直角三角形题常见的四种类型
- 格式:doc
- 大小:174.00 KB
- 文档页数:3
解直角三角形的类型
解直角三角形必须已知两个独立条件,且这两个条件中至少有一条已知边,因此,解直角三角形问题可归结为如下四种基本类型,它们的对应解法,一般是利用基本关系式先求锐角,再求边长。
1已知一锐角和一直角边,求解Rt△ABC,如已知B和a,则A=90°-B;b=atanB(b=acotA);
2已知一锐角和斜边,求解Rt△ABC,如已知A和c,则B=90°-A;a=c sinA (a=c cosB);b=c cosA(b=c sinB),
3已知两直角边,求解Rt△ABC,如已知a,b,则
4已知斜边和一直角边,求解Rt△ABC,如已知c,a,
如果所给的条件中,不是或不完全是上述类型三角形的边、角,就要利用已学知识转化为上述基本类型的条件后再解,或添作适当的辅助造成直角三角形求解。
例1、Rt△ABC中,斜边AB上的中线CM=5,求出△ABC的三边和两锐角。
解:如图,根据直角三角形斜边上的中线等于斜边的一半,则AB=2CM=10和∠B=∠MCB=42°6′。
∴∠A=90°- 42°6′=47 ;
BC=ABcos42°6′=10×0.7420=7.42
AC=ABsin42°6′=10×0.6704=6.704
例2、已知等腰△ABC的底边AB长为10,面积是2533,求这三角形的各内角及腰长。
解:如图,过C作CM⊥AB于M.
∴∠A=30°,∠ACB=180° - 2×30° =120°,。
解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。
1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。
如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。
(2)两锐角之间的关系:A+B=90°。
(3)三条边之间的关系:。
以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。
2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。
由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。
所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。
这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。
四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。
《解直角三角形》专题复习一、直角三角形的性质 1、直角三角形的两个锐角互余 几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
几何表示:【∵∠C=90°∠A=30°∴BC=21AB 】 3、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为AB 的中点 ∴ CD=21AB=BD=AD 】4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在Rt △ABC 中∵∠ACB=90° ∴222c b a =+】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD ⊥AB ∴ BD AD CD •=2AB AD AC •=2 AB BD BC •=2】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
(a b c h •=•)由上图可得:AB •CD=AC •BC二、锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aab cot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0.三、锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1) 1cos sin 22=+A A(2)倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA •tan(90°—A)=1; cotA •cot(90°—A)=1; (3)弦切关系tanA=A Acos sin cotA=AA sin cos(4)互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A)AC BDsin A sin c A ,cos b c A 12S ab =)结论:直角三角形斜边上的高)测底部不可到达物体的高度BP=xcot α 东 西 2八、基本图形(组合型)翻折平移九、解直角三角形的知识的应用问题:(1)测量物体高度.(2)有关航行问题.(3)计算坝体或边路的坡度等问题十、解题思路与数学思想方法图形、条件单个直角三角形直接求解实际问题数学问题辅助线构造抽象转化不是直角三角形直角三角形方程求解常用数学思想方法:转化、方程、数形结合、分类、应用【聚焦中考考点】1、锐角三角函数的定义2、特殊角三角函数值3、解直角三角形的应用【解直角三角形】经典测试题(1——10题每题5分,11——12每题10分,13——16每题20分,共150分) 1、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 2、sin65°与cos26°之间的关系为( )A. sin65°< cos26°B. sin65°> cos26°C. sin65°= cos26°D. sin65°+ cos26°=1 3、如图1所示,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米4、如图2,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1图15、把直角三角形中缩小5倍,那么锐角∠A 的正弦值 ( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定6、如图3,在Rt △ABC 中,∠C=90°,D 为BC 上的一点,AD=BD=2,AB=23,则: AC 的长为( ).A .3B .22C .3D .3227、如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒8、已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( )A.47B.12C .13D .09、 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为______。
中考题型:解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。
由直角三角形中的已知元素,求出其余未知元素的过程,称之为解直角三角形。
利用直角三角形的边角关系,知道其中的两个元素(至少有一个是边),就可以求出其余三个未知元素。
解直角三角的四种基本类型:(1)已知两直角边;(2)已知一直角边和斜边;(3)∠A +∠B =90°常用的三角函数值:2330cos 21=︒145tan 2245cos 2245sin =︒=︒=︒360tan 2160cos 2360sin =︒=︒=︒解直角三角形常用的概念 仰角、俯角:在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角..注:与仰角、俯角、坡度、坡角、方位角有关的问题,通常与勾股定理、锐角三角函数综合考查。
利用解直角三角形解决实际问题的方法利用解直角三角形解决实际问题时,分析背景语言,由实际图抽象出数学图形,把实际问题化归为直角三角形中的边角问题。
具体方法如下:(1)紧扣三角函数的定义,寻找边角关系.(2)添加辅助线,构造直角三角形。
作高线是常用的辅助线添加方法.(3)逐个分析相关直角三角形,构造方程求解。
一般设最短的边为x,先分别在不同的直角三角形中用含x的代数式表示出未知边,再根据两个直角三角形边的数量关系(和差或相等)列方程求出未知量.(2016•贵阳模拟.22.10分)如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)【分析】过点D作DH⊥BC于点H,则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,由三角函数得出DH= (x﹣5),AC=EC﹣EA= (x﹣5)﹣10,得出x=tan50°•[ (x﹣5)],解方程即可.【解答】解:过点D作DH⊥BC于点M,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH= (x﹣5),AC=EC﹣EA= (x﹣5)﹣10,在Rt△ACB中,∠BAC=50°,tan∠BAC= ᒀ ᒀ,∴x=tan50°•[ (x﹣5)],解得:x≈21,答:建筑物BC的高约为21m.【点评】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.。
解直角三角形常见的四种类型金山初级中学 庄士忠 201508有关解直角三角形题历来都是重点内容,现就两直角三角形组合形式的常见应用题作一归类:1、“背靠背”型 这种类型的特点是:两直角三角形是并列关系,有公共直角顶点和一条公共直角边,其中,这条公共直角边是沟通两直角三角形关系的媒介,如图1.例1光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min 的速度向正东方向行走,在A 处测得建筑物C 在北偏东60°方向上,20min 后他走到B 处,测得建筑物C 在北偏西45°方向上,求建筑物C 到公路AB 的距离.1.732)分析:欲求建筑物C 到公路AB 的距离,需过点C 作CD ⊥AB ,垂足为D ,则图2转化为形如图1的图形.解:过点C 作CD ⊥AB ,垂足为D .设CD =x (m ),在Rt △BCD 中,∠BCD=45°,∴BD=CD=x ,AD=AB-BD=1000-x .在Rt △ACD 中, ∠ACD=60°,tan ∠ACD=CD AD ,∴tan60°=CD AD ,即 3=xx -1000,解得x ≈366,即建筑物C 到公路AB 的距 离约为366m .例2热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)解:如图3,过点A 作BC AD ⊥,垂足为D (转化为图1),根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD .在Rt △ADB 中,由ADBD BAD =∠tan ,得BD=A D ·tan ∠BAD= 66⨯tan30°=66⨯33=223.