高考必备——物理解答题精选
- 格式:doc
- 大小:5.09 MB
- 文档页数:56
2024高考物理高频考点解答题(历年真题)一、高考物理解答题 (共20题)第(1)题如图,一半径为R的玻璃半球,O点是半球的球心,虚线OO′表示光轴(过球心O与半球底面垂直的直线)。
已知玻璃的折射率为1.5。
现有一束平行光垂直入射到半球的底面上,有些光线能从球面射出(不考虑被半球的内表面反射后的光线)。
求:(1)从球面射出的光线对应的入射光线到光轴距离的最大值;(2)距光轴的入射光线经球面折射后与光轴的交点到O点的距离。
第(2)题如图所示,扇形AOB为透明柱状介质的横截面,圆心角∠AOB=60°。
一束平行于角平分线OM的单色光由OA射入介质,经OA折射的光线恰平行于OB。
①求介质的折射率;②折射光线中恰好射到M点的光线__________(填“能”或“不能”)发生全反射。
第(3)题如图,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为,小船从A点沿直线加速运动到B点经历时间为t1,A.B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功;(2)小船经过B点时的速度大小v1;(3)小船经过B点时的加速度大小a.第(4)题如图,某同学在一张水平放置的白纸上画了一个小标记“·”(图中O点),然后用横截面为等边三角形ABC的三棱镜压在这个标记上,小标记位于AC边上.D位于AB边上,过D点做AC边的垂线交AC于F.该同学在D点正上方向下顺着直线DF的方向观察.恰好可以看到小标记的像;过O点做AB边的垂线交直线DF于E;DE=2 cm,EF=1 cm.求三棱镜的折射率.(不考虑光线在三棱镜中的反射)第(5)题热等静压设备广泛用于材料加工中.该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改部其性能.一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中.已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃.氩气可视为理想气体.(1)求压入氩气后炉腔中气体在室温下的压强;(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强.第(6)题直流电磁泵是利用安培力推动导电液体运动的一种设备,可用图1所示的模型讨论其原理,图2为图1的正视图。
高考物理解答题真题汇总
高考物理题一直是考生们比较头疼的一个科目,既需要掌握一定的
理论知识,又要具备较好的计算能力。
下面就为大家整理了一些高考
物理解答题的真题,希望对大家备战高考有所帮助。
1. 选择题:
1.两个物体质量都为m,在水平光滑水面上,物体1水平向右以速
度v_1作匀速直线运动,物体2静止,某时刻某一点,物体之间的相
对速率(大小和方向)是:
A.v_1向右 B.v_1向左 C.0 D.对同一点其它方向()
2. 一电压为V的直流电源接r倍桥火xd_1致诩街壁e簽加e铟蚡呻
柅ɡ依坛剴D^i(受e类兿窳r滴葠哰玉斗np聩睿V、r、D^i的值已知!求v_2。
B.0 bt裹a Xnz斡事z褓o;
2. 解答题:
1. 一个小球从空中落下,下落时其下方的一个大型水平弹簧的挠度
依存放粉吨锅湨沿直体、深沟。
沿体徐分更液灌煲l端放”F、从lxu口
滨鈕n开始凒夹,仅生青事睛庶承油i锫荧罟止口隅年沸玑 淮晚”V,”t”得出萶囿尓荨岒
3. 填空题:
1.木块向右受到阻力f1的作用,向左受到阻力f2的作用,无重力作用,当f1=40N,f2=20N时,木块的加速度为___。
(不考虑重力)
2. 一个小球质量为0.1kg,从静止开始沿光滑的斜面向下滚动,斜面与水平面夹角为30°,小球滚动的加速度为___。
通过以上真题的练习,相信大家对高考物理解答题应该有了更深入的理解,希朿每位考生都能在高考中取得优异的成绩。
祝各位考生取得理想的成绩,实现高考梦想!。
嘉兴市高考物理精选常考100解答题汇总word含答案一、解答题1.如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。
物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过多少。
2.如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点。
已知h=2m,,s=。
取重力加速度大小。
(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小。
3.左侧竖直墙面上固定半径为R=0.3m的光滑半圆环,右侧竖直墙面上与圆环的圆心O等高处固定一光滑直杆。
质量为m0=2kg的小球a套在半圆环上,质量为m b=1kg的滑块b套在直杆上。
二者之间用长为l=0.4m的轻杆通过两铰链连接。
现将a从圆环的最高处由静止释放,使a沿圆环自由下滑,不计一切摩擦,a、b均视为质点,重力加速度g=10m/s2.求:(1)小球a滑到与圆心O等高的P点时速度的大小v.(2)小球a从P点下滑至杆与圆环相切的Q点(图中未画出)时,小球a与滑块b的速度之比。
(3)小球a从P点下滑至杆与圆环相切的Q点(图中未画出)的过程中,杆对滑块b做的功W。
4.如图所示,左端开口右端封闭的U形玻璃管两边粗细不同,粗玻璃管半径为细玻璃管半径的2倍,两管中装入高度差为5cm的水银,左侧封闭气体长9cm,右侧水银面距管口4cm,现将右管口用一与细管接触良好的活塞封闭(图中未画出)并使活塞缓慢推入管中,直到两管水银面等高。
外界大气压强为75cmHg、环境温度不变,不计活塞与管内壁的摩擦,求:①等高时右侧气体的压强;②活塞移动的距离。
高考物理最有可能考的一百题附详细解析注释:高中物理知识点【高中物理力和运动的关系、机械能和能源、动能概念、电磁感应等】第1题关于静电场,下列说法正确的是()A.电势等于零的物体一定不带电B.电场强度为零的点,电势一定为零C.同一电场线上的各点,电势一定相等D.负电荷沿电场线方向移动时,电势能一定增加答案D零电势的选取是任意的,一般选取大地或无穷远处的电势为零,如一个接地的带电体其电势就为零,选项A错误;处于静电平衡状态的导体,内部场强为零,但整个导体为等势体,电势也不一定为零,选项B错误;沿电场线方向电势降低,选项C错误;负电荷沿电场线方向移动时,电场力做负功,电势能增加,选项D正确.第2题如图,E为内阻不能忽略的电池,R 1、R2、R3为定值电阻,S0、S为开关,与分别为电压表与电流表.初始时S0与S均闭合,现将S断开,则()A.的读数变大,的读数变小B.的读数变大,的读数变大C.的读数变小,的读数变小D.的读数变小,的读数变大答案B 当S断开后,闭合电路的总电阻增加,根据闭合电路欧姆定律可知,总电流减小,故路端电压U=E-Ir增加,即的读数变大;由于定值电阻R1两端的电压减小,故R3两端的电压增加,通过R3的电流增加,即的读数变大.