土中应力计算
- 格式:doc
- 大小:1.16 MB
- 文档页数:12
土体中的应力计算在土体中,应力是指单位面积上的力的作用,可以分为垂直应力和水平应力。
垂直应力是指垂直于土体中其中一点的力的作用,通常用σ表示,单位为N/m²或Pa;水平应力是指与土体中其中一点切向的力的作用,通常用τ表示,单位为N/m²或Pa。
在计算土体中的应力时,需要先确定作用力的大小和方向。
作用力可以分为自重应力、表面荷载和边界条件所引起的应力。
自重应力是由土体自身的重力引起的应力,可以通过土体的密度和重力加速度来计算;表面荷载是由于外界施加在土体上的荷载,可以通过荷载的大小和分布情况来计算;边界条件所引起的应力是由于土体边界的约束而产生的应力,可以根据边界条件的空间限制来计算。
计算垂直应力时,需要将作用力作用在单位面积上,即垂直应力等于作用力的大小除以土体的面积。
例如,对于自重应力来说,垂直应力可以通过土体的密度乘以重力加速度来计算。
而对于表面荷载来说,垂直应力可以通过荷载的大小和分布情况来计算。
计算水平应力时,需要考虑土体的弹性特性。
根据弹性理论,水平应力的大小与垂直应力的大小和土体的弹性模量有关。
弹性模量是反映土体抵抗应力的能力的指标,可以通过试验或经验公式估算得到。
一般来说,弹性模量越大,土体的抵抗应力能力越强,水平应力的大小也越大。
在应力计算时,还需要考虑土体的变形特性。
土体的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在荷载作用后,土体恢复到无荷载状态时的变形,是可逆的,可以通过应力和应变之间的线性关系进行计算。
而塑性变形是指在荷载作用后,土体不完全恢复到无荷载状态时的变形,是不可逆的,需要通过试验或经验公式来确定。
总之,土体中的应力计算是根据应力平衡原理和弹性力学原理进行的,需要考虑土体的类型、作用力的大小和方向以及土体的弹性和变形特性。
通过合理的应力计算,可以为土壤工程和土木工程的设计和施工提供基础数据。
土体中的应力计算土体中的应力计算是土力学中的重要内容之一,应力是描述土体内部单元之间相互作用的物理量,应力计算可以帮助工程师了解土体行为,并为工程设计和分析提供依据。
本文将从应力的概念、计算方法和应力分析的应用等方面进行详细探讨。
一、应力的概念应力是描述物体内部受力情况的物理量,是单位面积上的力,通常用σ表示。
根据应力的作用方向,可以将应力分为正应力和剪应力两种类型。
正应力是指与应力面垂直的力,剪应力是指与应力面平行的力。
在土体中,通常将正应力分为垂直应力(垂直于土体中心轴线的应力)和水平应力(与土体中心轴线平行的应力)。
二、应力的计算方法土体中应力的计算可以通过静力平衡方程、弹性理论以及实验和数值模拟等方法进行。
1.静力平衡方程法:利用牛顿第二定律和力学平衡原理,根据土体受力平衡的条件来计算应力。
对于均匀土体来说,可以根据土体所受垂直和水平外荷载以及土体自重的大小来计算应力。
2.弹性理论:应力与应变之间的关系可以用弹性理论来描述。
在土壤力学中,常用的是弹性模量和泊松比来表示土体的弹性性质。
通过应变测量和加载试验,可以计算得到土体的应力应变关系。
3.实验和数值模拟法:通过设计合适的实验和进行数值模拟,可以直接或间接地测量土体中的应力。
例如,可以通过土钉或应变计等仪器来测量土体中的应力分布情况。
同时,通过数值模拟方法如有限元分析等,可以模拟土体中复杂的应力场分布。
三、应力分析的应用应力分析是土力学中的关键研究内容,它可以应用于工程设计和分析等方面。
1.基础工程设计:在土力学中,应力分析是基础工程设计的基础。
通过计算土体中的应力分布情况,可以确定土体中的强度和稳定性,从而指导基础工程的设计和施工。
2.土体力学性质研究:通过对土体中应力的分析,可以研究土体的力学性质和变形规律。
这对于土壤改良和地震灾害分析等方面具有重要意义。
3.岩土工程应用:应力分析可以应用于岩土工程相关的设计和分析。
例如,通过分析土体中的应力分布,可以确定边坡的稳定性和墙体结构的受力情况,从而指导工程设计和施工。
