八(下)数学:证明平行四边形的常用方法,总结全面,收藏复习
- 格式:docx
- 大小:15.25 KB
- 文档页数:2
平行四边形的性质有很多种证明方式,下面列举了四种常见的证明方式:
1. 同底异边平行四边形性质证明:
性质:若平行四边形的一对对边分别平行,则该平行四边形是平行四边形。
证明:利用平行线的性质,通过对应角相等或同位角相等的方式证明。
2. 同位角平行四边形性质证明:
性质:平行四边形的同位角相等。
证明:利用平行线的同位角性质,通过角对应或同位角相等的方式证明。
3. 对角线分割平行四边形性质证明:
性质:平行四边形的对角线互相等分,即平行四边形的一条对角线把它分成两个全等的三角形。
证明:利用三角形的全等条件,通过SAS、ASA等证明两个三角形全等。
4. 边角对应平行四边形性质证明:
性质:平行四边形的对应边成比例,对应角相等。
证明:利用对应角相等和平行线的性质,通过相似三角形的性质证明对应边成比例。
这些证明方式可以根据具体的平行四边形问题选择合适的方法。
在证明中,要善于利用平行线的性质和三角形的性质,灵活应用各种角关系和边关系。
鉴识平行四边形的基本方法怎样鉴识一个四边形是平行四边形呢 ?下面举例予以说明 .一、运用“两条对角线互相均分的四边形是平行四边形”判别例 1 如图 1,在平行四边形 ABCD 中,E、F 在对角线 AC 上,A D 且 AE =CF ,试说明四边形 DEBF 是平行四边形 .E解析:由于已知条件与对角线有关,故考虑运用“两条对角线互相均分的四边形是平行四边形”进行鉴识 .为此 ,需连接 BD.解:连接 BD 交 AC 于点 O.OF B C图 1由于四边形 ABCD 是平行四边形 ,因此 AO =CO,BO=DO . 又 AE= CF,因此 AO -AE=CO -CF ,即 EO= FO .因此四边形 DEBF 是平行四边形 .二、运用“两组对边分别相等的四边形是平行四边形”鉴识例 2 如图 2,是由九根完满同样的小木棒搭成的图形,请A F E你指出图中所有的平行四边形,并说明原由 .解析:设每根木棒的长为 1 个单位长度,则图中各四边形的B C D边长即可求得,故应试虑运用“两组对边分别相等的四边形是平图 2行四边形”进行鉴识 .解:设每根木棒的长为 1 个单位长度,则AF = BC=1, AB= FC=1,因此四边形 ABCF 是平行四边形 .同样可知四边形 FCDE 、四边形 ACDF 都是平行四四边形 .由于 AE=DB=2, AB=DE=1,因此四边形 ABDE 也是平行四边形.D C 三、运用“一组对边平行且相等的四边形是平行四边形”判F别E 例 3 如图 3,E、F 是四边形 ABCD 的对角线 AC 上的两A B点,AE=CF,DF =BE,DF ∥BE,试说明四边形 ABCD 是平行四边图 3形.解析: 题目给出的条件都不能够直接鉴识四边形 ABCD 是平行四边形,但仔细观察可知,由已知条件可得△ ADF ≌△CBE,由此即可获得鉴识平行四边形所需的“一组对边平行且相等”的条件 .解:由于 DF∥BE,因此∠ AFD =∠CEB .由于 AE =CF,因此 AE+ EF= CF+ EF ,即 AF= CE .又 DF = BE, 因此△ ADF ≌△CBE,因此 AD=BC,∠DAF =∠BCE,因此 AD ∥BC .因此四边形 ABCD 是平行四边形 .1四、运用 “两组对边分别平行的四边形是平行四边形 ”鉴识 例 4 如图 4,在平行四边形 ABCD 中,∠ DAB 、∠BCD 的均分线分别交 BC 、AD 边于点 E 、F ,则四边形 AECF 是平行 四边形吗?为什么?AF1 3D解析:由平行四边形的性质易得 AF ∥EC ,又题目中给出 的是有关角的条件,借助角的条件可获得平行线,故本题应试2B E C虑运用 “两组对边分别平行的四边形是平行四边形 ”进行鉴识 . 图 4解:四边形 AECF 是平行四边形 .原由:由于四边形 ABCD 是平行四边形,因此 AD ∥BC , ∠DAB =∠BCD ,因此 AF ∥EC .又由于∠ 1= 1 2∠DAB ,∠2= 1 2∠BCD ,因此∠ 1=∠2.由于 AD ∥BC ,因此∠ 2=∠3, 因此∠ 1=∠3,因此 AE ∥CF. 因此四边形 AECF 是平行四边形 .判断平行四边形的五种方法平行四边形的判断方法有: (1)证两组对边分别平行; (2)证两组对边分别相等; (3)证一组对边平行且相等; (4)证对 角线互相均分; (5)证两组对角分别相等。
(二)平行四边形的判定1、平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;边两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;角两组对角分别相等的四边形是平行四边形;对角线对角线互相平分的四边形是平行四边形;2、平行线之间的距离:如果两条直线互相平行,则其中一条直线上的任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离。
“平行线间距离处处相等”★对应训练知识点一、平行四边形的判定1、能识别四边形ABCD是平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2、如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形A. ∠∠B. ∠∠C. D.3、如图,在▱ABCD 中,E ,F 是对角线AC 上的两点且 ,在① ;② ;③ ;④四边形EBFD 为平行四边形;⑤ ;⑥ 这些结论中正确的是______.4、已知:如图,在▱BEDF 中,点A 、C 在对角线EF 所在的直线上,且 求证:四边形ABCD 是平行四边形.5、如图,D 是 的边AB 上一点, ,DE 交AC 于点F ,若 . 求证:四边形ADCE 是平行四边形;若 , ,求四边形ADCE 的面积.6、如图,□ABCD 中,BM 垂直AC 于M,DN 垂直AC 于N, 求证:四边形BMDN 是平行四边形。
CDNM7、在四边形ABCD 中,AB//CD,对角线AC 、BD 交于点O ,EF 过O 交AB 于E ,交CD 于F ,且OE=OF 。
求证,ABCD 是平行四边形。
8、如图,在□ABCD 中,对角线AC ,BD 交于点O ,直线EF 经过点O ,分别交DA ,BC 的延长线于点E ,F ,连接BE ,DF 。
求证:(1)AE=CF ;(2)四边形BEDF 是平行四边形。
八年级数学下册第六章重点知识点归纳总结八年级数学下册第六章重点知识点归纳总结第六章平行四边形1.正确理解定义〔1〕定义:两组对边分别平行的四边形是平行四边形。
