初二数学平行四边形7大常见题型+知识点+误区
- 格式:docx
- 大小:69.24 KB
- 文档页数:5
八年级下册数学平行四边形知识点平行四边形是我们在数学学习中会遇到的一个重要概念。
它具备一些特殊的性质和规律,对于我们解题和解析几何的能力有很大的帮助。
本文将详细介绍八年级下册数学平行四边形的知识点,包括定义、性质、判定方法及相关定理。
一、平行四边形的定义平行四边形是指具有两组对边平行的四边形。
四边形的两组对边分别是平行边,而对边之间的两组夹角分别是对顶角。
平行四边形的定义为:如果一个四边形的对边互相平行,则它是一个平行四边形。
平行四边形的对边长度相等,对角线互相等长。
二、平行四边形的性质平行四边形有一些独特的性质,掌握这些性质对于解题非常重要。
1. 对边性质:平行四边形的对边互相平行且相等长,即两对对边分别平行且长度相等。
2. 对角性质:平行四边形的对角线互相平分且相等长,即两条对角线分别相等长且平分。
3. 额角性质:平行四边形的一个内角与外角之和为180度,即内外角互为补角。
4. 同底角性质:平行四边形的两组对边夹角相等,即对等长的两边相对应的角相等。
5. 对顶角性质:平行四边形的两组对角之和为180度,即对等长的两个对角之和为180度。
三、平行四边形的判定方法对于给定的四边形,我们可以利用以下判定方法来确定它是否为平行四边形。
1. 判定方法一:如果一个四边形的对边长度相等,那么它是一个平行四边形。
2. 判定方法二:如果一个四边形的对角线互相相等,那么它是一个平行四边形。
3. 判定方法三:如果一个四边形的一个内角与外角之和为180度,那么它是一个平行四边形。
利用这些判定方法,我们可以轻松地确定一个四边形是否是平行四边形。
四、平行四边形的相关定理平行四边形还有一些重要的定理,它们进一步扩展了平行四边形的性质和应用。
1. 对角线分割定理:平行四边形的对角线把它分割成两个面积相等的三角形。
2. 对角线互补定理:平行四边形的对角线相交于一点,这个点将对角线分成互补角。
3. 等腰三角形定理:平行四边形的对边相等,则它是一个等腰三角形。
初中解析平行四边形存在的问题平行四边形是初中数学几何部分的基础内容,理解其性质和判定方法对于学生来说至关重要。
然而,许多学生在学习过程中可能会遇到一些问题。
本文将对初中解析平行四边形存在的主要问题进行梳理和解答。
一、平行四边形的基本概念理解不清问题:有些学生对平行四边形的定义理解不深,导致在解决问题时出现混淆。
解答:平行四边形是指具有两对对边分别平行的四边形。
要牢记这个定义,以便在后续的学习中能够准确判断。
二、判定平行四边形的定理掌握不牢问题:学生在判定一个四边形是否为平行四边形时,常常忘记相关定理。
解答:判定平行四边形的常用定理有以下几种:1.两对对边分别平行的四边形是平行四边形。
2.一组对边平行且相等的四边形是平行四边形。
3.两组对边分别相等的四边形是平行四边形。
4.对角线互相平分的四边形是平行四边形。
掌握这些定理,有助于快速准确地判定平行四边形。
三、平行四边形性质的应用不熟练问题:学生在解决与平行四边形相关的问题时,不能熟练运用其性质。
解答:平行四边形具有以下性质:1.对边平行且相等。
2.对角线互相平分。
3.对角线所分割的三角形全等。
4.邻角互补,对角相等。
熟练掌握这些性质,能够帮助我们更好地解决相关问题。
四、综合应用能力不足问题:学生在解决综合性较强的平行四边形问题时,常常感到无从下手。
解答:提高综合应用能力的方法有以下几点:1.熟练掌握基本概念、定理和性质。
2.多做练习题,培养解题思路。
3.学会分析题目,找出已知和未知之间的关系。
4.在解题过程中,注意运用几何图形的性质和定理。
通过以上方法,逐步提高自己的综合应用能力。
总结:解析平行四边形存在的问题,关键在于加强对基本概念、定理和性质的理解,以及提高综合应用能力。
稿子一
嘿,小伙伴们!今天咱们来聊聊八年级下册数学里的平行四边形那些事儿。
平行四边形啊,简单说就是两组对边分别平行的四边形。
这可是个很重要的图形哦!