土体中的应力计算1.格令法格令法是土力学中常用的一种计算土体中应力的方法,它基于土体中的格令应力体系。
格令应力体系是指土体中各个方向上的应力分量。
常见的格令应力体系包括水平应力(σ_h),垂直应力(σ_v)和剪应力(τ)。
格令法计算土体中应力的基本过程如下:(1)确定水平应力(σ_h):水平应力是以土体排列方向为基准的应力分量,通过土体中的外加荷载和支持条件来计算。
常见的计算方法有:a.一维法:当土体受到轴对称荷载时,可以使用一维法计算水平应力。
其中σ_h=P/A,其中P为荷载大小,A为土体的横截面积。
b.二维法:当土体受到平面荷载时,可以使用二维法计算水平应力。
其中σ_h=P/A,P为荷载大小,A为土体的接触面积。
c.三维法:当土体受到体力荷载时,可以使用三维法计算水平应力。
其中σ_h=F/A,F为荷载大小,A为土体的接触面积。
(2)确定垂直应力(σ_v):垂直应力是指土体中垂直于排列方向的应力分量。
垂直应力的计算方法如下:a.压力传递原理:假设土体为均质、无阻性及无滑动的情况下,垂直应力可通过压力传递原理计算。
垂直应力由上层土体通过土粒间的压缩传递给下层土体,下层土体又继续传递给更下层土体,以此类推。
b.常用公式:经验公式计算垂直应力可使用τ=kσ_v,其中k为土体的地层系数,可以根据实际情况选择合适的数值。
(3)确定剪应力(τ):剪应力是土体中沿一定面域内的剪力分量。
剪应力的计算方法如下:a.剪切试验:通过进行剪切试验,可以直接测得土体中的剪应力。
b.运动原理:当土体处于平衡状态时,土粒间的剪应力满足平衡条件。
可以根据平衡条件求解土体中剪应力的大小和方向。
2.应变法应变法是另一种常用的计算土体中应力的方法,它基于土体中的应变体系。
应变是指在外力作用下,土体中产生的形变量。
常见的应变体系包括线性应变和体积应变。
应变法计算土体中应力的基本过程如下:(1)确定线性应变(ε):线性应变是土体中只考虑线性部分的应变。
第2章 土中 应 力 计 算自重应力:由土体重力引起的应力附加应力:由于建筑物荷载在土中引起的应力 要求:正确理解自重应力、附加应力、基底压力、基底附加压力的概念及影响因素。
掌握各种应力的计算公式、计算方法及分布规律。
第一节 土中应力状态法向应力以压应力为正,拉应力为负;剪应力以逆时针方向为正,顺时针方向为负。
σx 、σy 、σz ,τxy=τyx、τyz=τzy、τzx=τxz,第二节 土中的自重应力由土体重力引起的应力称为自重应力。
一般是自土体形成之日起就产生于土中。
一、均质地基土的自重应力土体在自身重力作用下任一竖直切面均是对称面,切面上都不存在切应力。
因此只有竖向自重应力σc z ,其值等于单位面积上土柱体的重力W 。
深度z 处土的自重应力为: 式中 γ为土的重度,kN/m 3 ;F 为土柱体的截面积m 2。
σcz 的分布:随深度z 线性增加,呈三角形分布。
二、成层地基土的自重应力地基土通常为成层土。
当地基为成层土体时,设各土层的厚度为h i ,重度为γi ,则在深度z 处土的自重应力计算公式地下水位以上的土层取天然重度γ,地下水位以下的土层取有效重度γ`( γ` = γsat- γw) γw=10kN/m3 三、土层中有不透水层时的自重应力在地下水位以下,如果埋藏有不透水层(坚硬的粘土、基岩),该层面处的自重应力应按上覆土层的水土总重计算。
四、水平向自重应力式中K 0为侧压力系数,也称静止土压力系数例题 2-1某土层及其物理性质指标如图所示,地下水位在地表下1.0 m ,计算土中自重应力并绘出分布a 点:b 点:c 点:d 点:例题 2-2某地基土层的地质剖面如图所示,计算各土层的自重应力并绘出分布 50m 处:48m 处:45m 顶:45m 不透水层面:43m 处:【课堂讨论】• 土的性质对自重应力有何影响?• 地下水位的升降是否会引起土中自重应力的变化?如何影响?作业1、20==h cz γσkpa h cz 6.1816.1811=⨯==γσkpa h h cz 4.271)108.18(6.182211=⨯-+=+=γγσkpah h h cz 6.523)104.18(4.27332211=⨯-+=++=γγγσ0==h cz γσkpah cz 3621811=⨯==γσh h cz 5.613)105.18(362211=⨯-+=+=γγσkpah h h ww cz 5.913105.612211=⨯+=++=γγγσkpah h h h w w cz 5.1292195.91332211=⨯+=+++=γγγγσ第二节 基底压力的简化计算建筑物荷载通过基础传递给地基的压力称基底压力,又称地基反力。