在Rt △ADC 中,由tan ∠CAD=ADCD ,得CD=AD ·tan ∠CAD=66 tan60°=66⨯3=663,∴BC=BD+CD=223+663=883≈152.2,即这栋高楼约高152.2m .2、“母抱子”型 这种类型的特点是,一个直角三角形包含在另一个直角三角形中,两直角三角形有公共直角和一条公共直角边,其中,这条公共直角边是沟通两直角三角形关系的媒介,如图4.例3永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图5,他们在C 处测得摩天轮的最高点A 的仰角为45°,再往摩天轮的方向前进50m 至D 处,测得最高点A 的仰角为60°.求该兴趣小组测得的摩天轮的高度AB (732.13≈,结果保留整数).解:根据题意,可知∠ACB=45°,∠ADB=60°,DC=50.在R t △ABC 中,由∠BAC=∠BCA=45°,得BC=AB .在Rt △ABD 中,由tan ∠ADB=BD AB ,得BD=ADB AB ∠tan =060tan AB =33A B .∵BC-BD=DC ,∴AB-33AB=50,即(3-3)AB=150.∴AB=11833150≈-.即摩天轮的高度AB 约为118m .例4在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.分析:根据现有知识,不能直接求出AB 的长.过C 点作C D ⊥AB ,交BA 的延长线于点D ,则图形6就转化为形如图4的图形.解:过C 点作C D ⊥AB ,交BA 的延长线于点D .在R t △CDA 中,AC=30,∠CAD=180°-∠CAB=180°-120°=60°,则AD=A C ﹒cos ∠CAD =30×21=15,CD= A C ﹒sin ∠CAD =30×23=153.在R t △CDB 中,由勾股定理,得BD=22CD BC -=65,因此, AB=65-15=50(m).评析:从例1、例2和例 4看出,解斜三角形问题时,常需作一边的高线,转化为“背靠背”或“母抱子”型的图形.3、“拥抱”型 这种类型的特点是:两直角三角形以交叉方式出现,如图7.例5如图8所示,小杨在广场上的A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角为30º,然后他正对大楼方向前进5m 到达B 处,又测得该屏幕上端C 处的仰角为45º.若该楼高为26.65m ,小杨的眼睛离地面1.65m , 广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m ).解:设AB 、CD 的延长线相交于点E ,如图8.∵∠CBE =45º,CE ⊥AE , ∴CE =BE .∵CE =26.65-1.65=25 ,∴BE =25 ,∴AE =AB +BE =30 .在Rt △ADE 中,∵tanDAE=AEDE ,∠DAE =30º ,∴DE =AE ×tan30 º=30×33 =10 3 .∴CD =CE -DE =25-10 3 ≈25-10×1.732=7.68≈7.7(m) ,即广告屏幕上端与下端之间的距离约为7.7m .4、“斜截”型 这种类型的特点是,在一个直角三角形内,用垂直于斜边的一条直线去截这个直角三角形,如图9.新直角三角形与原直角三角形有一个公共锐角,所剩四边形的对角互补.例6 某片绿地的形状如图10,其中∠A=60°,AB ⊥BC ,AD ⊥CD ,AB=200m ,CD=100m ,求AD 、BC 的长.(精确到1m ,732.13≈.)分析:基于已知AB ⊥BC ,AD ⊥CD 的考虑,可以将边AD 、BC 延长交于点E ,这样,图形就转化为形如图9的图形.解:在Rt △C DE 中,CD=100,∠E=90°-∠A=30°,∴CE=2CD=200,DE==-22CD CE 1003.在Rt △ABE 中,∠E= 30°,AB=200,∴AE=2AB=400,BE=20022=-AB AE 3,因此,AD=AE-DE=400-1003≈227(m),BC=BE-CE=2003-200 ≈146(m).评析:解两对角均为直角的四边形问题时,常需延长两对边,得到形如图10的图形. 总之,直角三角形的习题基本都是基本图形,熟记这些图形和他们的组合有利于解答综合习题,更有利于解答速度和自信心的提高。
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 如图是教学用直角三角板,边33090tan 3AC cm C BAC =∠=︒∠=,,,则边BC 的长为( )A .303cmB .203cmC .103cmD .53cm【巩固】如图,在ABC △中,9060C B D ∠=︒∠=︒,,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2B .433C .23D .43【巩固】如图,ABC △是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,则sin ACE ∠= .例题精讲CBA3ED CBAEDCBA如图所示,O 的直径点作O 的切线,切点为七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵.(3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线FD CDCB A【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.O CA(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈和平路文化路中山路30°15°45°FEDCBA【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高.图1图2图3βαDCBA课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; ACB ∠= .课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).FE人行道DCB A。
掌握四种类型,学好三角形全等全等三角形是初中平面几何的一个重要内容。
识别两个三角形全等一般有边角边(SAS)、角边角(ASA)、角角边(AAS)、边边边(SSS)四种方法。
判定两个直角三角形全等除以上方法,还有斜边直角边(HL)的识别方法。
全等三角形的题目很多,但不外乎有以下四种类型:一、轴对称型全等三角形把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称。
把△ABC沿直线L翻折后,能与△A´B´C´重合,则称它们是轴对称型全等三角形。
下图是常见的轴对称型全等三角形,其对称轴L是对称点所连线段的垂直平分线。
识别轴对称三角形全等要注意题中的一些隐含条件,例如有些具有公共边(如图(1)中的AC,图(4)中的AA´),有些具有公共角或对顶角(如图(2)中的∠BAC=∠B´AC´,图(3)中的∠ACB=∠A´CB´)。
例1. 如下图,在∠A的两边截取AB=AC,又截取AD=AE,连CD、BE交于F。
试说明:AF平分∠A。
二、平移型全等三角形把△ABC沿着某一条直线L平行移动,所得△A´B´C´与△ABC称为平移型全等三角形。
有时这条直线就是△ABC的某一条边所在直线。
下图是常见的平移型全等三角形。
图(1)中AB∥A´B´,AB=A´B´,AC∥A´C´,AC=A´C´。
图(2)中AB∥A´B´,AB=A´B´,AC∥A´C´,AC=A´C´,BC∥B´C´,BC=B´C´。
例2. 如下图,△ABC中,∠A=90°,AD⊥BC于D点,∠C的平分线CE交AB、AD于E、F,过F作FG∥BC交AB于G点。
28.2解直角三角形(一)知识点总结:知识点1.解直角三角形的概念:一般地,直角三角形中,除直角外,共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
知识点2.解直角三角形的理论依据:(1)在ABC t R ∆中,∠C=90°ACBcb a(1)两锐角互余:∠A+∠B=90°(2)三边关系——勾股定理:222c b a =+,变式⎪⎩⎪⎨⎧-=+=2222bc a ba c (3)边、角关系——锐角三角函数:a sin =c A =对边斜边 b cos ==c A 邻边斜边 at a n ==b A 对边邻边 b sin ==c B 对边邻边 a cos ==c B 邻边斜边 b tan ==a B 对边斜边(4)直角三角形中的有关定理:①直角三角形中,斜边上的中线等于斜边的一半。
②直角三角中,300角所对的直角边等于斜边的一半。
③直角三角形中,若有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于300.④直角三角形中,斜边上的高是这条高分斜边所得两条线段的比例中项。
⑤面积公式:ab ch s==22。
知识点3.解决直角三角形的基本类型以及其解法: 解直角三角形有四种类型:(1)已知斜边和一个直角边;(2)已知两条直角边(3)已知斜边和一个锐角(4)已知一个直角边和一个锐角应注意以下原则:(1)“先求角后求边,宁乘不除”的原则 (2)有“斜”选“弦”,无“斜”选“切”。
(3)尽量使未知元素在分子的位置上,以便利用乘法运算求未知元素。
(4)尽量使用原始数据:以减少误差的积累,也可避免由于中间数据有错而产生新的误差。
知识点4.直角三角形中有斜边高线:在ABC t R ∆中,∠C=90°,AB CD ⊥,则∠1=∠B ,∠2=∠A 。
ACD t R ∆∽CBD Rt ∆∽ABC Rt ∆。
CA D B1 2由相似得对应边成比例,可得到:.AB BD BC ;AB AD AC ;DB AD CD 222⋅=⋅=⋅=由面积公式,得AB CD BC AC ⋅=⋅知识点5. 等腰三角形、斜三角形、梯形等可化为直角三角形的图形。