它有好多特点呢。
比如说,对边平行且相等,这就意味着它的两组对边长度是一样的,而且互相平行,是不是很神奇?
还有哦,它的对角也是相等的。
想象一下,两个相对的角就像双胞胎一样,大小一样呢!
平行四边形的对角线也有小秘密,它们互相平分。
要判断一个四边形是不是平行四边形,也有办法。
如果两组对边分别相等,或者一组对边平行且相等,那它就是平行四边形啦。
平行四边形的面积计算也不难,就是底乘以高。
记住哦,这个高可一定要看准了。
在做题的时候,可一定要看清楚条件,别弄混了。
怎么样,平行四边形是不是还挺有趣的?
稿子二
亲爱的小伙伴们,咱们一起来瞅瞅八年级下册数学的平行四边形知识点呀!
平行四边形,这可是个常常出现的图形呢!
它的两组对边那是必须平行的,就像两条平行线永不相交一样。
而且这两组对边的长度还相等,是不是很整齐?
它的两组对角也是相等的哟,感觉就像天生一对对的。
再说对角线,互相平分这点可别忘啦。
判断是不是平行四边形,方法得记住呀。
要是两组对边平行,或者两组对边相等,那准没错。
还有呢,平行四边形的面积公式要牢记,底乘高就搞定。
做题的时候,得细心再细心。
比如有时候会让你证明一个图形是平行四边形,那就得根据条件,灵活运用那些判断方法。
平行四边形就像一个神秘的小城堡,里面藏着好多有趣的知识等我们去发现呢!怎么样,是不是觉得没那么难啦?。
平行四边形菱形矩形正方形的易错点平行四边形、菱形、矩形、正方形这些几何概念在初中数学中是非常重要的基础知识点。
然而,由于其相似的外观和特性,学生们常常容易混淆它们之间的区别和性质。
在这篇文章中,我们将介绍这些图形的易错点,以帮助学生们更好地理解它们。
首先,我们来看平行四边形。
平行四边形是一个具有两对平行边的四边形。
它的特点是对边平行且长度相等,相邻角的和为180°。
学生们常常容易将平行四边形和其他四边形混淆,例如矩形和菱形。
其次,菱形是一个特殊的平行四边形,具有以下特点:所有边都相等,对角线相互垂直且相等,对角线的交点称为菱心。
很多学生容易错误地认为菱形必定是矩形或正方形,这是一个常见的误解。
接下来,我们谈谈矩形。
矩形是一个具有四个直角的平行四边形,它的特点是所有角都是90°。
同样,学生们常常错把矩形当作正方形,因为它们都具备直角。
最后,我们来讨论正方形。
正方形是一个特殊的矩形,它具有以下特点:所有边相等,所有角都是90°,对角线相等且相互垂直。
尽管正方形的定义相对简单,但学生们在判断平行四边形、矩形和正方形时仍然容易出现困惑。
为了帮助学生们更好地区分这些图形,这里提供一些指导意义。
首先,要注意图形的边长和角度特征。
学生们可以通过测量边长和角度来判断一个图形到底是平行四边形、菱形、矩形还是正方形。
其次,要以图形的特征为准,而不是只凭直觉。
例如,如果一个图形具有所有边和角都相等的特点,那它就是一个正方形,而不是矩形或其他形状。
最后,多加练习和思考。
通过做一些练习题,学生们可以更好地理解和记忆这些图形的特性,避免出现混淆的情况。
总之,平行四边形、菱形、矩形和正方形是初中数学中非常基础的几何图形。
要正确理解和应用它们,学生们需要仔细观察它们的特点,并加以思考和实践。
希望这篇文章能帮助学生们更好地理解这些图形,并避免常见的易错点。
中考数学平行四边形的综合热点考点难点及答案解析一、平行四边形1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.求证:四边形AECF是菱形.【答案】见解析【解析】【分析】由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.【详解】证明:∵四边形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.3.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.4.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.【答案】(1)()22303y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为2117+. 【解析】试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-, 则()22303y x x x =-++<<(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-- 则22411724AD CA x x AC CB x x -=⇒=⇒=-(舍负) 易知∠ACE <90°,所以边BC 117+ 综上所述:边BC 的长为2117+.点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC273【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33,∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=93,S平行四边形ADBC=273.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.7.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.8.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=1AC,计算可得结论.2【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分线,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°﹣2∠F,∵BG=BF,∴∠GBF=180°﹣2∠F,∴∠GBF =∠CEF ,∴∠CEF =∠BCG ,∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,∴∠GCE =∠F ,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩Q , ∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE =EG ,∴∠GAE =∠AGE ,在Rt △ACD 中,N 为AC 的中点,∴DN =12AC =AN ,∠DAN =∠ADN , ∴∠ADN =∠AGE ,∴DN ∥GF ,在Rt △GDF 中,M 是FG 的中点, ∴DM =12FG =GM ,∠GDM =∠AGE , ∴∠GDM =∠DAN ,∴DM ∥AE ,∴四边形DMEN 是平行四边形, ∴EM =DN =12AC , ∵AC =AB =5, ∴EM =52. 