一、基底压力的分布基底压力的分布规律主要取决于基础的刚度和地基的变形条件。
对柔性基础,地基反力分布与上部荷载分布基本相同,如由土筑成的路堤,其自重引起的地基反力分布与路堤断面形状相同。
对刚性基础,在外荷载作用下,开始时地基反力呈马鞍形分布;荷载较大时,边缘地基土产生塑性变形,边缘地基反力不再增加,使地基反力重新分布而呈抛物线分布,若外荷载继续增大,则地基反力会继续发展呈钟形分布。
(a )理想柔性基础 (b )路堤下地基反力分布(a )马鞍形 (b )抛物线形 (c)钟形二、基底压力的简化计算实用上,通常将基底压力假设为线性分布情况按下列公式进行简化计算:中心荷载作用下的基底压力:偏心荷载作用下的基底压力:F --荷载效应标准组合时,上部结构传至基础顶面的竖向力值.G -基础自重及回填土总重, 式中l ,b 为基底平面的长边与短边尺寸。
在l 方向偏心.偏心荷载作用下的基底压力:1)当 e <b/6 时,基底压力呈梯形分布,p min >0; 2)当e =b/6 时,基底压力呈三角形分布,p min =0;3)e >b/6 时,即荷载作用点在截面核心外,p min <0;基底地基反力出现拉力。
此时基底与地基土局部脱开,使基底压力重新分布。
根据偏心荷载与基底压力的平衡条件,得p max 为: a 为竖向荷载作用点至最大压力边缘的距离a=b/2-e(a )中心荷载下 (b )偏心荷载e<b /6时 (c )偏心荷载e=b /6时(d )偏心荷载e>b /6时三、基底附加压力• 基础通常是埋置在天然地面下一定深度的。
由于天然土层在自重作用下的变形已经完成,故只有超出基底处原有自重应力的那部分应力才使地基产生附加变形,使地基产生附加变形的基底压力称为基底附加压力p 0。
因此,基底附加压力是上部结构和基础传到基底压力与基底处原先存在于土中的自重应力之差,按下式计算:d-从天然地面算起的基础埋深。
例2-3:已知某基础的底面尺寸为3m ×2m ,基底中心处的偏心力矩Mk =147KN.m ,竖向力F k +G k =490kN,求基底压力。
若已知基础埋深2.0米,γ=16kN/m3,计算基底附加压力。
解:3G Gm /kN 20hA G ==γγd p p p cz 0γσ-=-=m 5.06l m 3.010********G F M e 33k k k =<=⨯⨯=+=2k k min k max k m /kN 67.3267.130)33.061(23490)b e 61(bl G F p p =⨯±⨯=±+=2min k min 02max k max 0m /kN 67.021667.32d p p m /kN 67.9821667.130d p p =⨯-=-==⨯-=-=γγ例2―4 某柱基础,作用在设计地面处的柱荷载、基础尺寸、埋深及地基条件如图示,计算基底压力和基底附加压力。
解=G Ad G γkN 4833.25.30.320=⨯⨯⨯=GF Me +=∑m 169.048310503.267105=+⨯+=m583.065.36b ==<kpa 7.103kpa 3.188)5.3169.061(0.35.34831050)b e 61(bl G F p pmin max =⨯±⨯+=±+=3212211m /kN 69.168.05.18.0185.116h h h h =+⨯+⨯=+⨯+⨯=γγγ2min min 02max max 0m /kN 3.653.269.167.103d p p m /kN 9.1493.269.163.188d p p =⨯-=-==⨯-=-=γγ第四节 土 中 附 加 应 力1、土中附加应力是由建筑物荷载在地基内引起的应力。
