子吸附型稀土矿床勘查类型划分
表432 风化壳离子吸附型稀土矿床勘查类型划分依据表
注:
式中:Fr 边界模数
Ar 与矿体水平投影面等面积之矩形周长(m)
A 矿体水平投影面边界长总长度(m)
L 矿体沿走向的最大长度(m)
S 矿体水平投影面积(m2)
2、稀土内生矿床及风化壳离子吸附型土矿床勘查类型的划分及实例
(1)稀土内生矿床
表433 稀土内生矿床勘查类型的划分及勘查类型实例表
(2)风化壳离子吸附型稀土矿床
表434 风化壳离子吸附型稀土矿床勘查类型的划分及勘查类型实例表
3、稀土矿床各勘查类型工程间距的确定
(1)勘查工程的布置原则
①一般是以一定的几何形态的网格控制矿体,并根据工程密度估算不同类别的矿产资源/储量。
勘查工程间距,系指用勘查工程控制矿体的实际距离,内生矿床地表槽、井探工程间距比深部勘查工程加密一倍。
勘探工程的布置应视矿体在山头、山腰、山脚的分布规律、采用相对均衡的工程间距。
②应根据矿体地质特征和矿山建设的需要,参考同类矿床勘查的经验进行。
附录 A(资料性附录)勘查类型与工程间距A.1 勘查类型划分的主要地质因素分类A.1.1 矿体(层)规模大型:矿体(层)长度≥1000m;小型:矿体(层)长度<1000m。
A.1.2 主矿体(层)内部结构复杂程度简单:矿体(层)矿石类型单一,质量稳定,不含脉岩和夹层(石);或虽有两种或两种以上的矿石类型,但建筑石料矿等级类型一致;复杂:矿体(层)由两种以上矿石类型构成,且质量等级不一致,需分采分别加工;或矿体(层)矿石类型单一,但有脉岩、夹层,增加了开采难度和成本。
A.1.3 矿体(层)厚度稳定程度稳定:矿体(层)连续,厚度变化小或呈有规律变化,厚度变化系数<40%。
一般:矿体(层)基本连续,厚度变化不大,局部变化较大,厚度变化系数≥40%。
A.1.4 构造复杂程度简单:矿体(层)呈单斜或宽缓向、背斜,无断裂或虽有小断裂,但其两侧矿石质量等级类型不变;复杂:有较大断裂切割,或有较宽的破碎带,岩石破碎严重或裂隙两侧硅化蚀变,致使蚀变岩石或破碎角砾为夹石不能利用。
A.1.5 覆盖层发育和风化程度一般:覆盖层不发育,矿体(层)裸露良好,覆盖率<70%。
矿体(层)未见风化;发育:覆盖层发育,矿体(层)大面积被覆盖,覆盖率≥70%。
矿体(层)弱风化。
A.1.6 岩溶发育程度不发育:矿床岩溶较少,不发育。
一般:矿床岩溶少发育或较发育。
A.2 矿床勘查类型建筑石料矿床勘查类型见表A.1表A.1 建筑石料矿床勘查类型勘查类型第Ⅰ勘查类型(地质条件简单型)第Ⅱ勘查类型(地质条件一般型)矿体(层)规模多为大型不分主矿体(层)内部结构复杂程度简单复杂矿体(层)厚度稳定程度稳定一般构造复杂程度简单复杂覆盖层发育和风化程度一般发育岩溶发育程度不发育一般A.3 勘查工程间距控制的矿产资源储量勘查工程间距见表A.2。
表A.2 控制的矿产资源储量勘查工程间距勘查类型勘查工程间距(m)第Ⅰ勘查类型(地质条件简单型) 400第Ⅱ勘查类型(地质条件一般型) 200注1:本表为不同类型矿床探求控制资源量勘查工程间距的参考值,对勘查工程不能满足要求的局部问题,例如:对矿体(层)覆盖层和风化层的控制,应在勘查剖面上和剖面间适当加密工程;对首期开采地段,当基本勘查工程间距不能满足要求时,可适当增加工程。
各矿种参考勘查网度汇编(新版规—资料性附录)索引目录一、金属 (1)1、铜矿床 (1)2、铅锌矿床 (1)3、银矿床 (1)4、镍矿床 (1)5、钼矿床 (1)6、铁矿床 (1)7、锰矿床 (2)8、铬矿床 (2)9、钨矿床 (2)10、锡矿床 (2)11、汞矿床 (2)12、锑矿床 (2)13、稀有金属矿床 (3)14、稀土金属矿床 (3)15、岩金矿床 (3)16、砂金矿床 (3)17、铀矿床 (3)二、非金属 (4)18、石灰岩、白云岩矿床 (4)19、粘土质原料、硅质原料矿床 (4)20、高岭土矿床 (4)21、膨润土矿床 (4)22、耐火粘土矿床 (4)23、玻璃硅质原料矿床 (4)24、饰面石材矿床 (5)25、石膏矿床 (5)26、温石棉矿床 (5)27、硅灰石矿床 (5)28、滑石矿床 (5)29、石墨矿床 (5)30、硫铁矿矿床 (6)31、重晶石、毒重石、萤石、硼矿床 (6)32、盐类矿床 (6)33、盐湖矿产固体矿床 (6)34、表面卤水矿床 (6)35、浅藏卤水矿床 (7)36、铝土矿矿床 (7)37、菱镁矿矿床(沉积变质型) (7)38、磷矿床 (7)三、燃料 (7)39、煤矿床 (7)40、泥炭矿床 (7)41、煤层气矿床 (8)一、金属2、铅锌矿床5、钼矿床9、钨矿床12、锑矿床14、稀土金属矿床17、铀矿床二、非金属18、石灰岩、白云岩矿床19、粘土质原料、硅质原料矿床22、耐火粘土矿床26、温石棉矿床32、盐类矿床38、磷矿床三、燃料39、煤矿床40、泥炭矿床6、铜矿床24、温石棉矿床王传礼2003年5月26日。