【点睛】 本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.9.(1)如图1,将矩形ABCD 折叠,使BC 落在对角线BD 上,折痕为BE ,点C 落在点C '处,若42ADB =o ∠,则DBE ∠的度数为______o .(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】(1)如图1所示:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt △CDF 中,由勾股定理得:CF=22222016433DF CD ⎛⎫-=-= ⎪⎝⎭, ∴BF=BC-CF=9161133-=, 由翻折不变性可知,FB=FB′=113, ∴B′D=DF -FB′=2011333-=. 【点睛】 四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.10.在ABC V 中,ABC 90o ∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=o ,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD Q ,CF BD ⊥,CF AG ∴⊥,又D Q 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=Q , BD DF ∴=,()2证明:BD//GF Q ,BD FG =,∴四边形BDFG 为平行四边形,又BD DF =Q ,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC V 中,222(2x)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=,∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.11.问题探究(1)如图①,已知正方形ABCD 的边长为4.点M 和N 分别是边BC 、CD 上两点,且BM =CN ,连接AM 和BN ,交于点P .猜想AM 与BN 的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD 的边长为4.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM 和BN ,交于点P ,求△APB 周长的最大值;问题解决(3)如图③,AC 为边长为ABCD 的对角线,∠ABC =60°.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CA 向终点C 和A 运动.连接AM 和BN ,交于点P .求△APB 周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP ,BH=BP ,∴∠KBH=∠ABP ,∵BK=BA ,∴△KBH ≌△ABP ,∴HK=AP ,∴PA+PB=KH+PH=PK ,∴PK 的值最大时,△APB 的周长最大,∴当PK 是△ABK 外接圆的直径时,PK 的值最大,最大值为4,∴△PAB 的周长最大值=2+4.12.如图,在平面直角坐标系xOy 中,四边形OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2,点D 、E 、F 、G 分别为边OA 、AB 、BC 、CO 的中点,连结DE 、EF 、FG 、GD .(1)若点C 在y 轴的正半轴上,当点B 的坐标为(2,4)时,判断四边形DEFG 的形状,并说明理由.(2)若点C 在第二象限运动,且四边形DEFG 为菱形时,求点四边形OABC 对角线OB 长度的取值范围.(3)若在点C 的运动过程中,四边形DEFG 始终为正方形,当点C 从X 轴负半轴经过Y 轴正半轴,运动至X 轴正半轴时,直接写出点B 的运动路径长.【答案】(1)正方形(2)256OB <<(3)2π【解析】分析:(1)连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25C 在x 轴上时,AC=6, 故可得结论;(3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)256OB <如图2,由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25C 在x 轴上时,AC=6, ∴256OB < ;(3)2π.如图3,当四边形DEFG 是正方形时,OB ⊥AC ,且OB=AC ,构造△OBE ≌△ACO ,可得B 点在以E (0,4)为圆心,2为半径的圆上运动.所以当C点从x轴负半轴到正半轴运动时,B点的运动路径为2 .图1 图2 图3点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.13.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.14.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.15.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.【解析】试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得:,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M 在EP 的延长线上时,, 由(3),可得∠AGO=∠PGC=60°, ∴EP 与AB 的交点M ,满足AG=MG , ∵A 点的横坐标是0,G 点横坐标为,∴M 的横坐标是2,纵坐标是3, ∴点M 坐标为(2,3).综上,可得 点M 坐标为(0,﹣3)或(2,3).考点:几何变换综合题.。
平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。
