单分子磁体的制备及其磁性质研究
- 格式:docx
- 大小:37.28 KB
- 文档页数:2
稀土单分子磁体磁各向异性的理论研究
随着近几年来稀土单分子磁体(Rare Earth Single Molecule Magnets,简称RESM)研究热潮的升温,稀土单分子磁体的磁各向异性被越来越多的学者所关注,引起了众人的关注。
因此,磁各向异性的理论研究成为未来稀土单分子磁体的发展一个重要的研究方向。
一、磁各向异性的概念
磁各向异性(magnetic anisotropy),即材料磁性特性随向量旋转方向变化,将其
折射成一种特殊的方向性。
也就是说,材料磁性能力只有在特定的方向上才有强烈的表现力,这就是磁各向异性的作用。
二、磁各向异性的研究目的
研究磁各向异性的目的是为了更加深入的了解磁性材料的性能,并且为磁性材料的微米尺度制造、存储磁记忆等提供研究基础。
三、稀土单分子磁体的磁各向异性
(1)稀土六配位单分子磁体(R6SMs)。
R6SMs试图通过调节其稀土核心结构,来改善其磁各向异性,以增强其磁力及稳定性。
四、磁各向异性的理论研究
(1)基于简单多电子结构的理论模型。
该研究方法借助简单多电子结构对稀土核
心结构进行描述建模,通过调制其结构参数来调控它们的磁各向异性,并加以分析。
总之,就稀土单分子磁体的发展而言,磁各向异性的理论研究就显得极为重要,只有通过深入的理论研究,才能够更好地推动稀土单分子磁体的发展。
Kramers离子Dy(Ⅲ)、Er(Ⅲ)和Co(Ⅱ)基单离子磁体的构筑及磁构关系研究单离子磁体作为一种单分子磁体,在分子自旋电子学、量子力学、高密度信息存储材料等领域有着广泛的应用前景。
自2003年Ishikawa等人报道了首例基于镧系金属的单离子磁体以来,单离子磁体因为其结构简单易于调控以及翻转能垒高等特点而成为近年研究的热点。
由于稀土金属离子具有未淬灭的轨道角动量,所以单核的稀土金属配合物具有非常大的磁各向异性,从而产生慢磁弛豫行为。
近年来,稀土基单离子磁体取得了巨大的进展,翻转能垒达到1837 K,阻塞温度高达60 K。
过渡金属离子同样具有轨道角动量,因而也吸引了众多研究者的关注。
2010年Long课题组报道了第一例高自旋Fe(Ⅱ)基单离子磁体,这也是首例过渡金属基单离子磁体。
随后,关于过渡金属基单离子磁体的研究迅猛发展。
在众多的过渡金属中,由于二价钴离子易于形成旋轨耦合,从而产生较强的磁各向异性,因此钴基单离子磁体被报道最多。
本论文重点研究了克拉默离子Dy(Ⅲ)、Er(Ⅲ)和Co(Ⅱ)基单离子磁体的合成及其磁构关系,主要包括以下三部分的内容:一、具有相同十配位构型的发光镝(Ⅲ)和铒(Ⅲ)基单离子磁体利用5个NO<sub>3</sub><sup>-</sup>提供的10个O原子和Dy(Ⅲ)、Er(Ⅲ)合成了两个单核LnO<sub>10</sub>的配合物:(nBu<sub>4</sub>N)<sub>2</sub>[Dy (NO<sub>3</sub>)<sub>5</sub>](1)和(nBu<sub>4</sub>N)<sub>2</sub>[Er (NO<sub>3</sub>)<sub>5</sub>](2),通过单晶衍射仪测试了其结构,研究了这两个配合物的荧光性质和磁性。
磁性材料的制备与性能研究磁性材料在现代科学与技术领域具有广泛的应用,从电子设备到医疗器械,都离不开磁性材料的支持。
因此,对磁性材料的制备与性能进行研究具有重要的价值。
本文将介绍磁性材料的制备方法以及常见的性能研究方法。
一、磁性材料的制备方法1. 传统制备方法传统的制备方法包括溶胶-凝胶法、共沉淀法、球磨法等。
其中,溶胶-凝胶法是一种将溶胶转变为凝胶的化学方法。
通过适当的温度和时间控制,能够获得具有良好磁性的材料。
2. 非传统制备方法随着科技的进步,非传统的制备方法也逐渐应用于磁性材料的制备中。
例如,电化学沉积法利用电流在电极上沉积金属离子,制备出具有特殊磁性的材料。
激光熔凝法则通过高能激光的作用下将粉末熔化成为块体材料。
这些方法不仅能够制备出具有良好磁性的材料,还能够控制其形貌和结构。
二、磁性材料的性能研究方法1. 磁性测试方法磁性测试是研究磁性材料性能的基础。
目前常用的磁性测试方法包括霍尔效应测试、磁化率测试、磁滞回线测试等。
霍尔效应测试可以测量材料的导电性和磁场强度之间的关系。
磁化率测试用来研究材料的磁化程度。
磁滞回线测试则可以反映材料的磁化和退磁的过程。
2. 结构分析方法结构分析方法用来研究磁性材料的晶体结构和化学组成。