动点几何问题(三)--动点直角三角形这节课我们学什么1.动点直角三角形一线三直角问题2.动点直角三角形SAS问题3.动点直角三角形三角比问题4.动点直角三角形勾股定理问题知识点梳理动点直角三角形问题,一般都需要讨论哪个角是可能构成直角,然后根据题型,运用不同的方法.如下为总结的四种方法:1.先讨论哪个角是直角,然后第一类用一线三直角构造相似求解,分别用未知数的式子表示出一线三直角模型的边长;2.用边角边,即两边对应成比例夹角相等,一般是动点构成的直角三角形与已知的直角三角形相似,需要求出已知直角三角形的边长,以及用未知数的式子求出动点直角三角形的边长,通过对应边成比例建立等式;3.利用三角比来求解,实际上这个和上面一种情况类似,但是动点构成的直角三角形中,某个锐角的三角比已知,这样,直接在动点三角形中运用三角比直接可以建立等式;4.第四种方法就比较简单粗暴了,就是把动点直角三角形三边的长度用未知数的式子,或者直接是数字表示出来,用勾股定理建立等式,求解出未知数.典型例题分析1、动点直角三角形一线三直角问题; 例1.已知如图在平面直角坐标系xoy 中,抛物线与轴分别交于点(2,0)A 、点B (点B 在点A 的右侧),与y 轴交于点C ,1tan 2CBA ∠=. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ABCD 的面积;(3)设抛物线上的点E 在第一象限,BCE ∆是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.【答案:(1)∵当时,,∴(0,3)C在Rt COB ∆中,∵∴∴∴点(6,0)B把(2,0)A (6,0)B 分别代入,得:得解得:∴该抛物线表达式为(2)∵∴顶点41D -(,) ∴(3)点E 的坐标是108(,)或1635(,)】 2、动点直角三角形SAS 问题 例2.已知:如图,抛物线2445y x mx =-++与y 轴交于点C ,与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足4OC OA =.设抛物线的对称轴与x 轴交于点M . (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当QMB ∆与COM ∆相似时,求直线AQ 的解析式.【答案:(1)根据题意:04C (,)∵4OC OA = ∴0A (-1,) 把点A 代入得4045m =--+ 解得∴抛物线的解析式∴(2)根据题意得:3BM =,2tan CMO ∠=,直线CM :4y x =+ (i )当90COM MBQ ∠=∠=︒时,COM QBM ∆∆∽ ∴2BQtan BMQ BM∠==∴6BQ =即5,6Q -()∴AQ :(ii )当90COM BQM ∠=∠=︒时,COM BQM ∆∆∽ 同理Q () ∴AQ :】例3.如图,在ABC Rt ∆中,︒=∠90C ,5=AB ,43tan =B ,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F . (1)求AC 和BC 的长;(2)当EF BC //时,求BE 的长;(3)联结EF ,当DEF ∆和ABC ∆相似时,求BE 的长.【答案:解:(1)在ABC Rt ∆中,∠C ∵43tan ==BC AC B ,∴设k AC 3=,k BC 4= AC∴55==k AB ,∴1=k ∴3=AC ,4=BC(2)过点E 作BC EH ⊥,垂足为H . 易得EHB ACB ∆∆∽设k CF EH 3==,k BH 4=,k BE 5=∵EF BC //∴FDC EFD ∠=∠∵︒=∠=∠90C FDE ∴EFD FDC ∆∆∽ ∴CDFDFD EF =∴CD EF FD ⋅=2 即)44(2492k k -=+化简,得04892=-+k k 解得91324±-=k (负值舍去)∴92013105-==k BE(3)过点E 作BC EH ⊥,垂足为H .易得EHB ACB ∆∆∽ 设k EH 3=,k BE 5=∵︒=∠+∠90HDE HED ︒=∠+∠90HDE FDC ∴FDC HED ∠=∠∵︒=∠=∠90C EHD ∴EHD DCF ∆∆∽∴DFDECD EH =当DEF ∆和ABC ∆相似时,有两种情况:①43==BC AC DF DE ;∴43=CD EH 即4323=k 解得21=k ∴255==k BE②34==AC BC DF DE ;∴34=CD EH 即3423=k 解得98=k∴9405==k BE综合①、②,当DEF ∆和ABC ∆相似时,BE 的长为25或940.】3、动点直角三角形三角比问题例4.已知:如图,在Rt ABC ∆中,90C ∠=︒,2BC =,4AC =,P 是斜边AB 上的一个动点,PD AB ⊥,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且EPD A ∠=∠.设A 、P 两点的距离为x ,BEP ∆的面积为y . (1)求证:2AE PE =;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当BEP ∆与ABC ∆相似时,求BEP ∆的面积.【答案:(1)∵90APD C ∠=∠=︒,A A ∠=∠,∴ADP ABC ∆∆∽.∴21==AC BC AP PD . ∵EPD A ∠=∠,PED AEP ∠=∠,∴EPD EAP ∆∆∽. ∴21==AP PD AE PE . ∴2AE PE =.(2)由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==.作EH AB ⊥,垂足为点H .∵AP x =,∴x PD 21=. ∵PD HE //,∴34==AD AE PD HE .∴x HE 32=. 又∵52=AB ,∴x x y 32)52(21⋅-=,即x x y 352312+-=.定义域是5580<<x .另解:由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ABD E∴24AE PE DE ==. ∴x x AE 3522534=⨯=.∴12233ABE S x x ∆⋅⨯==.∴AB BP S S ABE BEP =∆∆,即5252352x xy-=.∴x x y 352312+-=.定义域是5580<<x . (3)由PEH BAC ∆∆∽,得AC AB HE PE =,∴x x PE 352532=⋅=.当BEP ∆与ABC ∆相似时,只有两种情形:90BEP C ∠=∠=︒或90EBP C ∠=∠=︒.(i )当90BEP ∠=︒时,AB BC PB PE =,∴515235=-x x.解得453=x . ∴1625453352516931=⨯+⨯⨯-=y . (ii )当90EBP ∠=︒时,同理可得253=x ,45=y .】PGABCDFPGA CD例5.已知ABC ∆为等边三角形,6AB =,P 是AB 上的一个动点(与A 、B 不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC ∆内作正方形DEFG ,其中D 、E 在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP ∆是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.【答案:(1)∵ABC ∆为等边三角形, ∴60B C ∠=∠=︒,6AB BC AC ===. ∵DP AB ⊥,BP x =,∴2BD x = 又∵四边形DEFG 是正方形, ∴EF BC ⊥,EF DE y ==,∴y EC 33=. ∴6332=++y y x , ∴339)33(-+-=x y .(≤<3)(2)当2BP =时,A3392)33(-+⨯-=y 33-=.23232-==y CF .(3)GDP ∆能成为直角三角形. ①90PGD ∠=︒时,y y x +=-36,61)3)9x x -=⋅+-得到:113630-=x . ②90GPD ∠=︒时,y x x 234+=, ⋅+=234x x ]339)33[(-+-x , 得到:336-=x .∴当GDP ∆为直角三角形时,BP 的长为113630-或者336-=x .】ABCGP EF4. 二动点直角三角形勾股定理问题例6.如图,AOB ∆的顶点A 、B 在二次函数21332y x bx =-++的图像上,又点A 、B 分别在y 轴和x 轴上,tan 1ABO ∠=. (1)求此二次函数的解析式;(2)过点A 作AC BO //交上述函数图像于点C ,点P 在上述函数图像上,当POC ∆与ABO ∆相似时,求点P【答案:(1)∵点A 在二次函数23312++-=bx x y 的图像上,)23,0(A在Rt AOB ∆中,︒=∠90AOB∵1tan ==∠BO AO ABO ,∵23==AO BO ,∴)0,23(-B ∵点B 在二次函数23312++-=bx x y 的图像上∴02323)23(312=+--⨯-b∴21=b∴2321312++-=x x y(2)∵AC BO //交上述函数图像于点C ,∴设)23,(x C∴232321312=++-x x ,解得23,021==x x ∵)23,23(C∴23==AO AC ,223=OC设抛物线2321312++-=x x y 与x 轴的另一交点为D可得,)0,3(D∴223)230()233(22=-+-=CD ,3=OD∴222OD CD OC =+,∴︒=∠90OCD易得,Rt OCA Rt ABO ∆∆∽,Rt ODC Rt ABO ∆∆∽ ∴)23,0(P 或)0,3(P 】课后练习练1.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C -,点P 是直线BC 下方抛物线上的任意一点;(1)求这个二次函数2y x bx c =++的解析式;(2)联结PO 、PC ,并将POC ∆沿y 轴对折,得到四边形POP C ',如果四边形POP C '为菱形,求点P 的坐标;(3)如果点P 在运动过程中,能使得以P 、C 、B 为顶点的三角形与AOC ∆相似,请求出此时点P 的坐标.【答案:】练2.如图,直角坐标平面内的梯形OABC ,OA 在x 轴上,OC 在y 轴上,//OA BC ,点E 在对角线OB 上,点D 在OC 上,直线DE 与x 轴交于点F ,已知2OE EB =,3CB =,6OA =,BA =5OD =.(1)求经过点A 、B 、C 三点的抛物线解析式: (2)求证:ODE OBC ∆∆∽:(3)在y 轴上找一点G ,使得OFG ODE ∆∆∽,直接写出点G 的坐标.【答案:(1)2163y x x =-++或者436)23(312+--=x y(2)24E (,),OE =,OB =OE OCOD OB==,DOE BOC ∠=∠ 故得证(3)05(,)、05-(,)、020(,)、020-(,)】练3.已知:如图,二次函数22416333y x x =--的图像与x 轴交于点A 、B (点A 在点B 的左侧),抛物线的顶点为Q ,直线QB 与y 轴交于点E . (1)求点E 的坐标;(2)在x 轴上方找一点C ,使以点C 、O 、B 为顶点的三角形与BOE ∆相似,请直接写出点C 的坐标.【答案:(1)令0y =,得224160333x x --= 解方程得122,4x x =-=(4,0)B又22(1)63y x =-- ∴(1,6)Q -设直线BQ :(0)y kx b k =+≠406k b k b +=⎧⎨+=-⎩解得28y x =-(0,8)E ∴-(2)12345616848(0,2),(0,8),(4,2),(4,8),(,),(,)5555C C C C C C 】练4.已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点长,沿PE 翻折BPE ∆得到FPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G .(1)如图,当 1.5BP =时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP x =,DG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若CQE FHG ∆∆∽,求BP 的长.