平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。
矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。
(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。
八年级初二数学 平行四边形知识归纳总结及解析一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a b -(a 、b 为正整数),则+a b 的值为( )A .10B .11C .12D .132.如图,菱形ABCD 中,4, 120AB ABC =∠=,点E 是边AB 上一点,占F 在BC 上,下列选项中不正确的是( )A .若4AE CF +=,则ADE BDF ∆∆≌B .若, DF AD DE CD ⊥⊥, 则23EF =C .若DEB DFC ∠=∠,则BEF ∆的周长最小值为423+D .若DE DF =,则60ADE FDC ︒∠+∠=3.如图,正方形ABCD 的边长为2a ,点E 从点A 出发沿着线段AD 向点D 运动(不与点A 、D 重合),同时点F 从点D 出发沿着线段DC 向点C 运动(不与点D 、C 重合),点E 与点F 的运动速度相同.BE 与AF 相交于点G ,H 为BF 中点,则有下列结论:①∠BGF 是定值;②BF 平分∠CBE ;③当E 运动到AD 中点时,GH=52a ;④当C △AGB = (2)6a +时,S 四边形GEDF =16a 2 ,其中正确的是( )A .①③B .①②③C .①③④D .①④4.如图,四边形,ABCD AD 与BC 不平行,AB CD =.,AC BD 为四边形ABCD 的对角线,,,E F ,G H 分别是,,,BD BC AC AD 的中点下列结论:①EG FH ⊥;②四边形EFGH 是矩形;③HF 平分;EHG ∠④()1 2EG BC AD =-;⑤四边形EFGH 是菱形.其中正确的个数是 ( )A .1个B .2个C .3个D .4个5.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .26.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PD =2,下列结论:①EB ⊥ED ;②∠AEB =135°;③S 正方形ABCD =5+2;④PB =2;其中正确结论的序号是( )A .①③④B .②③④C .①②④D .①②③7.如图,正方形ABCD (四边相等、四内角相等)中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE =FC =4,BE =DF =3,则EF 的平方为( )A .2B .125C .3D .48.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .222-B .222+C .252-D .22+9.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )A .3B .6C 37D 17 10.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题11.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.12.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.13.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.14.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.15.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.18.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.19.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.22.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.23.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE .(1)如图1,若点E 在对角线BD 上,过点A 作AH BD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度;(2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MN CF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌;②ENG ∆是等边三角形.24.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.25.如图,在平行四边形ABCD 中,AB ⊥AC ,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC ,AD 于点E ,F ,连接BF .(1)如图1,在旋转的过程中,求证:OE =OF ;(2)如图2,当旋转至90°时,判断四边形ABEF 的形状,并证明你的结论; (3)若AB =1,BC =5,且BF =DF ,求旋转角度α的大小.26.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.27.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).28.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DC AE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O . (1)求证:EF DA ⊥.(2)若4,3BC AD ==EF 的长.29.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
第1页共1页
平行四边形的性质易错点剖析
一、考虑不全面致错
例1 已知平行四边形的一角平分线分对边为3和4两部分,求
该平行四边形的周长.