〔2〕表示方法:用“〞表示平行四边形,例如:平行四边形ABCD记作,读作“平行四边形ABCD〞.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.〔1〕角:平行四边形的邻角互补,对角相等;〔2〕边:平行四边形两组对边分别平行且相等;〔3〕对角线:平行四边形的对角线相互平分;〔4〕面积:①;②平行四边形的对角线将四边形分成4个面积相等的三角形.※3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线相互平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形4.※几种特别四边形的有关概念〔1〕矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的根底,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.〔2〕菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的根底,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.〔3〕正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特别的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.〔4〕梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.〔5〕等腰梯形:是一种特别的梯形,它是两腰相等的梯形,特别梯形还有直角梯形.※5.几种特别四边形的有关性质〔1〕矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线相互平分且相等;④对称性:轴对称图形〔对边中点连线所在直线,2条〕.〔2〕菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线相互垂直平分且每条对角线平分每组对角;④对称性:轴对称图形〔对角线所在直线,2条〕.〔3〕正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线相互垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形〔4条〕.〔4〕等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形〔上下底中点所在直线〕.※6.几种特别四边形的判定方法〔1〕矩形的判定:满足以下条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等〔2〕菱形的判定:满足以下条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线相互垂直的平行四边形;③四条边都相等.〔3〕正方形的判定:满足以下条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线相互垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;〔4〕等腰梯形的判定:满足以下条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特别四边形的常用说理方法与解题思路分析〔1〕识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.〔2〕识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线相互垂直.③说明四边形ABCD的四条相等.〔3〕识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线相互垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.〔4〕识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等..5.几种特别四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;假设菱形的两对角线的长分别为a,b,则S菱形=.③设正方形ABCD的一边长为a,则S正方形=a2;假设正方形的对角线的长为a,则S正方形=.④设梯形ABCD的上底为a,下底为b,高为h,则S梯形=。
证明是平行四边形的方法
要证明一个四边形是平行四边形,可以通过以下几种方法:
1. 证明对边平行:如果四边形的对边都是平行的,那么它就是一个平行四边形。
可以使用向量、几何转化或相交线所成的对应角来证明对边平行。
2. 证明对角线等长和平分:如果四边形的对角线相等长并且平分彼此,那么它就是一个平行四边形。
可以使用距离公式和线段等长或直角来证明对角线等长和平分。
3. 证明对角线互相垂直:如果四边形的对角线互相垂直,那么它就是一个平行四边形。
可以使用向量、几何转化或角度的平分线来证明对角线互相垂直。
4. 证明边的比例:如果四边形的对边之间的长度比例相等,那么它就是一个平行四边形。
可以使用距离公式和线段比例来证明边的比例。
请注意,在进行证明时,需要使用较为严谨的逻辑推理和数学语言,并保证所使用的前提条件和定理的正确性。
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的外角和定理:。
推论:多边形的内角和定理:多边形的外角和定理:。
2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为___________。
二、平行四边形1.定义: 2.平行四边形的性质: 平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:(2)边:(3)对角线:(4)面积:①_________________; ②平行四边形的对角线将四边形分成_____个面积相等的三角形.3.平行四边形的判别方法三、矩形1. 矩形定义:2. 矩形性质3. 矩形的判定:4. 矩形的面积四、菱形 1. 菱形定义:2. 菱形性质3. 菱形的判定:.4. 菱形的面积五、正方形1. 正方形定义:它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。