地质勘查常用标准汇编208钨锡汞锑矿产地质勘查规范〔DZ/T0201-2002〕1 范畴〔略〕2 规范性引用文件〔略〕3 勘查的目的任务〔略〕4 勘查研究程度〔略〕4.1 预查时期〔略〕4.2 普查时期〔略〕4.3 详查时期4.3.1 地质研究程度通过〔1︰5 000〕~〔1︰2 000〕地质填图和各种勘查方法和手段,详细查明钨、锡赋矿层位和汞、锑含矿岩系的地层年代、岩性、岩相、层厚和层序,专门注意汞、锑含矿〔体〕层位和矿化屏蔽层的研究,建立详查矿床的含矿地层柱状图〔地层层序表〕。
详细查明要紧控矿构造〔断层、褶皱、裂隙、破裂带等〕的分布、产状、规模和性质,以及各种构造对矿床、矿体的操纵作用;研究成矿后的构造对矿体的阻碍程度。
侧重研究与钨、锡矿化有关的岩浆岩的种类、岩性、形状、产状、规模、侵入时代、演化特点、与围岩接触关系,及其地球化学特点、地球物理特点等;研究其与成矿的关系或对矿体的破坏关系。
详细查明矿床的围岩蚀变特点和分布范畴,研究蚀变与矿化的关系,编制矿化-蚀变分布图;对与变质作用有关的矿床需差不多查明变质作用类型、强度、相带分布及岩性特点等。
用系统取样工程差不多查明钨、锡、锑矿体和汞含矿体的总体分布范畴、数量,差不多操纵主矿体以及规划首期开采矿体的产状、形状、空间分布;对汞矿还需阐明含矿体内矿体的赋存状态、展布规律和确定合理运算含矿系数的原那么,并论述其可靠程度;差不多确定矿体的连续性和矿体间相互关系;估算操纵的矿产资源/储量,为是否勘探及选择勘探方法提供依据。
4.3.2 矿石质量研究差不多查明矿石结构构造,矿物组合及含量,有用矿物粒度、嵌布特点、空间分布规律、化学成分,有用、有益、有害组分的种类、含量及分布规律;初步划分氧化带、混合带和原生带;差不多确定矿石自然类型和工业类型,为矿山项目建议书和预可行性研究提供矿石质量依据。
钨矿石要专门查明黑钨类和白钨类比例及空间分布。
锡矿石要专门查明锡石锡、硫化锡和胶态锡二者比例及空间分布。
地质勘探G eological prospecting 铁矿矿床勘查类型及合理勘查间距探讨陈宇航,莫国浩,郝银龙摘要:根据行业规范,我国对推铁矿矿床的勘查类型和勘查间距进行了明确规定,并作为从业者的工作依据。
本文将从勘查规范、勘查类型以及影响因素、原有行业规范要求下铁矿矿床勘查相关工作不足之处三个方面入手,在三方面分析的基础上,结合2020年新发布的行业规范及笔者工作经历,探究铁矿矿床勘查类型合理划分和勘查间距改进的措施,并总结新的勘查规范运用经验,对地质工作者开展铁矿勘查工作具有借鉴意义。
关键词:铁矿矿床;勘查类型;勘查间距;改进措施矿产勘查是矿石资源开发的前提性工作,它可以帮助矿石资源开采人员明确矿石资源的类型,制定有针对性的开采方案,高效地开采目标矿体。
在选择不同的矿石资源开采方法和设备时,需要根据矿床勘查工作的高质量来确定矿石资源的类型,并辅助根据当地的地质条件等信息来确定勘查和开采的间距。
这不仅可以提高工作效率和节约开采成本,还可以在一定程度上增强生态环保效益,实现生态效益与经济效益的双赢。
铁矿矿床勘查类型和间距的合理确认,是推动矿产资源开采的重要工作,应受到地质工作者的重点关注。
1 行业规范与标准概述为了合理和全面地开发矿产资源,国家矿产资源储量管理局联合相关部门发布了《铁、锰、铬矿地质勘查规范(DZ/T0200—2002)》(以下简称“老规范”)。
该规范对我国近50年的矿产勘查和资源开采工作经验进行了总结,并对未来阶段的矿产勘查、开采等工作环节的任务、目的、内容和程度等进行了详细说明,为地质工作者提供了更全面、具体和严格的工作要求,指导他们有序地进行矿产勘查、资源开发和地质保护工作。
随着经济的发展,国家从整体上认识到矿产资源开发的重要性。
随着可持续发展的全面落实,矿产资源领域内的“老规范”已经逐渐无法满足当前工作需求,在矿床勘查类型划分、间距确认、资源开采等工作环节的指导价值较低。