错解:如图1,已知四边形ABCD 是平行四边形,所以AB ∥CD.
所以∠1=∠3.
因为DE 是∠ADC 的平分线,所以∠1=∠2.所以∠2=∠3.所以
AD=AE=3.
由题意,知AB=7,所以平行四边形的周长为20.
剖析:本题没有图形,所以应分两种情况讨论:①当AE=3时,AB=7,AD=3;②当AE=4时,AB=AE+BE=4+3=7,AD=4.
正解:____________________________________.
二、推理没有依据致错
例2 如图2,在□ABCD 中,AC 与BD 交于点O ,OF ⊥AD 于
点F ,OE ⊥BC 于点E ,求证:OE=OF.
错证:因为四边形ABCD 是平行四边形,所以OA=OC.
因为OF ⊥AD ,OE ⊥BC ,所以∠AFO=∠CEO=90°.
因为∠AOF=∠COE ,所以△AOF ≌△COE.所以OE=OF.
剖析:错解中利用了∠AOF=∠COE ,默认了E ,O ,F 三点共线,而已知条件中并没有这个条件.
证明:____________________________________.
参考答案:
例1 20或22.
例2 因为四边形ABCD 是平行四边形,所以OA=OC ,AD//BC.所以∠FAO=∠ECO. 因为OF ⊥AD ,OE ⊥BC ,所以∠AFO=∠CEO=90°.所以△AOF ≌△COE (AAS ).所以OE=OF. 图 1
图2。
平行四边形易错点总结《平行四边形易错点总结,教你如何不“翻车”》嘿,家人们!今天咱就来聊聊平行四边形那些易错点。
一说到这个啊,我那是感慨万千,谁还没在平行四边形这里翻过车呢,是不是?不过没关系,咱今天就好好总结总结,争取以后不犯同样的错!先来说说第一个易错点,那就是对平行四边形的判定定理记得不清不楚。
别小看这个,好多人就是在这上面栽跟头。
每次做题的时候,脑子就跟浆糊似的,一会儿觉得这个是平行四边形,一会儿又觉得好像不太对。
就好像你面前有好多条路,你却不知道哪条是正确的,结果就瞎走,然后就掉坑里啦!比如看到两组对边分别相等,就迫不及待地喊“平行四边形”,结果人家还有其他条件没满足呢!所以啊,咱得把那些判定定理牢牢记住,可别记错喽,不然就像没带地图出门,那肯定迷路呀!再说说这个平行四边形的性质。
嘿,你别说,这个也容易犯错呢!比如说平行四边形的对角线互相平分,好多人一激动就给记成了相等!哎呀呀,这可差得远了去了。
就好比你说今天吃了面条,结果别人一听以为你吃了山珍海味,完全不是一回事儿嘛!所以啊,咱得把这些性质给记准喽,别闹笑话。
还有啊,做题的时候一不注意就忘了平行四边形的对边是平行且相等的。
经常会有那种情况,题目问你某个线段的长度,结果你在那苦思冥想半天,就是没想到用对边相等这个性质。
这就好比你有一把钥匙就在你眼前,你却不知道去拿,还在那找钥匙呢!这不是傻嘛。
然后就是计算问题啦。
平行四边形的面积计算也容易出错。
有时候一马虎,把底和高给弄混了。
这就像是你本来要去东边买酱油,结果跑到西边去买醋了,那能对吗?所以啊,做题的时候一定要仔细仔细再仔细,可别马大哈似的。
哎呀,说了这么多易错点,是不是感觉平行四边形还挺难搞的?其实啊,只要咱多做题,多总结,把那些容易犯的错都记住,下次遇到的时候就不会再犯啦。
就像那句话说的,“吃一堑,长一智”嘛!总之呢,平行四边形虽然有点小麻烦,但只要咱认真对待,肯定能搞定它。
相信自己,咱都是最棒的!下次再遇到平行四边形,可别再“翻车”啦!加油吧,各位!。
对初二数学平行四边形的判定题目常见的几种错误分析温江踏水学校 胡晓娟题目:如下图,ABCD 中,AE 、CF 分别平分∠DAC 、∠BCA ,则四边形BF=DE 吗?为什么?错误一:学生将平行四边形的对角线互相平分的性质没有弄清楚。