【答案:(1)由题意,得,90,BE EF PFE B BEP FEP =∠=∠=︒∠=∠ ∵点E 为BC 的中点22BE EC EF EC ∴==∴==又90,EFQ C EQ EQ∠=∠=︒=∴EFQ ECQ ∆∆≌,90FEQ CEQ BEP CEQ ∴∠=∠∴∠+∠=︒又90BPE BEP BPE CEQ ∠+∠=︒∴∠=∠90B C ∠=∠=︒∴BPE CEQ ∆∆∽ 1.522BP BEEC QCCQ ∴==即83CQ ∴= (2)由(1)知:BPE CEQ ∆∆∽,BP BEEC CQ∴=242x CQ CQx ∴=∴=44DQ x ∴=- ∵QD AP //4,4DG DQ AP x AG y AG AP∴==-=+又4444y x y x -∴=+-21616(12)4x y x x -∴=<<-(3)由题意知:90C GFH ∠︒∠==①当点G 在线段AD 的延长线上时,由题意知:G CQE ∠∠= ∵CQE FQE ∠∠=∴22DQC FQC CQE G ∠∠∠∠=== ∴90DQG G ∠+∠︒=∴30G ∠︒=∴30BQP CQE G ∠∠∠︒===tan30BP BE ∴=⋅︒=②当点G 在线段DA 的延长线上时,由题意知:G QCE ∠=∠ 同理可得:30G ∠=︒30BPE G ∴∠=∠=︒cot30BP BE ∴=⋅︒=综上所述,BP】课后小测验1.如图,二次函数2y x bx c =++图像经过原点和点(2,0)A ,直线AB 与抛物线交于点B ,且45BAO ∠=︒.(1)求二次函数解析式及其顶点C 的坐标;(2)在直线AB 上是否存在点D ,使得BCD ∆为直角三角形.若存在,求出点D 的坐标,若不存在,说明理由.【答案:(1)(2)由可以知道直线AB 的一次项系数为-1,从而可求得直线AB 的解析式为.当时.根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为;当时.将与联立得求得点B 的坐标为,然后根据待定系数法求得直线BC 的解析式为直线BC 的解析式为,根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为.】本章小结。
中考数学压轴题专题解析---直角三角形中的动点问题这节课我们学什么1.动点直角三角形一线三直角问题2.动点直角三角形SAS问题3.动点直角三角形三角比问题4.动点直角三角形勾股定理问题知识点梳理动点直角三角形问题,一般都需要讨论哪个角是可能构成直角,然后根据题型,运用不同的方法.如下为总结的四种方法:1.先讨论哪个角是直角,然后第一类用一线三直角构造相似求解,分别用未知数的式子表示出一线三直角模型的边长;2.用边角边,即两边对应成比例夹角相等,一般是动点构成的直角三角形与已知的直角三角形相似,需要求出已知直角三角形的边长,以及用未知数的式子求出动点直角三角形的边长,通过对应边成比例建立等式;3.利用三角比来求解,实际上这个和上面一种情况类似,但是动点构成的直角三角形中,某个锐角的三角比已知,这样,直接在动点三角形中运用三角比直接可以建立等式;4.第四种方法就比较简单粗暴了,就是把动点直角三角形三边的长度用未知数的式子,或者直接是数字表示出来,用勾股定理建立等式,求解出未知数.典型例题分析1、动点直角三角形一线三直角问题; 例1.已知如图在平面直角坐标系xoy 中,抛物线与轴分别交于点(2,0)A 、点B (点B 在点A 的右侧),与y 轴交于点C ,1tan 2CBA ∠=. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ABCD 的面积;(3)设抛物线上的点E 在第一象限,BCE ∆是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.【答案:(1)∵当时,,∴(0,3)C在Rt COB ∆中,∵∴∴∴点(6,0)B把(2,0)A (6,0)B 分别代入,得:得解得:∴该抛物线表达式为(2)∵∴顶点41D -(,) ∴(3)点E 的坐标是108(,)或1635(,)】2、动点直角三角形SAS 问题 例2.已知:如图,抛物线2445y x mx =-++与y 轴交于点C ,与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足4OC OA =.设抛物线的对称轴与x 轴交于点M . (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当QMB ∆与COM ∆相似时,求直线AQ 的解析式.【答案:(1)根据题意:04C (,)∵4OC OA = ∴0A (-1,) 把点A 代入得4045m =--+ 解得∴抛物线的解析式∴(2)根据题意得:3BM =,2tan CMO ∠=,直线CM :4y x =+ (i )当90COM MBQ ∠=∠=︒时,COM QBM ∆∆∽ ∴2BQtan BMQ BM∠== ∴6BQ =即5,6Q -()∴AQ :(ii )当90COM BQM ∠=∠=︒时,COM BQM ∆∆∽ 同理Q () ∴AQ :】例3.如图,在ABC Rt ∆中,︒=∠90C ,5=AB ,43tan =B ,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F . (1)求AC 和BC 的长;(2)当EF BC //时,求BE 的长;(3)联结EF ,当DEF ∆和ABC ∆相似时,求BE 的长.【答案:解:(1)在中,∠C ∵43tan ==BC AC B ,∴设k AC 3=,k BC 4= ∴55==k AB ,∴1=k ∴3=AC ,4=BC(2)过点E 作BC EH ⊥,垂足为H .A C易得EHB ACB ∆∆∽设k CF EH 3==,k BH 4=,k BE 5=∵EF BC //∴FDC EFD ∠=∠∵︒=∠=∠90C FDE ∴EFD FDC ∆∆∽ ∴CDFDFD EF =∴CD EF FD ⋅=2 即)44(2492k k -=+化简,得04892=-+k k 解得91324±-=k (负值舍去)∴92013105-==k BE(3)过点E 作BC EH ⊥,垂足为H .易得EHB ACB ∆∆∽ 设k EH 3=,k BE 5=∵︒=∠+∠90HDE HED ︒=∠+∠90HDE FDC ∴FDC HED ∠=∠∵︒=∠=∠90C EHD ∴EHD DCF ∆∆∽∴DFDECD EH =当DEF ∆和ABC ∆相似时,有两种情况:①43==BC AC DF DE ;∴43=CD EH 即4323=k 解得21=k ∴255==k BE②34==AC BC DF DE ;∴34=CD EH 即3423=k 解得98=k∴9405==k BE综合①、②,当DEF ∆和ABC ∆相似时,BE 的长为25或940.】3、动点直角三角形三角比问题例4.已知:如图,在Rt ABC ∆中,90C ∠=︒,2BC =,4AC =,P 是斜边AB 上的一个动点,PD AB ⊥,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且EPD A ∠=∠.设A 、P 两点的距离为x ,BEP ∆的面积为y . (1)求证:2AE PE =;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当BEP ∆与ABC ∆相似时,求BEP ∆的面积.【答案:(1)∵90APD C ∠=∠=︒,A A ∠=∠,∴ADP ABC ∆∆∽.∴21==AC BC AP PD . ∵EPD A ∠=∠,PED AEP ∠=∠,∴EPD EAP ∆∆∽. ∴21==AP PD AE PE . ∴2AE PE =.(2)由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==. 作EHAB ⊥,垂足为点H .∵AP x =,∴x PD 21=.∵PD HE //,∴34==AD AE PD HE .∴x HE 32=. 又∵52=AB ,∴x x y 32)52(21⋅-=,即x x y 352312+-=.定义域是5580<<x .另解:由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==.ABD E∴x x AE 3522534=⨯=.∴12233ABE S x x ∆⋅⨯==.∴AB BP S S ABE BEP =∆∆,即5252352x xy-=.∴x x y 352312+-=.定义域是5580<<x . (3)由PEH BAC ∆∆∽,得AC AB HE PE =,∴x x PE 352532=⋅=.当BEP ∆与ABC ∆相似时,只有两种情形:90BEP C ∠=∠=︒或90EBP C ∠=∠=︒.(i )当90BEP ∠=︒时,AB BC PB PE =,∴515235=-x x.解得453=x . ∴1625453352516931=⨯+⨯⨯-=y . (ii )当90EBP ∠=︒时,同理可得253=x ,45=y .】PGABCDFPGABCD例5.已知ABC ∆为等边三角形,6AB =,P 是AB 上的一个动点(与A 、B 不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC ∆内作正方形DEFG ,其中D 、E 在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP ∆是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.【答案:(1)∵ABC ∆为等边三角形, ∴60B C ∠=∠=︒,6AB BC AC ===. ∵DP AB ⊥,BP x =,∴2BD x = 又∵四边形DEFG 是正方形, ∴EF BC ⊥,EF DE y ==, ∴y EC 33=. ∴6332=++y y x , ∴339)33(-+-=x y .(≤<3)(2)当2BP =时,3392)33(-+⨯-=y 33-=.DEFBC23232-==y CF .(3)GDP ∆能成为直角三角形. ①90PGD ∠=︒时,y y x +=-36,61)3)9x x -=⋅+-得到:113630-=x . ②90GPD ∠=︒时,y x x 234+=, ⋅+=234x x ]339)33[(-+-x , 得到:336-=x .∴当GDP ∆为直角三角形时,BP 的长为113630-或者336-=x .】DABCGP EF4. 二动点直角三角形勾股定理问题例6.如图,AOB ∆的顶点A 、B 在二次函数21332y x bx =-++的图像上,又点A 、B 分别在y 轴和x 轴上,tan 1ABO ∠=.(1)求此二次函数的解析式;(2)过点A 作AC BO //交上述函数图像于点C ,点P 在上述函数图像上,当POC ∆与ABO ∆相似时,求点P【答案:(1)∵点A 在二次函数23312++-=bx x y 的图像上,)23,0(A 在Rt AOB ∆中,︒=∠90AOB ∵1tan ==∠BO AO ABO ,∵23==AO BO ,∴)0,23(-B ∵点B 在二次函数23312++-=bx x y 的图像上 ∴02323)23(312=+--⨯-b ∴21=b ∴2321312++-=x x y (2)∵AC BO //交上述函数图像于点C ,∴设)23,(x C ∴232321312=++-x x ,解得23,021==x x ∵)23,23(C ∴23==AO AC ,223=OC 设抛物线2321312++-=x x y 与x 轴的另一交点为D 可得,)0,3(D∴223)230()233(22=-+-=CD ,3=OD ∴222OD CD OC =+,∴︒=∠90OCD易得,Rt OCA Rt ABO ∆∆∽,Rt ODC Rt ABO ∆∆∽ ∴)23,0(P 或)0,3(P 】课后练习练1.