2、由基底附加应力引起的地基中任一点的附加应力如何确定? 在计算地基中的附加应力时,一般均假定: ①基础刚度为零,即基底作用的是柔性荷载; ②地基是连续、均匀、各向同性的线性变形体。
③地基是半无限空间弹性体 采用弹性力学解答。
一、竖向集中力P 作用下的地基附加应力以集中力P 的作用点为原点,以P 的作用线为Z 轴建立起三轴坐标系(Oxyz),则Mα—集中力作用下土中附加应力系数,可由表查得。
附加应力在地基中的分布规律如图集中力在地基中引起的附加应力是向深部、四周传播. 1.在集中力F作用线上,σz 随深度增加而递减; 2、在地面下水平面上,σz 向两侧逐渐减小;3、在r >0的竖直线上,随z的增加,σz 从小增大,至一定深度后又随z的增加而变小;4、距离地面越远,附加应力分布的范围越广当地基表面作用有几个集中力时,可分别算出各集中力在地基中引起的附加应力,然后根据应力叠加原理求出附加应力的总和。
在实际工程中,建筑物荷载都是通过一定尺寸的基础传递给地基的。
对于不同的基础形状和基础底面的压力分布,都可利用布氏公式,通过积分法或等代荷载法求得地基中任意点的附加应力值σz。
具体求解时又分为空间和平面问题的附加应力。
若基础的长度与宽度之比l/b<10时,地基中的附加应力计算问题属于空间问题。
二、矩形面积受均布荷载作用下的附加应力计算角点O下z深度处的附加应力σz可按下式计算。
式中αc—均布垂直荷载作用下矩形基底角点下的竖向附加应力分布系数,由l/b、z/b查表得到,l恒为基础长边,b为基础短边。
对于均布矩形荷载下的附加应力计算点不位于角点下的情况,可利用上式以角点法求得。
角点法:通过O点将荷载面分成若干个矩形面积,O点就必然是各个矩形的公共角点,然后再计算每个矩形角点下同一深度z处的附加应力σz,并求其代数和。
1、O点在荷载面边缘:2、O点在荷载面内:3、O点在荷载面边缘外侧:4、O点在荷载面角点外侧:应用角点法时应注意的问题:①划出的每一个矩形,都有一个角点为O 点;②所有划出的各矩形面积的代数和,应等于原有受荷的面积; ③所划出的每一个矩形面积中,l 为长边,b 为短边。
例2-5 某矩形基础,长2.0 m ,宽1.0m,基底的附加压力为100 kPa ,如图所示,计算此矩形面积的角点A 、边点E 、中点O ,矩形面积外F 点和G 点下,深度z =2.0m处的附加应力。
(1)计算角点A 下的附加应力:查得αc =0.1202(2)计算边点E 下的附加应力作辅助线IE ,将原来的矩形ABCD 划分为两个相等的小矩形EADI 和EBCI 。
查得αc =0.084=2×0.0840×100=16.8 kPa (3) 计算中点O 下的附加应力作辅助线JK ,IE 将原来的矩形ABCD 划分为四个相等的小矩形OEAJ 、OJDI 、OICK和OEBK 。
查得αc =0.0474=4×0.0474×100≈19 kPa (4) 计算矩形面积外F 点下的附加应力作辅助线CH 、JF 、BG 和HG ,将原来的矩形ABCD 划分为两个相等的长矩形FHDJ 、FGAJ 和两个小矩形FHCK 、FGBK 。
查得αc1=0.0732αc2=0.0270=2×(0.0732-0.0270)×100≈9.2 kPa0.20.10.2b l ==0.20.10.2b z ==kpa 121001202.0p c A z =⨯==ασ0.10.10.1==b l 0.20.10.2==b z p c E z ασ2=0.25.00.1==b l 0.45.00.2==b z p c O z ασ4=55.05.2==b l 0.45.00.2==b z 15.05.0==b l 0.45.00.2==b z p c c Fz )(221αασ-⋅=(5) 计算矩形面积外G 点下的附加应力作辅助线CH 、BG 、HG ,将原来的矩形ABCD 划分为一个大矩形GHDA 和一个小矩形GHCB 。