属于基本概念没有掌握。
认为只要过对角线交点的线段就会被平分。
解:四边形AFCE 是平行四边形,理由是:设AC 、BD 相交于点O∵四边形ABCD 是平行四边形,∴AO=CO, FO=EO ,BO=DO∴BO-FO=DO-EO既BF=ED错误二:将内错角概念弄混淆。
将∠BAF 、∠DCE 看做是平行线AF 与CE 的内错角。
解:四边形AFCE 是平行四边形,理由是:设AC 、BD 相交于点O∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC =∠BCA∵AE 、CF 分别平分∠DAC 、∠BCA∴∠EAO =21∠DAC , ∠FCO =21∠BCA ∴∠EAO =∠FCO ,∴AE ∥CF在△AOE 和△COF 中,∠EAO =∠FCO ,∠AOE =∠COF ,OA =OC∴△AOE ≌△COF ,∴AE =CF又∵AE ∥CF∴四边形AFCE 是平行四边形.∴AF//CE 且AF=CE∴∠BAF =∠ECD在△ABF 和△DCE 中,AB=CD ,∠BAF =∠ECD ,AF=CE∴△ABF ≌△DCE ,∴BF=DE错误三:不会审题,甚至是对于学几何还没有入格。
将题目中原有的条件置之不理。
自己又凭空添一些条件。
而这类学生我却也是没有了解他们的错误原因透彻过。
这是在班上有那么几位学生,没有入门。
在遇到条件多,步骤复杂的前提下,就这样的错误、所以,在这里选择一个例子写出来。
解:四边形AFCE 是平行四边形,理由是:设AC 、BD 相交于点O∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC =∠BCA∵AE 、CF 分别平分∠DAC 、∠BCA∴∠EAO =21∠DAC , ∠FCO =21∠BCA ∴∠EAO =∠FCO ,∴AE ∥CF又∵AF ∥CE∴四边形AFCE 是平行四边形.∴FO=EO又∵四边形ABCD 是平行四边形∴BO=DO∴BO-FO=DO-EO既BF=ED正确答案:解:四边形AFCE 是平行四边形,理由是:设AC 、BD 相交于点O∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC =∠BCA∵AE 、CF 分别平分∠DAC 、∠BCA∴∠EAO =21∠DAC , ∠FCO =21∠BCA ∴∠EAO =∠FCO ,∴AE ∥CF在△AOE 和△COF 中,∠EAO =∠FCO ,∠AOE =∠COF ,OA =OC∴△AOE ≌△COF ,∴AE =CF又∵AE ∥CF∴四边形AFCE 是平行四边形.∴FO=EO又∵四边形ABCD 是平行四边形∴BO=DO∴BO-FO=DO-EO 既BF=ED。
决胜中考:关于平行四边形的难点以及易混淆点的总结平行四边形以及特殊的平行四边形是初中几何的难点和易混淆点,很多考生及家长私信我,告知很多学生在学习这部分知识时,将图形的定义、性质、判定混为一谈,失误率极高,我将这部分知识系统梳理出来,分享给各位朋友,希望能帮助广大中考生们。
一.平行四边形1.平行四边形:有两组对边分别平行的四边形。
2.平行四边形的性质定理:性质定理一:平行四边形的对边相等。
性质定理二:平行四边形的对角相等。
性质定理三:平行四边形的对角线互相平分。
3.平行四边形的面积等于底乘以高。
4.平行四边形的判定定理:判定定理一:两组对角分别相等的四边形是平行四边形。
判定定理二:两组对边分别相等的四边形是平行四边形。
