2.1.1向量的概念
- 格式:ppt
- 大小:707.00 KB
- 文档页数:14
2.1.1向量的物理背景与概念2.1.2向量的几何表示●创设情境如图,老鼠由A向西北逃窜,猫在B处向东追去,问:猫能追上老鼠吗?(画图)●教材新知1.向量的相关概念(1)向量:既有_______,又有_______的量叫做向量.如:力、位移、速度、加速度等.向量的两个要素是:______、______.(2)有向线段:带有_______的线段叫做有向线段.①以A为起点,B为终点的有向线段记作______.②有向线段的三要素是:______、______、______.(3)模:向量AB的______叫做向量AB的______(或称_____),记作______..“向量”就是“有向线段”对吗?2.向量的表示方法有两种(1)用有向线段的起点和终点字母表示,如AB、CD.起点字母必须放在终点字母的______. (2)用黑体字母表示,如a、b.(手写体向量上面的箭头一定不能漏写).3.两个特殊向量(1)零向量:模为_____的向量,记作____.“0”与“0”有区别吗?(2)单位向量:模为_____的向量.__________或__________的非零向量叫做平行向量,向量a,b平行记作______._____,即对于任意向量a,都有______.●题组集训(1)下列结论正确的是()A.对任一向量a,0a总是成立的 B.模为0的向量与任一向量平行>C.向量就是有向线段D.单位向量与任一向量平行(2)下列结论中,正确的是()A.2014cm长的有向线段不可能表示单位向量B.若O是直线l上的一点,单位长度已选定,则l上有且只有两个点A、B,使得OA、OB是单位向量C.方向为北偏西50︒的向量与东偏南40︒的向量不可能时平行向量D.一人从点A向东走500米到达B点,则向量AB不能表示这个人从点A到B点的位移(3)有下列量:质量、速度、位移、力、加速度、路程、密度、功、海拔、温度、角度、高度.其中不是向量的有()个A.6B.7C.8D.9(4)下列说法正确的是( )A.实数可以比大小,向量也可以比大小B.方向不同的向量不能比较大小,但方向相同的向量可以比较大小C.向量的模是正数D.向量的模可以比较大小(5)在直角三角形ABC 中,90BAC ∠=︒,1AB =,2AC =,则BC =_____.●课堂精讲【例1】判断下列说法是否正确,并说明理由:(1)温度是向量;(2)作用力与反作用力是一对大小相等,方向相反的向量;(3)数轴是向量;(4)若a 是单位向量,b 也是单位向量,则a 与b 的方向相同或相反.【变式训练】在下列结论中,正确的为( )A.两个有共同起点的单位向量,其终点必相同B.向量AB 与向量BA 的长度相等C.向量就是有向线段D.零向量是没有方向的【例2】一辆汽车从A 点出发向西行驶了100km 到达B 点,然后又改变方向向西偏北50︒行驶了 200km 到达C 点,最后又改变方向,向东行驶了100km 到达D 点.(1)作出向量AB ,BC ,CD ; (2)求AD .【变式训练】某人从A 地出发按北偏东30︒方向行走60米到达B 地,再从B 地向东行走100米到达C 地,再由C 地按东偏南60︒方向行走60米到达D 地.(1)作出向量AB ,BC ,CD ; (2)求AD .【例3】如图,1A 、2A 、…、8A 是O 上的八个等分点,则在以1A 、2A 、…、8A 及圆心O 九个点中任意两个点为起点与终点的向量中,模等于半径的向量有多少个?模等于【变式训练】如图,菱形的一个内角是60︒,边长为2,E 是对角线AC 与BD 的交点.(1)模为2的向量最多有几个?(不再增加线段)(2)写出模为1的向量.(不再增加线段)(3)求AC .●课后反馈(1)下列各量中是向量的是( )A.质量B.距离C.速度D.电流强度(2)下列说法中正确的是( )A.有向线段AB 与BA 表示同一个向量B.两个有公共终点的向量是平行向量C.零向量与单位向量是平行向量D.若非零向量AB ‖CD ,则直线AB 与直线CD 平行 (3)如图,在O 中,向量OB ,OC ,AO 是( )A.有相同起点的向量B.单位向量C.模相等的向量D.平行向量(4)下列结论不正确的是( )A.