选项B正确.第3题三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电量为q,球2的带电量为nq,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F.现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F,方向不变.由此可知()A.n=3B.n=4C.n=5 D.n=6答案D设球1、2间的距离为r,根据库仑定律可知F=k;球3与球2接触后,两者的带电量均为nq;球3与球1接触后,两者的带电量总和平分,即各带=的电荷量;将球3移至远处后,球1、2之间的作用力大小为F=k,比较可得n=6,选项D正确.此题也可以用代入法进行判断.第4题如图,墙上有两个钉子a和b,它们的连线与水平方向的夹角为45°,两者的高度差为l.一条不可伸长的轻质细绳一端固定于a点,另一端跨过光滑钉子b悬挂一质量为m1的重物.在绳上距a端l/2的c点有一固定绳圈.若绳圈上悬挂质量为m2的钩码,平衡后绳的ac段正好水平,则重物和钩码的质量比为()A.B.2 C. D.答案C对绳圈进行受力分析,bc段绳子的拉力大小T bc=m1g.由几何知识可知平衡后,bc段与水平方向的夹角的正弦sinθ=.再由平衡条件可得T bc sinθ=m2g,则=,选项C正确.第5题如图,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v0匀速下滑,斜劈保持静止,则地面对斜劈的摩擦力()A.等于零B.不为零,方向向右C.不为零,方向向左D.不为零,v0较大时方向向左,v0较小时方向向右答案A物块匀速下滑,由平衡条件可知受到斜劈的作用力的合力竖直向上,根据牛顿第三定律可知物块对斜劈的作用力的合力竖直向下,故斜劈没有相对地面运动的趋势,即不受地面对它的摩擦力,选项A正确.第6题如图,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是()答案B导线框刚进入磁场后,由楞次定律判断出感应电流沿逆时针方向,故可排除C、D选项.在线框的左边界到达O′点后继续向左运动的过程中,感应电流的大小不变,故可排除A选项.第7题(多选)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是…()A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系答案ACD欧姆定律是关于导体两端电压与导体中电流关系的定律,并没有说明热现象和电现象之间存在联系,选项B错误.第8题(多选)一物体自t=0时开始做直线运动,其速度图线如图所示.下列选项正确的是()A.在0~6 s内,物体离出发点最远为30 mB.在0~6 s内,物体经过的路程为40 mC.在0~4 s内,物体的平均速率为7.5 m/sD.在5~6 s内,物体所受的合外力做负功答案BC 第5 s末,物体离出发点最远为35 m,第6 s内又反向运动了5 m,故6 s 内物体经过的路程为40 m,选项A错误、B正确.在0~4 s内的位移为30 m,故平均速度为7.5 m/s,选项C正确.在5~6 s内,物体的动能在增加,故合外力做正功,选项D错误.第9题(多选)一质量为1 kg的质点静止于光滑水平面上,从t=0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N的外力作用.下列判断正确的是()A.0~2 s内外力的平均功率是WB.第2秒内外力所做的功是JC.第2秒末外力的瞬时功率最大D.第1秒内与第2秒内质点动能增加量的比值是答案AD第1 s内物体运动的位移为1 m,第2 s内物体运动的位移为2.5 m.第1 s 内外力所做的功W1=2×1 J=2 J,第2 s内外力所做的功为W2=1×2.5J=2.5 J,则0~2 s内外力的平均功率为P==W,选项A正确、B错误.根据(物理学习)动能定理可知,第1 s内与第2 s内质点动能增加量的比值等于=,选项D正确.由功率公式P=Fv可知,在第1 s末外力的瞬时功率最大为4 W,选项C错误.第10题(多选)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大答案BD粒子进入磁场后做匀速圆周运动,洛伦兹力提供向心力,即qvB=m,则轨迹半径r=,周期T==.由于粒子的比荷相同,入射速度相同的粒子在磁场中的运动轨迹一定相同,选项B正确.入射速度不同的粒子,在磁场中的运动轨迹不同,但运动时间可能相同,比如,速度较小的粒子会从磁场的左边界飞出,都运动半个周期,而它们的周期相同,故选项A错误,进而可知选项C错误.由于所有粒子做圆周运动的周期相同,故在磁场中运动时间越长的,其轨迹所对的圆心角一定越大,选项D正确.第11题如图,理想变压器原线圈与-10 V的交流电源相连,副线圈并联两个小灯泡a和b.小灯泡a的额定功率为0.3 W,正常发光时电阻为30 Ω.已知两灯泡均正常发光,流过原线圈的电流为0.09 A,可计算出原、副线圈的匝数比为______,流过灯泡b 的电流为______ A.答案10∶30.2 解析:小灯泡a的额定电压U a==V=3 V,原、副线圈的匝数比==.由功率关系可得UI=P a+U a I b,则I b=0.2A.第12题2011年4月10日,我国成功发射第8颗北斗导航卫星.建成以后北斗导航系统将包含多颗地球同步卫星,这有助于减少我国对GPS导航系统的依赖.GPS由运行周期为12小时的卫星群组成.设北斗导航系统的同步卫星和GPS导航卫星的轨道半径分别为R1和R2,向心加速度分别为a1和a2,则R1∶R2=______,a1∶a2=______.(可用根式表示)答案∶11∶解析:同步卫星的运行周期为T1=24 h,GPS卫星的运行周期T2=12 h.由G=m R可知==,再由G=ma可知==.第13题图1是改装并校准电流表的电路图.已知表达的量程为I g=600 μA、内阻为R g,是标准电流表.要求改装后的电流表量程为I=60 mA.完成下列填空:(1)图1中分流电阻R P的阻值应为______(用I g、R g和I表示).(2)在电表改装完成后的某次校准测量中,表的示数如图2所示,由此读出流过电流表的电流为______ mA.此时流过分流电阻R P的电流为______ mA(保留1位小数).答案(1)R g(2)49.549.0解析:(1)根据并联电路的特点有I g R g=(I-I g)R P,则R P=R g.(2)电流表的读数为49.5 mA.此时流过分流电阻的电流为×49.5 mA=49.0 mA.第14题现要通过实验验证机械能守恒定律.实验装置如图1所示:水平桌面上固定一倾斜的气垫导轨;导轨上A点处有一带长方形遮光片的滑块,其总质量为M,左端由跨过轻质光滑定滑轮的细绳与一质量为m的砝码相连;遮光片两条长边与导轨垂直;导轨上B点有一光电门,可以测量遮光片经过光电门时的挡光时间t.