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C -,点P 是直线BC 下方抛物线上的任意一点;(1)求这个二次函数2y x bx c =++的解析式;(2)联结PO 、PC ,并将POC ∆沿y 轴对折,得到四边形POP C ',如果四边形POP C '为菱形,求点P 的坐标;(3)如果点P 在运动过程中,能使得以P 、C 、B 为顶点的三角形与AOC ∆相似,请求出此时点P 的坐标.【答案:】练2.如图,直角坐标平面内的梯形OABC ,OA 在x 轴上,OC 在y 轴上,//OA BC ,点E 在对角线OB 上,点D 在OC 上,直线DE 与x 轴交于点F ,已知2OE EB =,3CB =,6OA =,BA =5OD =.(1)求经过点A 、B 、C 三点的抛物线解析式:(2)求证:ODE OBC ∆∆∽:(3)在y 轴上找一点G ,使得OFG ODE ∆∆∽,直接写出点G 的坐标.【答案:(1)2163y x x =-++或者436)23(312+--=x y(2)24E (,),OE =,OB =OE OC OD OB==,DOE BOC ∠=∠ 故得证 (3)05(,)、05-(,)、020(,)、020-(,)】练3.已知:如图,二次函数22416333y x x =--的图像与x 轴交于点A 、B (点A 在点B 的左侧),抛物线的顶点为Q ,直线QB 与y 轴交于点E .(1)求点E 的坐标;(2)在x 轴上方找一点C ,使以点C 、O 、B 为顶点的三角形与BOE ∆相似,请直接写出点C 的坐标.【答案:(1)令0y =,得224160333x x --= 解方程得122,4x x =-=(4,0)B 又22(1)63y x =-- ∴(1,6)Q -设直线BQ :(0)y kx b k =+≠406k b k b +=⎧⎨+=-⎩解得28y x =-(0,8)E ∴-(2)12345616848(0,2),(0,8),(4,2),(4,8),(,),(,)5555C C C C C C 】练4.已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点长,沿PE 翻折BPE ∆得到FPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G .(1)如图,当 1.5BP =时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP x =,DG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若CQE FHG ∆∆∽,求BP 的长.【答案:(1)由题意,得,90,BE EF PFE B BEP FEP =∠=∠=︒∠=∠ ∵点E 为BC 的中点22BE EC EF EC ∴==∴== 又90,EFQ C EQ EQ ∠=∠=︒=∴EFQ ECQ ∆∆≌,90FEQ CEQ BEP CEQ ∴∠=∠∴∠+∠=︒又90BPE BEP BPE CEQ ∠+∠=︒∴∠=∠90B C ∠=∠=︒∴BPE CEQ ∆∆∽ 1.522BP BE EC QC CQ ∴==即83CQ ∴= (2)由(1)知:BPE CEQ ∆∆∽,BP BE EC CQ ∴= 242x CQ CQ x ∴=∴=44DQ x ∴=- ∵QD AP //4,4DG DQ AP x AG y AG AP∴==-=+又 4444y x y x -∴=+-21616(12)4x y x x -∴=<<-(3)由题意知:90C GFH ∠︒∠==①当点G 在线段AD 的延长线上时,由题意知:G CQE ∠∠=∵CQE FQE ∠∠=∴22DQC FQC CQE G ∠∠∠∠===∴90DQG G ∠+∠︒=∴30G ∠︒=∴30BQP CQE G ∠∠∠︒===tan30BP BE ∴=⋅︒=②当点G 在线段DA 的延长线上时,由题意知:G QCE ∠=∠同理可得:30G ∠=︒30BPE G ∴∠=∠=︒cot30BP BE ∴=⋅︒=综上所述,BP 】课后小测验1.如图,二次函数2y x bx c =++图像经过原点和点(2,0)A ,直线AB 与抛物线交于点B ,且45BAO ∠=︒.(1)求二次函数解析式及其顶点C 的坐标;(2)在直线AB 上是否存在点D ,使得BCD ∆为直角三角形.若存在,求出点D 的坐标,若不存在,说明理由.【答案:(1)(2)由可以知道直线AB 的一次项系数为-1,从而可求得直线AB 的解析式为.当时.根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为;当时.将与联立得求得点B 的坐标为,然后根据待定系数法求得直线BC 的解析式为直线BC 的解析式为,根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为。
板块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形.二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳:cba CBA⑴ 三边之间的关系:222a b c += (勾股定理); ⑵ 锐角之间的关系:90A B ∠+∠=︒; ⑶ 边角之间的关系:sin a A c =,cos b A c =,tan a A b =,cot b A a=. 三、 解直角三角形的四种基本类型⑴ 已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; ⑵ 已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =;⑶ 已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,cot b a A =,sin ac A=;⑷ 已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠.具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin ac A =等.四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 直角三角形两锐角间的三角函数关系(五)解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故s in c o s (90)c o s A A B =︒-=,cos sin A B =,tan cot A B =,cot tan A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.(六)如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化解直角三角形为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是: ①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 在三角形ABC 中,903010C A AB ∠=︒∠=︒=,,,则AC 的长度为( )A. B. C. D.【例2】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,4b =;【例3】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,6a b +=;【例4】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:45A ∠=︒,12S ∆=.【例5】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果40BCD ∠=︒,求AC 的长度D C BA【例6】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果1tan 3BCD ∠=,求CD 的长度D C BA【例7】 如图所示,在ABC ∆中,90C ∠=︒,D 是AC 边上的一点,且53AD DB CD ===,,求t a n CBD ∠和sin A 的值.DCB A【例8】 如图,在凯里市某广场上空飘着一只汽球P ,A B ,是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角45PAB ∠=︒,仰角30PBA ∠=︒,求汽球P 的高度(精确到0.1米,3=1.732)PACPBA【例9】 在Rt ABC ∆中,90C ∠=︒,若sin tan A B =,求cos A 的值.【例10】 在Rt ABC ∆中,90C ∠=︒,若cos cot A B =,求sin A 的值.【例11】 在三角形ABC 中,90C ∠=︒,a b c ,,分别是A B C ∠∠∠,,的对边,已知603B a b ∠=︒+=+,求a b ,【例12】 如图,在ABC ∆中,已知20AB AC BC ===,ABC ∆中各内角的度数 DCBA【例13】 如图,已知:ABC ∆是等腰直角三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,求sin ACE ∠的值.FED CBA【例14】 如图所示,天空中有一静止的广告气球C ,从地面A 点测得C 的仰角为45°,从地面B 点测得C 的仰角为60°.已知20AB =米,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度CD (结果保留根号).DCBA【例16】 已知:如图,ABC ∆中,45B AB ∠=︒=,,D 是BC 上一点,53AD CD ==,,求ADC ∠的度数及AC 的长.C BA板块二 解直角三角形应用(七)直角三角形中其他重要概念⑴ 仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.⑵ 坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为hi l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. ⑶ 方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线2. 解直角三角形应用题的解题步骤及应注意的问题:⑴ 分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;⑵ 找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);⑶ 根据已知条件,选择合适的边角关系式解直角三角形;⑷ 按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.