2. 正方形性质3. 正方形的判定:4. 正方形的面积平行四边形练习2.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A .75º B.115º C.65º D.105ºA BDO C C DB A O 12(第2题图) 第3题图 第4题图B (第7题图)3.如图3,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于)是( )6.过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE=6,则DF 的长是 .7. 如图7,□ABCD 中,∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE∥BD,EF⊥BC ,DF=2,则EF= .8. 在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .9. 在□ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在□ABCD 所在的平面内,连接B ′D .若△AB ′D 是直角三角形,则BC 的长为.10.如图,已知:□ABCD 中,∠BCD 的平分线CE 交AD 于点E ,∠ABC 的平分线BG 交CE 于点F ,交AD 于点G .求证:AE=DG .11.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.C . 36D . 3613.如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D′的位置,经测量得∠EFB=65°,第12题图 第14题图 第5题图 第13题图 第15题图A B C DEF G14.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则的16.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1 D.S 1•S 3=S 2•S 417.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为 .18.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 或 秒时.△ABP 和△DCE 全等.19.已知,如图,在四边形ABCD 中,AB∥CD,E ,F 为对角线AC 上两点,且AE=CF ,DF∥BE,AC平分∠BAD.求证:四边形ABCD 为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .对角线AC ,BD 相交于点O ,OE⊥AB,OF⊥CB,垂足分别是E ,F .求证OE=OF .21. 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,第17题图 第16题图 第18题图然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22. 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.。
平行四边形的证明方法平行四边形是初中数学中的一个重要概念,它具有独特的性质和特点。
在几何学中,我们经常需要证明某个四边形是平行四边形,这就需要用到一些具体的证明方法。
接下来,我们将介绍平行四边形的证明方法,希望能够帮助大家更好地理解和掌握这一知识点。
首先,我们来看一种常见的证明方法,利用平行线的性质。
假设我们需要证明四边形ABCD是平行四边形,我们可以先找到一条与AD平行的直线l,并且在直线l上找到一点E,使得AE与BC重合。
接下来,我们可以利用平行线的性质,通过证明∠BAD=∠BCD和∠ABD=∠ACD来得出结论,即四边形ABCD是平行四边形。
这种证明方法利用了平行线的性质,简洁明了,是常用的证明平行四边形的方法之一。
除了利用平行线的性质外,我们还可以利用平行四边形的性质进行证明。
平行四边形具有对角线互相平分的性质,即对角线互相平分。
因此,我们可以通过证明对角线互相平分来得出四边形是平行四边形的结论。
例如,我们可以证明对角线AC和BD互相平分,即AC和BD的交点O是对角线的中点,从而得出四边形ABCD是平行四边形的结论。
这种证明方法直接利用了平行四边形的性质,具有一定的普遍性和灵活性。
此外,我们还可以利用平行四边形的定义进行证明。
根据平行四边形的定义,四边形的对边是平行的,因此我们可以通过证明四边形的对边是平行的来得出结论。
例如,我们可以证明AB∥CD和AD∥BC,从而得出四边形ABCD是平行四边形的结论。
这种证明方法直接利用了平行四边形的定义,简洁明了,是常用的证明方法之一。
综上所述,我们可以利用多种方法来证明平行四边形。
无论是利用平行线的性质,还是利用平行四边形的性质或者是利用平行四边形的定义,都可以得出相应的结论。
在实际问题中,我们可以根据具体情况选择合适的证明方法,灵活运用,从而更好地理解和掌握平行四边形的知识点。
通过本文的介绍,相信大家对平行四边形的证明方法有了更深入的了解。
希望大家能够在学习和应用中灵活运用这些方法,提高自己的数学水平。
期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
八(下)数学:证明平行四边形的常用方法,总结全面,收藏
复习
同学们好,在八年级数学下册第六单元,我们学习了平行四边形。
这一单元的知识,无论是在平时的考试中,还是在中考里,都属于重点内容之一。
特别是平行四边形的性质与判定,一定要作为重中之重去对待。
接下来老师就带大家一起来对这一块的知识进行一下复习:
1.平行四边形的性质:平行四边形两组对边分别平行且相等;平行四边形两组对角分别相等;平行四边形两条对角线互相平分
2.平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
接下来我们就一起来看看具体证明平行四边形的方法吧:
方法一:利用两组对边分别平行判定平行四边形
1
第1题相对比较基础,由四边形ABCD是平行四边形,可得AD//BC,AD=BC,则BF//DE,再结合BF=DE,可判定四边形BEDF是平行四边形,根据平行四边形性质可得BE//DF,即ME//FN。
接着由BF=DE,AD=BC,可证AE=CF,结合AE//CF,从而可证四边形AECF是平行四边形,最后根据平行四边形的性质可得FM//EN,从而可证四边形FMEN是平行四边形。
方法二:利用两组对边分别相等判定平行四边形
2
方法三:利用一组对边平行且相等来判定平行四边形
3
方法四:利用对角线互相平分判定平行四边形
4
以上就是老师为大家分享的平行四边形判定常用的四种方法。
要证明一个四边形是平行四边形,同学们一定先要将判定方法熟记于心,
才能根据具体的题目条件判断出使用的证明方法。
今天的内容分享就到这里,也欢迎大家下方留言或评论,来一起说说你们的想法或建议吧。