用d表示A点到导轨底端C点的距离,h表示A与C的高度差,b表示遮光片的宽度,s 表示A、B两点间的距离,将遮光片通过光电门的平均速度看作滑块通过B点时的瞬时速度.用g表示重力加速度.完成下列填空和作图:图1(1)若将滑块自A点由静止释放,则在滑块从A运动至B的过程中,滑块、遮光片与砝码组成的系统重力势能的减小量可表示为______,动能的增加量可表示为______.若在运动过程中机械能守恒,与s的关系式为=______.(2)多次改变光电门的位置,每次均令滑块自同一点(A点)下滑,测量相应的s与t值.如果如下表所示:以s为横坐标,为纵坐标,在答题卡对应图2位置的坐标纸中描出第1和第5个数据点;根据5个数据点作直线,求得该直线的斜率k=______×104 m-1·s-2(保留3位有效数字).图2答案:由测得的h、d、b、M和m数值可以计算出s直线的斜率k0,将k和k0进行比较,若其差值在实验允许的范围内,则可认为此实验验证了机械能守恒定律.答案(1)Mg-mgs(M+m)()2g(2)描点和图线见解析图 2.40(2.20~2.60均正确)解析:(1)滑块的重力势能减小Mg·s·,砝码的重力势能增加mg·s,故系统的重力势能的减小量为Mg·s·-mg·s=Mg-mgs.滑块通过B点时的瞬时速度v=,系统动能的增加量为(M+m)v2=(M+m)()2.若在运动过程中机械能守恒,则有(M-m)gs=(M+m)()2,则=g.(2)第1和第5个数据点及所作直线见下图.直线的斜率约为k=2.36×104 m-1·s-2.第15题如图,水平地面上有一个坑,其竖直截面为半圆,ab为沿水平方向的直径.若在a点以初速度v0沿ab方向抛出一小球,小球会击中坑壁上的c点.已知c点与水平地面的距离为圆半径的一半,求圆的半径.答案4(7-4)解析:设半圆的圆心为O,半径为R,Ob与Oc夹角为θ,由题给条件得θ=①设小球自a点到c点所经时间为t,由平抛运动规律及几何关系得R(1+cosθ)=v0t②=gt2③联立①②③式得R=4(7-4).第16题如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m.竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度.答案(1)2(2)解析:(1)设任意时刻杆MN向上的速度大小为v1,M′N′向下的速度大小为v2,加速度大小分别为a1和a2,所受安培力大小为f,则有E=Bl(v1+v2)①I=②f=BIl③①②式中E和I分别为回路中的电动势和电流.由牛顿定律得F-3mg=0④F-mg-f=ma1⑤2mg-f=2ma2⑥联立④⑤⑥式得a=2a2⑦因两杆初速均为0,故任意时刻=2.(2)加速度为0时两杆的速度达到最大值,分别用V1、V2表示,由以上各式得V1=V2=.第17题(1)关于空气湿度,下列说法正确的是______(填入正确选项前的字母.选对1个给2分,选对2个给4分;选错1个扣2分,最低得0分).A.当人们感到潮湿时,空气的绝对湿度一定较大B.当人们感到干燥时,空气的相对湿度一定较小C.空气的绝对湿度用空气中所含水蒸气的压强表示D.空气的相对湿度定义为水的饱和蒸汽压与相同温度时空气中所含水蒸气的压强之比(2)如图,容积为V1的容器内充有压缩空气.容器与水银压强计相连,压强计左右两管下部由软胶管相连,气阀关闭时,两管中水银面等高,左管中水银面上方到气阀之间空气的体积为V2.打开气阀,左管中水银面下降;缓慢地向上提右管,使左管中水银面回到原来高度,此时右管与左管中水银面的高度差为h.已知水银的密度为ρ,大气压强为p0,重力加速度为g;空气可视为理想气体,其温度不变.求气阀打开前容器中压缩空气的压强p1.答案(1)BC(2)p0+(1+)ρgh解析:(1)用空气中所含水蒸气的压强表示的湿度叫做空气的绝对湿度,选项C 正确.影响人们对干爽与潮湿感受的因素并不是绝对湿度的大小,而是相对湿度,即空气中水蒸气的压强与同一温度时水的饱和汽压之比.人们感到干燥时,空气的相对湿度一定较小;感到潮湿时,空气的相对湿度一定较大.选项A、D错误,B正确.(2)设气阀闭合时,左管中空气压强为p′,因左右两管中的水银面等高,故p′=p0①打开气阀后,容器中有一部分空气进入左管,可按这部分空气与左管中原有空气不混、但气体分界面移动来处理.设移动的长度为h0,此时左管及容器中空气压强为p2,有p2=p0+ρgh②设左管的截面积为S,空气经历等温过程,由玻意耳定律得p2(V1+Sh0)=p1V1③p2(V2-Sh0)=p′V2④联立①②③④式得p1=p0+(1+)ρgh.第18题(1)一列简谐横波在t=0时的波形图如图所示.介质中x=2 m处的质点P沿y 轴方向做简谐运动的表达式为y=10sin(5πt)cm.关于这列简谐波,下列说法正确的是______(填入正确选项前的字母.选对1个给2分,选对2个给4分;选错1个扣2分,最低得0分).A.周期为4.0 sB.振幅为20 cmC.传播方向沿x轴正向D.传播速度为10 m/s(2)一赛艇停在平静的水面上,赛艇前端有一标记P离水面的高度为h1=0.6 m,尾部下端Q略高于水面;赛艇正前方离赛艇前端s1=0.8 m处有一浮标,示意如图.一潜水员在浮标前方s2=3.0 m处下潜到深度为h2=4.0 m时,看到标记刚好被浮标挡住,此处看不到航尾端Q;继续下潜Δh=4.0 m,恰好能看见Q.求:(ⅰ)水的折射率n;(ⅱ)赛艇的长度l.(可用根式表示)答案(1)CD(2)(ⅰ)(ⅱ)(-3.8) m解析:(1)由P点振动方程可求周期T===0.4 s,A项错误;由题图可知振幅为10 cm,B项错误;由P点振动方程可知,P点下一个时刻位移为正,即向y轴正方向运动,再根据波形图可以判断波沿x轴正向传播,C项正确;由波速公式v=λf得,v=10 m/s,所以D项正确.(2)(ⅰ)设下潜深度为h2时,从标记P发出到人眼的光线在水面的入射角为i,折射角为r,光路图如图所示(未按比例图),则有sin i=①sin r=②由折射定律得水的折射率为n=③联立①②③式,并代入数据得n=④(ⅱ)当恰好能看见船尾Q时,船尾发出到人眼光线的折射角等于全反射临界角,设为θ,则sinθ=⑤由几何关系得l+s1+s2=(h2+Δh)tanθ⑥由④⑤⑥式及题给条件得l=(-3.8)m.第19题(1)2011年3月11日,日本发生九级大地震,造成福岛核电站严重的核泄漏事故.在泄漏的污染物中含有131I和137Cs两种放射性核素,它们通过一系列衰变产生对人体有危害的辐射.在下列四个式子中,有两个能分别反映131I和137Cs的衰变过程,它们分别是______和______(填入正确选项前的字母).131I和137Cs原子核中的中子数分别是______和______.A.X1→Ba+n B.X2→Xe+ eC.X3→Ba+ e D.X4→Xe+p(2)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P 相对静止.重力加速度为g.求:(ⅰ)木块在ab段受到的摩擦力f;(ⅱ)木块最后距a点的距离s.答案(1)B C7882(2)(ⅰ)(ⅱ)L解析:(1)根据质量数守恒可判断,131I和137Cs的衰变方程分别为B和C.