判定定理三:对角线互相平分的四边形是平行四边形。
判定定理四:一组对边平行且相等的四边形是平行四边形。
5.三角形的中位线:连接三角形两边的中点的线段叫做三角形的中位线。
(在一个三角形中,中位线有三条)6.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
注意:三角形的中位线定理的结论有两个①数量关系:即中位线等于第三边的一半。
②位置关系:即中位线与第三边平行。
六.解题技巧:1.平行四边形的两条对角线把平行四边形分成四个三角形,三角形的周长的关系就是相邻两边的关系。
2.四边形是否形成问题应转化成三角形问题,利用三角形的两边之和大于第三边,两边之差小于第三边来论证。
3.平行四边形的对角线把其面积分成相等的两部分。
4.当已知四边形的对边相等(或平行)时,往往证明这两边平行(或相等),利用一组对边平行且相等的四边形是平行四边形来解决问题。
七.证明证明某个图形是平行四边形的解题思路有五种:①先证明某图形是四边形,再证明它的两组分别对边相等,即可证明这个图形是平行四边形。
②先证明某图形是四边形,再证明它的两组分别对角相等,即可证明这个图形是平行四边形。
③先证明某图形是四边形,再证明它的对角线互相平分,即可证明这个图形是平行四边形。
平行四边形易错题解析
平行四边形是一种多边形,它由四条平行的边组成,两条对边的长度相等,而另外两条对边的长度也相等。
平行四边形是学习数学的基本形状之一,它只使用两个基本定理来解决问题:对边平行定理和对角线裁剪定理。
尽管这些基本定理是很简单的,但很多高中生仍然会遇到一些难懂的平行四边形题目。
以下是一些常见的平行四边形题目和其解决方案:
1.如何确定一个边为原始边?
解决方案:要确定一条边为原始边,可以使用对边平行定理。
这个定理认为:如果两条对边平行,那么它们的长度也相等。
因此,如果我们可以确定出两条对边的长度相等,那么这两条边就是原始边。
2.如何确定一个边为对角线?
解决方案:要确定一条边为对角线,可以使用对角线裁剪定理。
这个定理认为:如果一个四边形的两条对边平行,那么它的直角角度为90度。
因此,如果我们可以确定出其中一个角为90度,就可以确定出它是对角线。
3.如何确定面积?
解决方案:要计算一个平行四边形的面积,可以使用公式S=a×b,其中a是对边的长度,b是对角线的长度。
因此,如果我们已经确定了这两个值,就可以计算出一个平行四边形的面积。
以上就是关于常见平行四边形题目及其解决方案的介绍。
平行四边形是一种复杂的图形,但它只使用两个基本定理即可解决。
因此,
学习平行四边形的规则是理解数学的基础,也是一项重要的学习知识。
初中几何数学平行四边形复习考点详解
初中几何数学平行四边形复习考点详解
导语:家长朋友们一定要注意孩子的学习问题。
以下是小编为大家精心整理的初中几何数学平行四边形复习考点详解,欢迎大家参考!
1、平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。
(2)平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。
(3)平行四边形的'对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S平行四边形=底边长×高=ah。
初二数学平行四边形7大常见题型+知识点+误区
平行四边形是初二数学必考内容,甚至于中考卷里也时常出现它的身影,而且所占分值还不少。
为此,特意给大家整理了初二数学下册必考之【平行四边形】,7大常见题型+知识点+误区!