常用的结构分析方法有X射线衍射、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等。
X射线衍射可用来确定样品中的结晶相和晶体结构参数。
SEM和TEM则可以观察材料表面形貌和内部结构。
3. 动力学研究方法动力学研究方法用来研究磁性材料在外加场中的行为。
其中,磁共振是常见的一种研究方法。
磁共振可以通过对材料施加高频磁场,然后测量其回应信号来研究材料的磁性。
此外,还可以利用超导量子干涉仪等方法来研究材料的动力学性质。
总结:磁性材料的制备与性能研究是一个复杂而重要的领域。
通过传统和非传统的制备方法,可以制备出各种具有不同性能的磁性材料。
而通过磁性测试、结构分析和动力学研究等方法,能够全面了解材料的磁性行为和性能特征。
材料化学实验吉林大学化学学院实验一Mn12单分子磁体的合成一、实验目的1. 了解单分子磁体的基本性质。
2. 掌握[Mn12O12 (O2CMe) 16 (H2O) 4 ]的合成方法。
二、实验原理单分子磁体是近二十年来才发展起来的一种新型磁性材料。
不同于传统的磁性材料,单分子磁体的磁性并不是由分子间的长程有序相互左右产生的,而是由单个分子内自旋中心的相互作用而产生的。
所以单分子磁体具有体积小、尺寸单一、可溶性好等一些其他材料无法替代的优点。
这使得其在高密度存储、量子计算机等方面有着巨大的潜在应用价值。
[Mn12O12 (O2CMe) 16 (H2O) 4 ]是1993年由Roberta Sessoli、Hui Lien Tsai 等发现的第一个具有单分子磁体性质的化合物。
其结构可以看成是由四个Mn(Ⅳ)为核心,八个Mn(Ⅲ)环绕在周围的结构。
[Mn12O12 (O2CMe) 16 (H2O) 4 ]分子,紫色球为Mn(Ⅳ),蓝色球为Mn(Ⅲ),红色球为O制备[Mn12O12 (O2CMe) 16 (H2O) 4 ]是一个氧化还原反应,要在适当的条件下由高锰酸钾氧化醋酸锰得到目标产物,同时控制反应温度以提高产率。
反应方程式为:44Mn(CH3COO)2·4H2O+16KMnO4+18CH3OOH =5[M n12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O+16K(CH3COO)+140H2O三、实验仪器和试剂1. 仪器100ml烧瓶1个50ml量筒1支电子天平1台控温磁力搅拌器1台循环水真空泵1台布式漏斗1个抽滤瓶1个磁力搅拌子1个研钵1个X射线粉末衍射仪2. 试剂去离子水冰醋酸A.R.醋酸锰A.R. 高锰酸钾A.R.四、实验步骤1.在40ml 60%的醋酸溶液中加入醋酸锰4.04g 16.5mmol,搅拌使醋酸锰完全溶解。
2.取高锰酸钾1.00g 6.33mmol,研细,在搅拌下将研细的高锰酸钾加入到醋酸锰溶液中,搅拌使高锰酸钾完全溶解(约5~10分钟)。
单分子磁体近日,国际上出现了“单分子磁体”,它是利用“人造分子”制造出的超导材料,单个分子有磁矩,分子间相互作用力大于斥力,构成一种新的材料。
单分子磁体具有许多优点:不但磁性能量高,且磁场稳定,几乎不受温度影响;由于单个分子的电磁力特别强,因此特别容易制成磁体。
单分子磁体的分子结构十分简单,可以自组织排列起来,形成一种均匀的三维网状结构,能在常温下达到超导态,形成特殊的单分子磁体。
单分子磁体具有许多优点:不但磁性能量高,且磁场稳定,几乎不受温度影响;由于单个分子的电磁力特别强,因此特别容易制成磁体。
单分子磁体的分子结构十分简单,可以自组织排列起来,形成一种均匀的三维网状结构,能在常温下达到超导态,形成特殊的单分子磁体。
单分子磁体对实验物理学和基础物理学都有重要意义,是最佳材料之一,有着广阔的应用前景。
我想,在未来世界,电脑能像打字机那样轻松地进行文字输入和数据处理,那时我们人类就不再被困在办公室里了。
在自然界中,所有的生物都靠不停地吞食外界的物质才能生存,没有了食物,它们只能死亡。
但是,动物在长期的进化过程中,逐渐掌握了通过消化道摄取营养物质的本领,并保证其在各个生命阶段都能顺利获得充足的营养。
随着科技的发展,新型材料不断被发现。
比如“磁性树脂”能让一般磁铁在空气中自由悬浮,还能吸收太阳能,转换成电能,这使得人类将太阳能利用到极致,可谓“一石三鸟”。
而同时也意味着人类的生存环境将得到极大改善。
作为一名科学家,我希望在未来的科技研究中,能更多地运用先进的单分子磁体材料。
单分子磁体代表着一种崭新的发展方向。
从某种角度说,它甚至可以称得上是我们的祖先留给我们的遗产。
当前,很多国家都在加紧对这一新材料的研究。