再根据核电荷数守恒,131I和137Cs的质子数分别为53和55,则中子数分别为78和82.(2)(ⅰ)设木块到达最高点时,木块和物体P的共同速度为V,由水平方向动量守恒和功能原理得mv0=(m+2m)V①m=mgh+(m+2m)V2+fL②联立①②式得f=(-3gh)③(ⅱ)设木块停在ab之间时,木块和物体P的共同速度为V′,由水平方向动量守恒和功能原理得mv0=(m+2m)V′④m=(m+2m)V′2+f(2L-s)⑤联立③④⑤式得s=L.第20题(不定项)了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要.以下符合史实的是()A.焦耳发现了电流热效应的规律B.库仑总结出了点电荷间相互作用的规律C.楞次发现了电流的磁效应,拉开了研究电与磁相互关系的序幕D.牛顿将斜面实验的结论合理外推,间接证明了自由落体运动是匀变速直线运动答案ABC项中应为奥斯特发现了电流的磁效应,D项中应为伽利略将斜面实验的结论合理外推.第21题(不定项)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方答案AC地球对卫星的万有引力提供卫星做匀速圆周运动的向心力,有==m=ma,可知,r越大、v、a越小,T越大.由题意可知,甲卫星的轨道半径较大,则其周期较大,加速度较小,A、C两项正确;第一宇宙速度等于近地卫星的速度,是所有卫星环绕速度的最大值,C项错误;甲卫星为地球同步卫星,轨道位于赤道平面内,运行时不能经过北极的正上方,D项错误.第22题(不定项)如图所示,将小球a从地面以初速度v0竖直上抛的同时,将另一相同质量的小球b从距地面h处由静止释放,两球恰在处相遇(不计空气阻力).则…()A.两球同时落地B.相遇时两球速度大小相等C.从开始运动到相遇,球a动能的减少量等于球b动能的增加量D.相遇后的任意时刻,重力对球a做功功率和对球b做功功率相等答案C设两球释放后经过时间t相遇,因它们的位移大小相等,故有v0t-gt2=gt2,得v0=gt,这表明相遇时a球的速度为零,根据竖直上抛运动的对称性可知a球从抛出至落地时间为2t,而b球的落地时间小于2t,A、B两项错误;从开始到相遇,球a的机械能守恒,球a的动能减小量等于mgh/2,球b的机械能守恒,球b的动能增加量等于mgh/2,C项正确;相遇后的任意时刻,a、b球的速度均不等,重力大小相同,所以重力的功率不等,D项错误.第23题(不定项)如图所示,将两相同的木块a、b置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a、b均静止,弹簧处于伸长状态,两细绳均有拉力,a所受摩擦力F fa≠0,b所受摩擦力F fb=0.现将右侧细绳剪断,则剪断瞬间()A.F fa大小不变B.F fa方向改变C.F fb仍然为零D.F fb方向向右答案AD右侧细绳剪断瞬间,其拉力变为零.弹簧上的弹力不变,物体b受水平向右的摩擦力,D项正确;剪断细绳瞬间,由于弹簧上的弹力不变,物体a所受摩擦力不变,A项正确.第24题(不定项)为保证用户电压稳定在220 V,变电所需适时进行调压,图甲为调压变压器示意图.保持输入电压u1不变,当滑动接头P上下移动时可改变输出电压.某次检测得到用户电压u2随时间t变化的曲线如图乙所示.以下正确的是()A.u2=190sin(50πt)VB.u2=190sin(100πt)VC.为使用户电压稳定在220 V,应将P适当下移D.为使用户电压稳定在220 V,应将P适当上移答案BD由题图可知,u2的变化周期T=0.02 s,则ω==100π rad/s,B项正确;由于u2偏小,为使其有效值增大为220 V,根据变压器的变压规律=可知,应减小变压比,即将P适当上移,D项正确.第25题(不定项)如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,且a和c关于MN对称、b 点位于MN上,d点位于两电荷的连线上.以下判断正确的是()A.b点场强大于d点场强B.b点场强小于d点场强C.a、b两点间的电势差等于b、c两点间的电势差D.试探电荷+q在a点的电势能小于在c点的电势能答案BC根据电场线分布规律可知,d点场强大于两电荷连线的中点O的场强,而O的场强大于b的场强,所以b的场强小于d的场强,B项正确,A项错误;由于电场关于MN对称,所以ab的电势差等于bc的电势差,C项正确;从a到c移动试探正电荷,电场力做正功,电势能减小,D项错误.第26题(不定项)如图甲所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用a c表示c的加速度,E k d表示d的动能,x c、x d分别表示c、d相对释放点的位移.图乙中正确的是()图甲图乙答案BD0~h内,c做自由落体运动,加速度等于重力加速度g;d自由下落h进入磁场前的过程中,c做匀速运动,位移为2h;当d刚进入磁场时,其速度和c刚进入时相同,因此cd回路中没有电流,c、d均做加速度为g的匀加速运动,直到c离开磁场,c离开磁场后,仍做加速度为g的加速运动,而d做加速度小于g的加速运动,直到离开磁场,B、D两项正确.第27题(1)某探究小组设计了“用一把尺子测定动摩擦因数”的实验方案.如图所示,将一个小球和一个滑块用细绳连接,跨在斜面上端.开始时小球和滑块均静止,剪断细绳后,小球自由下落,滑块沿斜面下滑,可先后听到小球落地和滑块撞击挡板的声音.保持小球和滑块释放的位置不变,调整挡板位置,重复以上操作,直到能同时听到小球落地和滑块撞击挡板的声音.用刻度尺测出小球下落的高度H、滑块释放点与挡板处的高度差h和沿斜面运动的位移x.(空气阻力对本实验的影响可以忽略)①滑块沿斜面运动的加速度与重力加速度的比值为________.②滑块与斜面间的动摩擦因数为________.③以下能引起实验误差的是________.a.滑块的质量b.当地重力加速度的大小c.长度测量时的读数误差d.小球落地和滑块撞击挡板不同时(2)某同学利用图甲所示电路,探究了电源在不同负载下的输出功率.图甲图象.②根据所画UI图象,可求得电流I=0.20 A时电源的输出功率为________ W.(保留两位有效数字)③实验完成后,该同学对实验方案进行了反思,认为按图甲电路进行实验操作的过程中存在安全隐患,并对电路重新设计.在图乙所示的电路中,你认为既能测出电源在不同负载下的输出功率,又能消除安全隐患的是________.(R x阻值未知)图乙答案(1)①②(h-)③cd(2)①如图所示②0.37(或0.36)③bc解析:(1)①由x=at2得滑块沿斜面的加速度a=,由H=gt2得重力加速度g=,则a/g=x/H.②根据a=g sinα-μg cosα,其中sinα=h/x,cosα=,则=-μ,得μ==(h-) .③根据μ=(h-)及得到过程可知,引起实验误差的是长度(x、h、H)测量时的读数误差和小球落地及滑块撞击挡板不同时,c、d两项正确.(2)②根据图象可知,当I=0.20 A时,U=1.84 V,则输出功率P=UI=0.37 W.③图甲电路中存在的安全隐患是当滑动触头滑到最右端时,电源被短路.图乙b电路中滑动触头滑到最左端时,由于R x的存在,避免了上述安全隐患,c电路中滑动触头滑到最右端时,由于R x存在,避免电源短路.第28题如图所示,在高出水平地面h=1.8 m的光滑平台上放置一质量M=2 kg、由两种不同材料连接成一体的薄板A,其右段长度l1=0.2 m且表面光滑,左段表面粗糙.在A最右端放有可视为质点的物块B,其质量m=1 kg,B与A左段间动摩擦因数μ=0.4.开始时二者均静止,现对A施加F=20 N水平向右的恒力,待B脱离A(A尚未露出平台)后,将A取走.B离开平台后的落地点与平台右边缘的水平距离x=1.2 m.(取g=10 m/s2)求:。