(一)、仰角俯角【例17】 如图,一艘核潜艇在海面下500米A 点处测得俯角为30︒正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B 点处测得俯角为60︒正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度?(精确到米)海面60°30°D CBA【例18】 亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25m CD =,颖颖与楼之间的距离30m DN =(C D N 、、在一条直线上),颖颖的身高 1.6m BD =,亮亮蹲地观测时眼睛到地面的距离0.8m AC =.你能根据以上测量数据帮助他们求出住宅楼的高度吗?M【例19】 某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=︒,在B 处测得A 的仰角40ABC ∠=︒,在D 处测得A 的仰角85ADF ∠=︒,过D 点作地面BE 的垂线,垂足为C . ⑴ 求ADB ∠的度数; ⑵ 求索道AB 的长.(结果保留根号)【例20】 如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23AEF ∠=︒,量得树干倾斜角38BAC ∠=︒,大树被折断部分和坡面所成的角604m ADC AD ∠=︒=,. ⑴求CAE ∠的度数;⑵求这棵大树折断前的高度.1.4 1.72.4==).A CDE FBGACDEFB【例21】 一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米( 1.732≈ 1.414≈供计算时选用)DPGCO A【例22】 如图,某公园入口处原有三级台阶,每级台阶高20cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,斜坡的坡角BCA ∠为12︒,设台阶的起点为A ,斜坡的起点为C ,求AC 的长度(精确到1cm )DC BA【例23】 课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15︒,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30︒,求旗杆EG 的高度.C60°38°BDE23°AF【例24】 在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点 C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:3tan315︒≈,1sin312︒≈)【例25】 如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.A⑴ 请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n …表示,角用α,β…表示,测倾器高度忽略不计);⑵ 根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).【例26】 如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45︒和60︒,且A 、B 、E三点在一条直线上,若15BE =米,求这块广告牌的高度.(取1.73≈,计算结果保留整数)EDC BA60︒45︒【例27】 由山脚下的一点A 测得山顶D 的仰角是45︒,从A 沿倾斜角为30︒的山坡前进1500米到B ,再次测得山顶D 的仰角为60︒,求山高CD .DCBA【例28】 如图,在山脚的C 处测得山顶A 的仰角为45︒,沿着坡度为30︒的斜坡前进400米到D 处(即30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【例29】 如图所示,某学校拟建两幢平行的教学楼,现设计两楼相距30米,从A 点看C 点,仰角为5︒;从A点看D 点,俯角为30,解决下列问题:⑴ 求两幢楼分别高多少米?(结果精确到1米)⑵ 若冬日上午9:00太阳光的入射角最低为30(光线与水平线的夹角),问一号楼的光照是否会有影响?请说明理由,若有,则两楼间距离应至少相距多少米时才会消除这种影响?(结果精确到1米)(参考数据:tan50.0875≈ tan300.5774≈ cos30 1.732≈)DCDCB A【例30】 若每层楼高2.2米,问在例题的第⑵问中,在一号楼中至少住在第几层光照就不会受到二号楼的影响?F 30︒ED CBA【例31】 某住宅小区有一郑南朝向的居民楼,如图,该楼底层是高为6m 的超市,超市以上是居民住房,在该楼前方15m 处准备盖一幢高20m 的新楼,已知当地冬季正午的阳光与水平线夹角为32︒ ⑴超市以上居民住房采光是否受到影响?为什么?⑵若要使居民住房采光不受影响,两楼至少应相距多少米?(精确到0.1m )新楼居民楼新楼32°BADCBA【例32】 如图,“五一”期间在某商贸大厦上从点A 到点B 悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上.小明在四楼D 点测得条幅端点A 的仰角为30︒,测得条幅端点B 的俯角为45︒;小雯在三楼C 点测得条幅端点A 的仰角为45︒,测得条幅端点B 的俯角为30︒.若设楼层高度CD 为3米,请你根据小明和小雯测得的数据求出条幅AB 的长.(结果精确到个位,参考数据1.732)【例33】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD (用含a αβθ,,,的代数式表示)(二)、坡度角【例34】 为了加固一段河堤,需要运来砂石和土将堤面加宽1m ,使坡度由原来的1:2变成1:3,如图所示,已知原来背水坡长12BC m ,堤长100m ,那么需要运来砂石和土多少立方米?(参考数据3≈1.7,5≈2.7)CFEDBA【例35】 燕尾槽的横断面是等腰梯形,下图是个燕尾槽的横断面,其中燕尾角B 为55°,外口宽AD 为180 mm ,燕尾槽的深度为70 mm ,求它的里口宽BC (精确到1 mm )F EDCBA【例36】 创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.⑴请你帮助小王在下图中把图形补画完整;⑵由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中1:0.75i=是坡面CE的坡度),求r的值.【例37】一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形. 现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.⑴求整修后背水坡面的面积;⑵如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?DCBA【例38】城市规划期间,欲拆除一电线杆AB,如图所示,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度为2,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30︒,D、E之间是宽为2m的人行道,试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心.以AB的长为半径的圆形区域为危险区域).FE人行道DCB A【例39】 如图,甲、乙两建筑物的水平距离为30m ,从乙的顶部A 测得甲的顶部C 的仰角为60︒,测得甲的底部D 的俯角为30︒,求两建筑物的高.B【例40】 在建筑楼梯时,设计者要考虑楼梯的安全程度.如图1,虚线为楼梯的斜度线,斜度线与地板的夹角为倾角θ,一般情况下,倾角θ愈小,楼梯的安全程度愈高.如图2,设计者为提高楼梯的安全程度,要把楼梯的倾角由1θ减至2θ,这样楼梯占用地板的长度由1d 增加到2d ,已知11440d m θ=∠=︒,,236θ∠=︒,求楼梯占用地板的长度增加了多少?(精确到0.01 m . 参考数据:tan36°=0.7256, tan40°=0.8391.)θ地板地板【例41】 武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44︒减至32︒,已知原台阶AB 的长为5米(BC 所在地面为水平面). ⑴ 改善后的台阶会加长多少?(精确到0.01米)⑵ 改善后的台阶多占多长一段地面?(精确到0.01米)44︒32︒CBA【例42】 我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=︒,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)?ABD CEF G ECDBA(三)、方位角【例43】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上, 2AB km =,15DAC ∠=︒. (1)求B D ,之间的距离; (2)求C D ,之间的距离.中山路文化路和平路环城路环城路和平路文化路中山路BCD45°30°15°15°30°45°ODC BABCA44︒【例44】 如图所示,某轮船以30海里/时的速度航行,在A 点处测得海面上的哨所P 在南偏东60︒,向北航行40分钟后到达B 点,测得哨所P 在南偏东30︒,轮船改变为北偏东60︒的航向再航行2小时到达C 点,若在PC 上存在一点M ,点M 在点B 的南偏东60︒处,且在点M 的周围有方圆15海里的暗礁区,问轮船从B 点到C 点的航行中有无触礁的危险?是否需要改变航向?EDB A【例45】 为缓解“停车难”的问题,某单位拟建造地下停车库,设计师提供了车库入口设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你计算图中CE 的长(精确到0.1m )【例46】 如图所示,某船以每小时36海里的速度向正东航行,在A 点测得某岛C 在北偏东60°方向上,航行半小时后到B 点,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁. (1)试说明B 点是否在暗礁区域外.(2)若继续向东航行,有无触礁危险?请说明理由.东【例47】 如图,公路MN 和公路PQ 在P 处交会,且30QPN ∠=︒,点A 处有一所学校,160m AP =,假设拖拉机行使时,周围100m 以内会受到噪音的影响,那么当拖拉机在公路MN 上沿PN 的方向以10m/s 的速度行使时,⑴ 学校是否会受到噪音的影响?为什么?⑵若学校会受到噪音的影响,受影响的时间是多少?【例48】 随着科学技术的发展,机器人已经能按照设计的指令完成各种动作,在坐标平面上,根据指令[s ,]α(0a ≥,0360α︒≤<︒)机器人能完成下列动作:先原地顺时针旋转角度α,再朝其面对的方向沿直线行走距离s.