美国科学家提出“纳米晶体”概念,旨在利用纳米技术把传统材料做成纳米尺寸。
纳米材料具有表面积大、比表面积高、导电导热性能好等特点。
研究人员认为,纳米材料与金属材料或半导体材料相比,在光电器件、传感器及信息储存、显示等方面具有独特优势。
第42卷 第5期Vol.42 No.5昭通学院学报Journal of Zhaotong University 2020年10月Oct.2020●化学研究分子基磁性功能材料研究进展(昭通学院 化学化工学院,云南 昭通 657000)摘 要:分子基磁性功能材料不仅具有丰富多彩的结构,而且还具有单链磁体、单分子磁体、单离子磁体和磁致冷等特性,引起研究者的广泛关注,成为当前的研究热点。
综述了近年来分子基磁性功能材料在单链磁体、单分子磁体、单离子磁体和磁致冷等领域的应用研究进展。
并对分子基磁性功能材料的应用前景进行了总结和展望。
关键词:单链磁体;单分子磁体;单离子磁体;磁致冷中图分类号:TM271 文献标志码:A 文章编号:2095-7408(2020)05-0011-06李启彭收稿日期:2020-07-21作者简介:李启彭(1987— ),男,云南会泽人,副教授,博士,主要从事配位聚(簇)合物材料的制备及其应用研究。
分子基磁性材料作为一种新型功能材料,涉及化学、物理和材料等交叉学科领域[1-3]。
通过在分子水平上设计和制备分子基磁性材料,可以赋予其丰富多彩的结构和有趣的光、电、磁和催化等性质[3-5]。
分子基磁性材料在高密度信息存储、超低温磁制冷以及量子计算等领域具有潜在的应用前景[6-9]。
分子基磁性材料的研究主要集中在设计和制备单分子磁体、单链磁体、单离子磁体和磁致冷等方面[6-9]。
本文详细地综述了近年来分子基磁性功能材料在单链磁体、单分子磁体、单离子磁体和磁致冷等领域的应用研究进展,并对分子基磁性功能材料的应用前景进行了总结和展望。
1 单链磁体1963年,Glauber 等[10]采用统计学的方法,研究了单轴各向异性的伊辛模型,并预言一维的伊辛模型,在低温下会出现慢弛豫现象,弛豫时间满足阿伦尼乌斯公式。
2001年,Gatteschi 等[10-11]制备了一维链状钴基化合物,实验上对Glauber 提出的理论进行了论证。
单分子磁体的制备及其磁性质研究
单分子磁体(Single-Molecule Magnets,简称SMMs)是一种具有特殊磁学性质的分子。
由于其特殊的磁学性质,单分子磁体已成为磁性材料研究领域的热点之一。
在此,将介绍单分子磁体的制备及其磁性质研究的相关内容。
一、单分子磁体的概念及特征
单分子磁体一般由一个或多个金属离子和有机配体组成。
所含的磁性金属离子在配体的帮助下,可以形成具有磁性的“单分子”。
与普通的磁性材料不同,单分子磁体是非常小的,其大小一般在数纳米以下。
单分子磁体的最大特征是具有磁性滚珠的行为。
即在外层磁场的作用下,单分子磁体的自旋可以上下翻转,呈现类似于磁滚珠的磁性行为。
而SMMs磁滚珠的大小一般在几个纳米左右,这使得其具有优异的磁性性质。
二、单分子磁体的制备
单分子磁体的制备是一个非常复杂的过程,需要设计新的配体分子并通过化学合成制备。
一般而言,单分子磁体的制备分为以下几个步骤:
1、选择合适的金属离子。
通常使用的金属离子如铁、锰、铜、铬以及钴等。
2、制备配体分子。
常见的配体分子如porphyrin、phthalocyanine等。
3、将金属离子与配体分子作用。
制备单分子磁体是一种典型的自组装过程,金属离子与配体分子之间的作用力进而促进单分子磁体的形成。
4、对制备好的单分子磁体进行物理和化学表征。
磁学能级结构测量是单分子磁体表征的核心之一。
一般情况下,磁学测量需要通过其他技术手段(如电子顺磁共振、核磁共振等)来进行协助。
三、单分子磁体的磁性质研究
单分子磁体的磁性质涵盖了多方面。
其中最重要的特征之一是单分子磁体对于
外部磁场的响应行为。
对于磁斯托克差分(Magnetization)行为的研究被认为是研
究SMMs的入门关键。
研究表明,单分子磁体的磁滚珠行为是非常稳定的,通常具有极长的自旋时间(spin relaxation)这也让单分子磁体成为了可高拓展的磁存储设备的一个热门发展方向。
此外,单分子磁体还具有潜在的应用价值,例如可应用于磁性催化、量子计算和磁性能量转换等领域。
总结:
在未来的科学研究中,单分子磁体有望成为磁性材料领域的重要热点研究方向。
不过,相关的研究工作也同样具有较高的挑战性。
望科学家们在未来的研究中多方面开展工作,推动单分子磁体研究的进一步发展。