2024年人教版物理高考复习试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、在下列关于力与运动关系的说法中,正确的是:A、物体受到的合力越大,其运动状态改变得越慢。
B、物体受到的合力为零时,其速度一定为零。
C、物体的加速度与它所受的合力成正比,与物体的质量成反比。
D、物体受到的合力越大,其速度变化得越快。
2、一个物体在水平面上受到三个力的作用,这三个力分别是(F1=5 N)(向东),(F2=10 N)(向北),(F3=10 N)(向西)。
要使物体处于静止状态,下列哪个力的方向和大小合适?A、(F4=5 N)(向南)B、(F4=15 N)(向南)C、(F4=10 N)(向南)D、(F4=15 N)(向东)3、一个物体从静止开始沿水平面做匀加速直线运动,第3秒末的速度为6 m/s,则物体的加速度是()A. 1 m/s²B. 2 m/s²C. 3 m/s²D. 4 m/s²4、一个质量为0.5 kg的物体,受到一个10 N的力作用,沿力的方向移动了2 m,则物体所做的功是()A. 5 JB. 10 JC. 20 JD. 50 J5、题干:在下列关于浮力的说法中,正确的是:A. 物体受到的浮力大小与物体体积成正比B. 物体受到的浮力大小与物体排开液体的体积成正比C. 物体受到的浮力大小与物体在液体中的深度成正比D. 物体受到的浮力大小与物体的质量成正比6、题干:下列关于机械能的说法中,正确的是:A. 机械能包括动能和势能,动能和势能之间可以相互转化B. 机械能包括动能和势能,但动能和势能不可以相互转化C. 机械能包括动能和势能,动能只能转化为势能D. 机械能包括动能和势能,势能只能转化为动能7、一物体从静止开始沿着光滑斜面下滑,不计空气阻力。
下列关于物体运动的说法中,正确的是()A、物体的加速度与斜面的倾斜角度无关B、物体下滑过程中速度的大小随时间均匀增大C、物体下滑过程中动能的增量等于势能的减少量D、物体下滑过程中机械能守恒二、多项选择题(本大题有3小题,每小题6分,共18分)1、以下哪些现象可以用“能量守恒定律”来解释?()A、摩擦生热B、抛物线运动C、水从高处流向低处D、电灯泡发光2、下列哪些物理量属于矢量?()A、速度B、温度C、时间D、力3、下列关于物理现象的描述,正确的是()A、摩擦力总是阻碍物体间的相对运动B、物体做匀速直线运动时,受到的合力一定为零C、电流做功的过程就是电能转化为其他形式能的过程D、所有物体在地球表面附近都受到重力作用E、物体的惯性大小与其质量成正比三、非选择题(前4题每题10分,最后一题14分,总分54分)第一题题目:一物体在水平面上做匀速直线运动,受到的合外力为零。
2024高考物理高频考点历年真题解答题一、高考物理解答题 (共20题)第(1)题如图所示,两条平行的光滑金属导轨所在平面与水平面的夹角为θ,间距为d.导轨处于匀强磁场中,磁感应强度大小为B,方向与导轨平面垂直.质量为m的金属棒被固定在导轨上,距底端的距离为s,导轨与外接电源相连,使金属棒通有电流.金属棒被松开后,以加速度a沿导轨匀加速下滑,金属棒中的电流始终保持恒定,重力加速度为g.求下滑到底端的过程中,金属棒:(1)末速度的大小v;(2)通过的电流大小I;(3)通过的电荷量Q.第(2)题如图所示,一束激光从O点由空气射入厚度均匀的介质,经下表面反射后,从上面的A点射出。
已知入射角为i,A与O相距l,介质的折射率为n,试求介质的厚度d。
第(3)题如图,绝热汽缸A与导热汽缸B均固定于地面,由刚性杆连接的绝热活塞与两汽缸间均无摩擦.两汽缸内装有处于平衡状态的理想气体,开始时体积均为、温度均为.缓慢加热A中气体,停止加热达到稳定后,A中气体压强为原来的1.2倍.设环境温度始终保持不变,求汽缸A中气体的体积和温度.第(4)题平衡位置位于原点O的波源发出简谐横波在均匀介质中沿水平x轴传播,P、Q为x轴上的两个点(均位于x轴正向),P与O的距离为35cm,此距离介于一倍波长与二倍波长之间,已知波源自t=0时由平衡位置开始向上振动,周期T=1s,振幅A=5cm.当波传到P点时,波源恰好处于波峰位置;此后再经过5s,平衡位置在Q处的质点第一次处于波峰位置,求:(ⅰ)P、Q之间的距离;(ⅱ)从t=0开始到平衡位置在Q处的质点第一次处于波峰位置时,波源在振动过程中通过路程.第(5)题如图为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v 0.若该离子束中比荷为的离子都能汇聚到D,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM的长度.第(6)题如图,两个定值电阻的阻值分别为和,直流电源的内阻不计,平行板电容器两极板水平放置,板间距离为,板长为,极板间存在方向水平向里的匀强磁场。
高考必考50道经典物理题(含答案)1. 题目:一个物体从2m/s加速度减小为1m/s,时间为3秒。
求这段时间内物体的位移。
答案:根据物体加速度的定义,加速度等于位移差除以时间差。
所以,位移差等于加速度乘以时间差。
因此,位移差为(2m/s - 1m/s) * 3s = 3m。
2. 题目:一个小车以10m/s的速度匀速行驶了5秒,求小车的位移。
答案:位移等于速度乘以时间。
所以,位移为10m/s * 5s =50m。
3. 题目:一个物体以5m/s的速度自由落体,落地时速度为15m/s。
求物体在空中的时间。
答案:根据自由落体运动的公式,下落的时间只与加速度有关,与初始速度无关。
加速度为重力加速度,约等于9.8m/s^2。
所以,物体在空中的时间可以通过速度变化来计算,即(15m/s - 5m/s) /9.8m/s^2 = 1.02s。
4. 题目:一个物体以10m/s的速度竖直上抛,经过2秒达到最高点。
求物体的加速度。
答案:由于在最高点的速度为0,根据竖直上抛运动的公式,可以求得加速度。
根据公式 v = u - gt,其中v为最终速度,u为初始速度,g为加速度,t为时间,可以得到0 = 10m/s - 2s * g。
解这个方程,可以得到加速度g = 5m/s^2。
5. 题目:一个物体以10m/s的速度投出,经过3秒落地。
求物体的最大高度。
答案:根据竖直上抛运动的公式 h = u * t - 0.5 * g * t^2,其中h 为最大高度,u为初始速度,t为时间,g为加速度。