⑴填空:如图,若机器人在直角坐标系的原点,且面对y轴的正方向,现要使其移动到点(2A,2),则给机器人发出的指令应是_________⑵机器人在完成上述指令后,发现(6P,0)处有一小球正向坐标原点做匀速直线运动,已知小球的滚动速度与机器人行走的速度相同,若忽略机器原地旋转时间,请你给机器人发一个指令,使它能最快截住小球.(如图,点C为机器人最快截住小球的位置)(角度精确到度;参考数据:sin490.75︒≈,cos370.80︒≈,tan370.75︒≈,tan390.80︒≈)NyxPOANyxPO CBA【例49】第⑵问中,将“小球的滚动速度与机器人行走的速度相同”改为“小球速度为机器人的2”,则要在最短时间内截住小球应下的指令为.【例50】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60︒方向上,港口D在港口A北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.【例51】渔船上的渔民在A处看见灯塔M在北偏东60︒方向,这艘渔船以28海里/时的速度向正东航行,半小时到B处.在B处看见灯塔M在北偏东15︒方向,求此时灯塔M与渔船的距离.北东北15︒60︒MBA北东北60︒15︒NM BA【例52】 如图,某剧组在东海拍摄广告风光片,拍摄基地位于A 处,在其正南方向15海里处一小岛B ,在B的正东方向20海里处有一小岛C ,小岛D 位于AC 上,且距小岛A 有10海里. ⑴ 求A ∠的度数(精确到1︒)和点D 到BC 的距离;⑵ 摄制组甲从A 处乘甲船出发,沿A B C →→的方向匀速航行,摄制组乙从D 处乘乙船出发,沿南偏西方向匀速直线航行,已知甲船的速度是乙船速度的2倍,若两船同时出发并且在B 、C 间的F 处相遇,问相遇时乙船航行了多少海里?(结果精确到0.1海里)北C B北EC B【例53】 海面上B 处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C 时,在驶向正西方的目的地A 处,且200CA CB ==海里,在AB 中点O 处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)【例54】 为保卫祖国的海疆,我人民解放军海军在海岸线上相距20n mile 的A B ,两地设立观测站,按国际惯例,海岸线以外12n mile 范围内均为我国领海,外国船只除特许外,不得私自进入我国领海,某日,观测员发现一外国船只行驶至P 处,在A 观测站测得P 在北偏东27︒,同时在B 观测站测得P 在北偏西56︒,问此时是否需要向此未经特许的船只发出警告,命令其退出我国领海?(参考数据:932sin63tan632sin34tan341053︒≈︒≈︒≈︒≈,,,)56°27°PBA【例55】 台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. ⑴ 该城市是否会受这次台风影响?请说明理由.⑵ 若受台风影响,那么台风影响该城市的持续时间会有多长? ⑶ 该城市受台风影响的最大风力是几级?(四)其它【例56】 公园里有一块形如四边形ABCD 的草地,测得10BC CD ==米,120B C ∠=∠=︒,45A ∠=︒.请你求出这块草地的面积.DCBA【例57】 如图,不透明圆锥体DEC 放在水平面上,在A 处灯光照射下形成影子,设BP 过底面圆的直径,已知圆锥体的高为,底面半径为2m ,4BE m =⑴求B ∠的度数;⑵若2ACP B ∠=∠,求光源A 距水平面的高度PEDCBA【例58】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【例59】 如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.⑴ 求AO 与BO 的长;⑵ 若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.图1图2图3【例60】 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)图3图2B【例61】 如图,在ABC ∆中,90C ∠=︒,AB的垂直平分线MN 交AC 于点D ,连结BD ,若3cos 5BDC ∠=, 求tan A 的值.(图1)NM DCA【例62】 如图所示,已知在Rt ABC ∆中,90ACB ∠=︒,3sin 5B =,D 是BC 上一点,DE AB ⊥,垂足为E ,CD DE =,9AC CD +=.求:⑴ BC 的长;⑵ CE 的长.EDCBA【例63】 如图,某居民小区内A B ,两楼之间的距离30MN =米,两楼的高都是20米,A 楼在B 楼正南,B楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离2DN =米,窗户高 1.8CD =米.当正午时刻太阳光线与地面成30角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(1.4141.732=2.236=)【例64】 如图,水坝的横截面为梯形ABCD ,坝顶宽6m AD =,坡面CD =,AB 的坡度为,135ADC ∠=︒,求水坝的横截面积.DBA【例65】 水坝的横截面是等腰梯形ABCD ,坝顶宽6AD m =,坝高4m ,斜坡AB 的坡度为1:2,现要将水坝加高2m ,要求坝顶宽度不变,背水坡AB 改为EG 后,坡度改为1:2.5,如图,按这样的要求,加固一条长为50m 的水坝,需要多少土方?Q HR G FEDCB A【例66】 如图所示,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时的速度沿北偏西60︒方向前进,乙船以每小时15km 的速度沿东北方向前进,甲船航行2h 到达C 处,发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75︒的方向追赶,结果两船在B 处相遇. ⑴ 甲船从C 处追上乙船用了多长时间? ⑵ 甲船追赶乙船的速度是多少?北【例67】 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,建筑物周围没有开阔平整地带,建筑物顶端宽度AD 、高度DC 都可以直接测得,从A D C ,,三点都可看到塔顶H⑴试根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案,具体要求如下:①可供使用的测量工具有皮尺、测角器;②测量数据尽可能少;③在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A D ,间距离,用m 表示,D C ,间距离,用n 表示;如果测角,用αβγ,,表示)⑵根据你测量的数据,计算塔顶端到地面的高度HG (用字母表示,测角器高度忽略不计)DBA【例68】 如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C ,两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)。
解直角三角形一、知识点讲解:1.解直角三角形的依据在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么(1)三边之间的关系为(勾股定理)(2)锐角之间的关系为∠A+∠B=90°(3)边角之间的关系为2.其他有关公式面积公式:(hc为c边上的高)3.解直角三角形的条件在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。
4.解直角三角形的关键是正确选择关系式在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数(2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。
(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。
5.解直角三角形时需要注意的几个问题(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。
(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。
(3)按照题目中已知数据的精确度进行近似计算二、例题解析:例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积,解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8说明:(1)由于知两边和及第三边的长,故相当于存在两个未知量,因为是在直角三角形中,所以可以利用勾股定理来沟通关系。
(2)由于是求解未知量问题,所以要运用方程思想,把问题转化为与未知量相关的方程问题,用方程知识求解。
《解直角三角形》要点:在直角三角形中,由已知元素求出未知元素的过程叫做解直角三角形,直角三角形ABC 的6个元素(3个角、3条边),除直角C 外,其余5个元素的边角关系可以概括为:(1) 三边之间的关系: 222c b a =+(勾股定理);(2) 锐角之间的关系: ∠ A+∠B=90°(互为余角) (3)边角之间的关系:sin A=斜边的对边A ∠ ,cosA=斜边的邻边A ∠ ,tanA=邻边的对边A ∠. 解直角三角形只有两种情形:(1)已知两边; (2)已知一条边和一个锐角.解直角三角形的关键在于灵活地选择上面的关系式,快捷地沟通未知量和已知量如果不是上述类型,可以经过角的转化化为上述四种类型.对于已知一锐角三角函数值问题,往往要给出一边长,将三角函数值转化为与已知边有关的两条线段的比,再结合方程(组)转化为以上四种类型.如果是斜三角形,往往通过作垂线构造直角三角形.解直角三角形需遵循如下基本原则:在Rt △ABC 中,∠C=90°,c b a 、、分别∠A 、∠B 、∠C 为的对边,,34=a ,8=c 求b 及∠A.、∠B在Rt △ABC 中,∠C=90°,c b a 、、分别∠A 、∠B 、∠C 为的对边,,3=a ∠B=60°,求c b 、及∠A.在Rt △ABC 中,∠C=90°,BC=2,AC=6,解这个直角三角形.在Rt △ABC 中,∠C=90°,3=b ,∠B=60°,解这个三角形.如图,Rt △ABC 中,∠C=90°,D 为BC 上一点,∠ADC=60°,∠B=45°,BD=2,求AC 的长.在△ABC 中, ∠A=75°,∠B=60°,AB=6,求BC.如图,在△ABC 中,∠A=30°,tanB=23,AC=23,求AB 的长.。
解直角三角形在实际应用中的常见模型分析
马国柱
【期刊名称】《数理天地(初中版)》
【年(卷),期】2024()5
【摘要】运用解直角三角形相关知识解决实际问题的常见模型有四种:异侧型、同侧型、斜截型和交叉型.这四种类型在仰角与俯角问题、方位角问题、坡角问题中均有可能出现,解答此类问题,关键是从实际问题中抽象出数学问题,然后构造数学模型.本文对这几种数学模型进行归纳,以帮助学生对解直角三角形在实际生活中的应用有更全面的掌握.