平行四边形
定义:有两组对边分别平行的四边形是平行四边形。
表示:平行四边形用符号“□”来表示。
平行四边形性质:
平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分
平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。
平行四边形的判定:
两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
从对角线看:对角钱互相平分的四边形是平行四边形
从角看:两组对角分别相等的四边形是平行四边形。
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。
7大常见题型分析
(1)利用平行四边形的性质,求角度、线段长、周长等
例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数
分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设
∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。
例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。
分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。
也可以借助中位线定理解决。
解:∵四边形ABCD和四边形ADEF均为平行四边形,
∴AD=BC,AD=FE,AD∥BE,AF∥DE,
∴AD=BC=FE=10,
∵AF∥DE,AO=FO,
∴CF=FE=10,
∴CE=10+10=20
(2)求线段(边或对角线)的取值范围
例题3:在平行四边形ABCD中,AB=4,BC=6,对角线AC、
BD相交于点O,则OA的取值范围是多少?
分析:由AB=4,BC=6,利用三角形的三边关系,即可求得2<AC<10,根据平行四边形的对角线互相平分,得到OA的取值范围,为1<OA<5.
(3)利用平行四边形的性质证明角相等、边相等和直线平行
例题4:如图,已知E,F分别是ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.
分析:由四边形ABCD为平行四边形可得:AB=CD,AB∥CD。
由已知条件DE=BF,根据等边减等边可得AF=CE,由此可证明四边形AECF为平行四边形,从而得到AE∥CF。
通过此题可知,平行四边形又为我们证明直线平行增加了一种方法。
证明:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD
又∵DE=BF,∴AB-BF=CD-DE,即AF=CE
∴四边形AECF为平行四边形,∴AE∥CF
例题5:如图,在ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE=∠ADC.若DE=AD,求证:DF=CE.
分析:根据平行四边形的性质得到∠C+∠B=180°,∠ADF=∠DEC,根据题意得到∠AFD=∠C,根据全等三角形的判定和性质定理证明即可
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AB∥CD,AD∥BC,
∴∠C+∠B=180°,∠ADF=∠DEC,
∵∠AFD+∠AFE=180°,∠AFE=∠ADC,
∴∠AFD=∠C,
又∵AD=DE,∴△AFD≌△DC E(AAS),∴DF=CE.
(4)利用判定定理证明四边形为平行四边形
例题6:如图,在ABCD中,点E、F在BD上,且BE=AB,DF=CD.求证:四边形AECF是平行四边形.
分析:根据平行四边形的性质可得AB=CD,再加上BE=AB,DF=CD,可以得到BE=DF。
平行四边形的对角线互相平分,连接AC 交BD于点0,得到OA=OC,OB=OD,等线段减等线段得到OE=OF,根据对角线互相平分的四边形为平行四边形可证明到结论。
证明:连接AC交BD于O,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,AB=CD,
∵BE=AB,DF=CD,
∴BE=DF,∴BO-BE=OD-DF,即OE=OF,
∴四边形AECF是平行四边形.
例题7:如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF 分别交CD、AB于点M、N.求证:四边形CMAN是平行四边形
证明:∵AE⊥BD,CF⊥BD,
∴AM∥CN,
∵四边形ABCD是平行四边形,∴CM∥AN
∴四边形CMAN是平行四边形
误区
(1)平行四边形的对角线是互相平分,不相等,也不垂直,也不会平分一组对角;
(2)当满足一组对边平行且相等时,可证明四边形为平行四边形,当一组对边平行,另外一组对边相等,不能证明该四边形是平行四边形,该四边形可能为梯形;
(3)平行四边形对角相等,邻角互补,对角不一定互补;
(4)平行四边形的邻边没有什么特殊的性质,邻边之和的两倍等于该平行四边形的周长;证明平行四边形的方法较多,因此在证明一个四边形是平行四边形时选对方法很重要,同一道题目选择不同的方法,证明的难易程度、繁琐程度会相差很大。