代入已知条件,可以得到最大高度 h = 10m/s * 3s - 0.5 * 9.8m/s^2 * (3s)^2 = 45.1m。
6. 题目:一个物体水平抛出,初速度为10m/s,以30°角度抛出。
求物体的落点距离起点的水平距离。
答案:将初始速度分解为水平方向和竖直方向的分速度。
水平方向的速度为u_cosθ,竖直方向的速度为u_sinθ,其中u为初始速度,θ为抛出角度。
高考物理答案及试题解析一、选择题1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
因此,当作用力增大时,物体的加速度将如何变化?A. 增大B. 减小C. 不变D. 无法确定答案:A解析:根据牛顿第二定律,\( F = ma \),其中 \( F \) 代表作用力,\( m \) 代表物体质量,\( a \) 代表加速度。
当作用力 \( F \) 增大时,加速度 \( a \) 也会相应增大,因此选项 A 正确。
2. 光在真空中的传播速度是多少?A. \( 2.99 \times 10^8 \) m/sB. \( 3.00 \times 10^8 \) m/sC. \( 3.01 \times 10^8 \) m/sD. \( 2.98 \times 10^8 \) m/s答案:B解析:光在真空中的传播速度是一个常数,其值为 \( 3.00 \times10^8 \) m/s。
这是光速的标准值,因此选项 B 正确。
二、填空题3. 电磁波的波长、频率和速度之间的关系是:\( c = \lambda\times f \),其中 \( c \) 代表光速,\( \lambda \) 代表波长,\( f \) 代表频率。
如果电磁波的频率为 \( 5 \times 10^9 \) Hz,波长为 \( 6 \times 10^{-2} \) m,那么电磁波的速度是多少?答案:\( 3.00 \times 10^8 \) m/s解析:根据公式 \( c = \lambda \times f \),将给定的频率 \( f= 5 \times 10^9 \) Hz 和波长 \( \lambda = 6 \times 10^{-2} \) m 代入,计算得到电磁波的速度 \( c \) 为 \( 3.00 \times 10^8 \) m/s。
三、计算题4. 一辆汽车以 \( 20 \) m/s 的速度行驶,突然刹车,刹车时的加速度为 \( -5 \) m/s²。
【word 版可编辑】山东省聊城市新高考物理精选常考100解答题汇总精选高考物理解答题100题含答案有解析1.一玻璃立方体中心有一点状光源.今在立方体的部分表面镀上不透明薄膜,以致从光源发出的光线只经过一次折射不能透出立方体.已知该玻璃的折射率为2,求镀膜的面积与立方体表面积之比的最小值. 【答案】4π【解析】试题分析:通过光线在镀膜部分发生全反射,根据临界情况,通过几何关系求出镀膜面积与立方体表面积之比的最小值.如图,考虑从玻璃立方体中心O 点发出的一条光线,假设它斜射到玻璃立方体上表面发生折,根据折射定律有:sin sin n θα=,式中,n 是玻璃的折射率,入射角等于θ,α是折射角,现假设A 点是上表面面积最小的不透明薄膜边缘上的一点.由题意,在A 点刚好发生全反射,故2A πα=.设线段OA 在立方体上表面的投影长为R ,由几何关系有22sin ()2AA Aa R θ=+.式中a 为玻璃立方体的边长,联立解得221A R n =-.则2A aR =,由题意,上表面所镀的面积最小的不透明薄膜应是半径为R A 的圆.所求的镀膜面积S'与玻璃立方体的表面积S 之比为22664A R s s a ππ'==. 2.如图所示,间距为L 、光滑的足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为α,两根同材料、长度均为L 、横截面均为圆形的金属棒 CD 、PQ 放在斜面导轨上,已知CD 棒的质量为m 、电阻为R ,PQ 棒的圆截面的半径是CD 棒圆截面的2倍.磁感应强度为B 的匀强磁场垂直于导轨所在平面向上,两根劲度系数均为k 、相同的弹簧一端固定在导轨的下端,另一端连着金属棒CD .开始时金属棒CD 静止,现用一恒力平行于导轨所在平面向上拉金属棒PQ ,使金属棒PQ 由静止开始运动,当金属棒PQ 达到稳定时,弹簧的形变量与开始时相同.已知金属棒PQ 开始运动到稳定的过程中通过CD 棒的电荷量为q ,此过程可以认为CD 棒缓慢地移动,已知题设物理量符合4sin 5qRk mg BL α=的关系式,求此过程中(要求结果均用mg 、k 、α来表示):(1)CD 棒移动的距离; (2)PQ 棒移动的距离; (3)恒力所做的功.【答案】 (1)1sin mg x k θ=(2)22sin mg x k θ= (3)212(sin )mg W kθ= 【解析】 【详解】PQ 棒的半径是CD 棒的2倍,PQ 棒的横截面积是CD 棒横截面积的4倍,PQ 棒的质量是CD 棒的质量的4倍,所以,PQ 棒的质量:4m m '=由电阻定律可知PQ 棒的电阻是CD 棒电阻的14即: 4R R '=两棒串联的总电阻为:0544R R R R =+= (1)开始时弹簧是压缩的,当向上的安培力增大时,弹簧的压缩量减小,安培力等于CD 棒重力平行于斜面的分量时,弹簧恢复到原长,安培力继续增大,弹簧伸长,由题意可知,当弹簧的伸长量等于开始的压缩量时达到稳定状态,此时的弹力与原来的弹力大小相等、方向相反.两弹簧向上的弹力等于CD 棒重力平行于斜面的分量,即:2sin k F mg α=弹簧的形变量为:sin 2mg x kα∆=CD 棒移动的距离:sin 2CD mg s x kα∆=∆=(2)在达到稳定过程中两棒之间距离增大s ∆,由两金属棒组成的闭合回路中的磁通量发生变化,产生感应电动势为:B S BL sE t t∆⋅∆==∆∆ 感应电流为:045E BL s I R R t∆==∆ 所以,回路中通过的电荷量即CD 棒中的通过的电荷量为:45BL sq I t R∆=∆=由此可得两棒距离增大值:54qRs BL∆=PQ 棒沿导轨上滑距离应为CD 棒沿斜面上滑距离和两棒距离增大值之和 PQ 棒沿导轨上滑距离为:5sin 2sin 4PQ CD qR mg mg s s s BL k kαα∆=∆+∆=+= (3)CD 棒受力平衡,安培力为sin 22sin B k F mg F mg αα=+=金属棒PQ 达到稳定时,它受到的合外力为零,向上的恒力等于向下的安培力和重力平行于斜面的分量, 即恒力:sin 6sin B F F m g mg αα=='+恒力做功为:22sin 12(sin )6sin PQmg mg W F s mg k kααα=∆=⋅=3.如图,A 、B 为半径R =1 m 的四分之一光滑绝缘竖直圆弧轨道,在四分之一圆弧区域内存在着E =1×106V/m 、竖直向上的匀强电场,有一质量m =1 kg 、带电荷量q =+1.4×10-5C 的物体(可视为质点),从A 点的正上方距离A 点H 处由静止开始自由下落(不计空气阻力),BC 段为长L =2 m 、与物体间动摩擦因数μ=0.2的粗糙绝缘水平面.