【总页数】2页(P11-12)
【作者】马国柱
【作者单位】甘肃省庆阳第四中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.解直角三角形在实际生活的应用
2.“解直角三角形”在实际中的应用
3.解直角三角形在实际生活的应用
4.培养初中生解直角三角形及实际应用能力
5.解直角三角形在解决实际问题中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
解直角三角形常见的四种类型
有关解直角三角形题历来都是重点内容,现就两直角三角形组合形式的常见应用题作一归类:
1、“背靠背”型 这种类型的特点是:两直角三角形是并列关系,
有公共直角顶点和一条公共直角边,其中,这条公共直角边是沟通两
直角三角形关系的媒介,如图1.
例1光明中学九年级(1)班开展数学实践活动,小李沿着东西方
向的公路以50 m/min 的速度向正东方向行走,在A 处测得建
筑物C 在北偏东60°方向上,20min 后他走到B 处,测得建筑物
C 在北偏西45°方向上,求建筑物C 到公路AB 的距离. (已知3 1.732≈) 分析:欲求建筑物C 到公路AB 的距离,需过点C 作C
D ⊥AB ,垂足为D ,则图2转化为形如图1的图形.
解:过点C 作CD ⊥AB ,垂足为D .设CD =x (m ),在Rt △BCD 中,∠BCD=45°,∴BD=CD=x ,AD=AB-BD=1000-x .在Rt △ACD 中, ∠ACD=60°,tan ∠ACD=CD AD ,∴tan60°=CD AD ,即 3=x
x -1000,解得x ≈366,即建筑物C 到公路AB 的距 离约为366m .
例2热气球的探测器显示,从热气
球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,
热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果
精确到0.1 m ,参考数据:73.13≈)
解:如图3,过点A 作BC AD ⊥,垂足为D (转化为图1),
根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD .
在Rt △ADB 中,由AD
BD BAD =∠tan ,得BD=A D ·tan ∠BAD= 66⨯tan30°=66⨯33=223.在Rt △ADC 中,由tan ∠CAD=AD
CD ,得CD=AD ·tan ∠CAD=66 tan60°=66⨯3=663,∴BC=BD+CD=223+663=883≈152.2,即这栋高楼约高152.2m .
2、“母抱子”型 这种类型的特点是,一个直角三角形包含在
另一个直角三角形中,两直角三角形有公共直角和一条公共直角边,
其中,这条公共直角边是沟通两直角三角形关系的媒介,如图4.
例3永乐桥摩天轮是天津市的
标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.
如图5,他们在C 处测得摩天轮的最高点A 的仰角为45°,
再往摩天轮的方向前进50m 至D 处,测得最高点A 的仰
角为60°.求该兴趣小组测得的摩天轮的高度AB (732.13≈,结果保留整数). 解:根据题意,可知∠ACB=45°,∠ADB=60°, DC=50.在R t △ABC 中,由∠BAC=∠BCA=45°,
得BC=AB .在Rt △ABD 中,由tan ∠ADB=BD AB ,得BD=ADB AB ∠tan =060
tan AB =33A B .∵BC-BD=DC ,∴AB-33AB=50,即(3-3)AB=150.∴AB=1183
3150≈-.即摩天轮的高度AB 约为118m .
例4在一次课外实践活动中,同
学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测
得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两
个凉亭之间的距离.
分析:根据现有知识,不能直接求出AB 的长.过C 点作
C D ⊥AB ,交BA 的延长线于点D ,则图形6就转化为形如图4的图形.
解:过C 点作C D ⊥AB ,交BA 的延长线于点D .在R t △CDA 中,AC=30,∠CAD=180°-∠CAB=180°-120°=60°,则AD=A C ﹒cos ∠CAD =30×2
1=15,CD= A C ﹒sin ∠CAD =30×2
3=153.在R t △CDB 中,由勾股定理,得BD=22CD BC -=65,因此, AB=65-15=50(m). 评析:从例1、例2和例 4看出,解斜三角形问题时,常需
作一边的高线,转化为“背靠背”或“母抱子”型的图形.
3、“拥抱”型 这种类型的特点是:两直角三角形以交叉
方式出现,如图7.
例5如图8所示,小杨在广场上的A 处正面观测一
座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角
为30º,然后他正对大楼方向前进5m 到达B 处,又测
得该屏幕上端C 处的仰角为45º.若该楼高为26.65m ,小杨的眼睛离地面1.65m ,
广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m ).
解:设AB 、CD 的延长线相交于点E ,如图8.∵∠CBE =45º,CE ⊥AE , ∴CE =BE .∵CE =26.65-1.65=25 ,∴BE =25 ,∴AE =AB +BE =30 .在Rt △ADE 中,
∵tanDAE=AE DE ,∠DAE =30º ,∴DE =AE ×tan30 º=30×33 =10 3 .∴CD =CE -DE =25-10 3 ≈25-10×1.732=7.68≈7.7(m) ,即广告屏幕上端与下端之间的距离约为7.7m .
4、“斜截”型 这种类型的特点是,在一个直角三角形内,用
垂直于斜边的一条直线去截这个直角三角形,如图9.新直角三角
形与原直角三角形有一个公共锐角,所剩四边形的对角互补.
例6 某片绿地的形状如图10,其中∠A=60°,
AB ⊥BC ,AD ⊥CD ,AB=200m ,CD=100m ,求AD 、
BC 的长.(精确到1m ,732.13≈.)
分析:基于已知AB ⊥BC ,AD ⊥CD 的考虑,
可以将边AD 、BC 延长交于点E ,这样,图形
就转化为形如图9的图形.
解:在Rt △C DE 中,CD=100,
∠E=90°-∠A=30°,∴CE=2CD=200,DE==-22CD CE
1003.在Rt △ABE 中,∠E= 30°,AB=200,∴AE=2AB=400,BE=20022=-AB AE 3,因此,AD=AE-DE=400-1003≈227(m),BC=BE-CE=2003-200 ≈146(m).
评析:解两对角均为直角的四边形问题时,常需延长两对边,得到形如图10的图形. 总之,直角三角形的习题基本都是基本图形,熟记这些图形和他们的组合有利于解答综合习题,更有利于解答速度和自信心的提高。