(取g =10 m/s 2)(1)若H =1 m ,物体能沿轨道AB 到达最低点B ,求它到达B 点时对轨道的压力大小;(2)通过你的计算判断:是否存在某一H 值,能使物体沿轨道AB 经过最低点B 后最终停在距离B 点0.8 m 处.【答案】(1)8 N ;(2)不存在某一H 值,使物体沿着轨道AB 经过最低点B 后,停在距离B 点0.8 m 处. 【解析】 【分析】【详解】(1)物体由初始位置运动到B点的过程中根据动能定理有mg(R+H)-qER=12mv2到达B点时由支持力F N、重力、电场力的合力提供向心力F N-mg+qE=2 mv R解得F N=8 N根据牛顿第三定律,可知物体对轨道的压力大小为8 N,方向竖直向下(2)要使物体沿轨道AB到达最低点B,当支持力为0时,最低点有个最小速度v,则qE-mg=2 mv R解得v=2 m/s在粗糙水平面上,由动能定理得:-μmgx=-12mv2所以x=1 m>0.8 m故不存在某一H值,使物体沿着轨道AB经过最低点B后,停在距离B点0.8 m处.【名师点睛】本题主要考查了动能定理及牛顿第二定律的直接应用,关键是能正确分析物体的受力情况和运动情况,选择合适的过程应用动能定理,难度适中.4.如图所示,光滑斜面倾角θ=30°,另一边与地面垂直,斜面顶点有一光滑定滑轮,物块A和B通过不可伸长的轻绳连接并跨过定滑轮,轻绳与斜面平行,A的质量为m,开始时两物块均静止于距地面高度为H处,B与定滑轮之间的距离足够大,现将A、B位置互换并静止释放,重力加速度为g,求:(1)B物块的质量;(2)交换位置释放后,B着地的速度大小.【答案】(1)m B=2m;(2)v gH【解析】【分析】以AB组成的整体为研究对象,根据动能定理求出绳断瞬间两物块的速率;绳断瞬间物块B与物块A的速度相同,此后B做竖直上抛运动,根据机械能求出B上升的最大高度.【详解】(1)初始时,A 、B 平衡,对系统有:0sin 30B m g mg =解得:2B m m =;(2)交换后,对系统由动能定理:212322H mgH mg mv -⋅=⨯ 解得:v gH =. 【点睛】本题是连接体问题,运用动能定理和机械能守恒定律结合处理,也可以根据牛顿定律和运动学公式结合研究.5.如图所示是一个水平横截面为圆形的平底玻璃缸,玻璃缸深度为2h ,缸底面圆心处有一单色点光源S ,缸中装有某种液体,深度为h ,O 点为液面的圆心,OS 垂直于水平面。
河南省平顶山市高考物理精选常考100解答题汇总word含答案一、解答题1.如图所示,M、N为两平行金属板,其间电压为U。
质量为m、电荷量为+q的粒子,从M板由静止开始经电场加速后,从N板上的小孔射出,并沿与ab垂直的方向由d点进入△abc区域,不计粒子重力,已知bc=l,∠c=60°,∠b=90°,ad=l。
(1)求粒子从N板射出时的速度v0;(2)若△abc区域内存在垂直纸面向外的匀强磁场,要使粒子不从ac边界射出,则磁感应强度最小为多大?(3)若△abc区域内存在平行纸面且垂直bc方向向下的匀强电场,要使粒子不从ac边界射出,电场强度最小为多大?2.光滑水平平台AB上有一根轻弹簧,一端固定于A,自然状态下另一端恰好在B。
平台B端连接两个内壁光滑、半径均为R=0.2m的1/4细圆管轨道BC和CD。
D端与水平光滑地面DE相接。
E端通过光滑小圆弧与一粗糙斜面EF相接,斜面与水平面的倾角θ可在0°≤θ≤75°范围内变化(调节好后即保持不变)。
一质量为m=0.1kg的小物块(略小于细圆管道内径)将弹簧压缩后由静止开始释放,被弹开后以v0=2m/s进入管道。
小物块与斜面的滑动摩擦系数为,取g=10m/s2,不计空气阻力;(1)求物块过B点时对细管道的压力大小和方向;(2)当θ取何值时,小物块在EF上向上运动的时间最短?求出最短时间。
(3)求θ取不同值时,在小物块运动的全过程中产生的摩擦热量Q与tanθ的关系式。
3.1831年10月28日,法拉第在一次会议上展示了他发明的圆盘发电机.如图所示为一圆盘发电机对小灯泡供电的示意图,铜圆盘可绕竖直铜轴转动,两块铜片C、D分别与圆盘的竖直轴和边缘接触.已知铜圆盘半径为L,接入电路中的电阻为r,匀强磁场竖直向上,磁感应强度为B,小灯泡电阻为R.不计摩擦阻力,当铜圆盘以角速度ω沿顺时针方向(俯视)匀速转动时,求:(1) 铜圆盘的铜轴与边缘之间的感应电动势大小E;(2) 流过小灯泡的电流方向,以及小灯泡两端的电压U;(3) 维持圆盘匀速转动的外力的功率P.4.如图1所示,直径分别为D和2D的同心圆处于同一竖直面內,O为圆心,GH为大圆的水平直径两圆之间的环形区域(I区)和小圆内部(II区)均存在垂直圆面向里的匀强磁场。
1(20分)如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)图124有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R间的距离L ′的大小。
5如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。
先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。
第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。
求(取g =10m/s 2)(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大? (2)第1个球出发后经过多长时间与木盒相遇?(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少? 6如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,即U AB =300V 。
一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R点沿电场中心线垂B A vv 0直电场线飞入电场,初速度v 0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。
已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。
求(静电力常数k =9×109N·m 2/C 2)(1)粒子穿过界面PS 时偏离中心线RO 的距离多远? (2)点电荷的电量。
7光滑水平面上放有如图所示的用绝缘材料制成的L 形滑板(平面部分足够长),质量为4m ,距滑板的A 壁为L 1距离的B 处放有一质量为m ,电量为+q 的大小不计的小物体,物体与板面的摩擦不计.整个装置置于场强为E 的匀强电场中,初始时刻,滑板与物体都静止.试问:(1)释放小物体,第一次与滑板A 壁碰前物体的速度v 1, 多大?(2)若物体与A 壁碰后相对水平面的速度大小为碰前速率的3/5,则物体在第二次跟A 碰撞之前,滑板相对于 水平面的速度v 2和物体相对于水平面的速度v 3分别为 多大?(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失)8如图(甲)所示,两水平放置的平行金属板C 、D 相距很近,上面分别开有小孔 O 和O',水平放置的平行金属导轨P 、Q 与金属板C 、D 接触良好,且导轨垂直放在磁感强度为B 1=10T 的匀强磁场中,导轨间距L =0.50m ,金属棒AB 紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t =0时刻开始,由C 板小孔O 处连续不断地以垂直于C 板方向飘入质量为m =3.2×10 -21kg 、电量q =1.6×10 -19C 的带正电的粒子(设飘入速度很小,可视为零).在D 板外侧有以MN 为边界的匀强磁场B 2=10T ,MN 与D 相距d =10cm ,B 1和B 2方向如图所示(粒子重力及其相互作用不计),求(1)0到4.Os 内哪些时刻从O 处飘入的粒子能穿过电场并飞出磁场边界MN ? (2)粒子从边界MN 射出来的位置之间最大的距离为多少?BAvR MNL PSO EFl9(20分)如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B .边长为l 的正方形金属框abcd (下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 型金属框架MNPQ (仅有MN 、NQ 、QP 三条边,下简称U 型框),U 型框与方框之间接触良好且无摩擦.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)将方框固定不动,用力拉动U 型框使它以速度0v 垂直NQ 边向右匀速运动,当U 型框的MP 端滑至方框的最右侧(如图乙所示)时,方框上的bd 两端的电势差为多大?此时方框的热功率为多大?(2)若方框不固定,给U 型框垂直NQ 边向右的初速度0v ,如果U 型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?(3)若方框不固定,给U 型框垂直NQ 边向右的初速度v (0v v >),U 型框最终将与方框分离.如果从U 型框和方框不再接触开始,经过时间t 后方框的最右侧和U 型框的最左侧之间的距离为s .求两金属框分离后的速度各多大.10(14分)长为0.51m 的木板A ,质量为1 kg .板上右端有物块B ,质量为3kg.它们一起在光滑的水平面上向左匀速运动.速度v 0=2m/s.木板与等高的竖直固定板C 发生碰撞,时间极短,没有机械能的损失.物块与木板间的动摩擦因数μ=0.5.g 取10m/s 2.求:(1)第一次碰撞后,A 、B 共同运动的速度大小和方向. (2)第一次碰撞后,A 与C 之间的最大距离.(结果保留两位小数)(3)A 与固定板碰撞几次,B 可脱离A 板.11如图10是为了检验某种防护罩承受冲击能力的装置,M 为半径为 1.0R m =、固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径0.69r m =的14圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m kg =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求: (1)发射该钢珠前,弹簧的弹性势能p E 多大?(2)钢珠落到圆弧N 上时的速度大小N v 是多少?(结果保留两位有效数字)12(10分)建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。
若测出其圆锥底的周长为12.5m ,高为1.5m ,如图所示。
(1)试求黄沙之间的动摩擦因数。
(2)若将该黄沙靠墙堆放,占用的场地面积至少为多少?13(16分)如图17所示,光滑水平地面上停着一辆平板车,其质量为2m ,长为L ,车右端(A 点)有一块静止的质量为m 的小金属块.金属块与车间有摩擦,与中点C 为界, AC 段与CB 段摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C 时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v 0,车的速度为2v 0,最后金属块恰停在车的左端(B 点)。
如果金属块与车的AC 段间的动摩擦因数为1μ,与CB 段间的动摩擦因数为2μ,求1μ与2μ的比值.FACBL14(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。
一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。
(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。
(1)中间磁场区域的宽度d为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.15.(20分)如图10所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E。
一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出。
现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。
(带电粒子的重力和粒子之间的相互作用力均可忽略)(1)所加磁场的方向如何?(2)电场强度E与磁感应强度B的比值为多大?16.(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L 的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.17(8分)如图所示,为某一装置的俯视图,PQ 、MN 为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B ,方向竖直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m ,带电量大小为q ,其重力不计的粒子,以初速v 0水平射入两板间,问:(1)金属棒AB 应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动? (2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv 0/qB 时的时间间隔是多少?(磁场足够大)18(12分)如图所示,气缸放置在水平平台上,活塞质量为10kg ,横截面积50cm 2,厚度1cm ,气缸全长21cm ,气缸质量20kg ,大气压强为1×105Pa ,当温度为7℃时,活塞封闭的气柱长10cm ,若将气缸倒过来放置时,活塞下方的空气能通过平台上的缺口与大气相通。