向量AB 与向量BA 的长度相等B.任意一个非零向量都可以平行移动C.若a ‖b ,且≠0b ,则≠0aD.两个有公共起点且平行的向量,其终点不一定相同(5)已知O 是正方形ABCD 对角线的交点,在以O 、A 、B 、C 、D 这5个点中任意一点为起点,另一点为终点的所有向量中,与DA 是平行向量的有( )A.CBB.DBC.BAD.OB(6)把平面上一切单位向量平移到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个孤立点D.一个圆(7)下列结论中,正确的是( )A.坐标平面上的x 轴,y 轴都是向量B.若AB 是单位向量,则BA 不是单位向量C.若0=a ,1=b ,则a ‖bD.计算向量的模与单位长度无关 (8)O 是ABC ∆内一点,且OA OB OC ==,则O 是ABC ∆的( )A.重心B.内心C.外心D.垂心(9)如图,平行四边形ABCD 中,E 、F 分别是AD 、BC 的中点,则以A 、B 、C 、D 、E 、F 这6个点中任意两点分别作为起点和终点的所有向量中,与向量EF 方向相反的向量是 _______.(10)以下命题正确的是_______.①单位向量都平行;②任一单位向量都大于0;③单位向量的模相等.(11)如图,ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是_______.(12)直线l :1y x =-上点(),A x y ,使OA 为单位向量(其中O 为坐标原点),则x =______,y =______.(13)如图,D、E、F分别是ABC∆各边的中点,若2BC=,则DF=______,BE=______.(14)如图,45⨯方格纸中有一向量AB,现以方格纸中的格点为起点和终点作向量,其中与AB长度相等且与AB平行的向量有多少个?(AB除外)(15)如图,已知四边形ABCD是矩形,O是对角线AC与BD的交点,写出以A、B、C、D、O为始点和终点的所有向量.(16)如图,A、B、C三点的坐标依次是(),x y,其中x、y∈R,当x、y满0,1、()1,0-、()足什么条件时,OC‖AB.。
2.1.1 向量的概念1.了解平面向量的实际背景.2.理解平面向量的概念,两个向量相等的含义. 3.掌握向量的几何表示.1.向量的定义及表示方法 (1)向量:具有大小和方向的量. (2)向量的表示方法2.与向量有关的概念(1)零向量:长度等于零的向量,记作0. (2)向量共线或平行基线:通过有向线段AB →的直线,叫做向量AB →的基线.如果向量的基线互相平行或重合,则称这些向量共线或平行.共线向量的方向相同或相反.向量a 平行于b ,记作a ∥b .(3)相等向量:两个向量a 和b 同向且等长,即a 和b 相等,记作a =b . (4)向量的长度(模)如果AB →=a ,那么AB →的长度表示向量a 的大小,也叫做a 的长(或模),记作|a |. 3.用向量表示点的位置任给一定点O 和向量a (如图),过点O 作有向线段OA →=a ,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量OA →常叫做点A 相对于点O 的位置向量.1.判断(正确的打“√”,错误的打“×”) (1)向量的模是一个正实数.( ) (2)向量就是有向线段.( ) (3)向量AB →与向量BA →是相等向量.( )(4)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (5)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× 2.已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M 答案:D3.如图,在⊙O 中,向量OB →、OC →、AO →是( )A .有相同起点的向量B .共线向量C .模相等的向量D .相等的向量 答案:C4.若A 地位于B 地正西方向5 km 处,C 地位于A 地正北方向5 km 处,则C 地相对于B 地的位移是________.解析:如图所示C 地相对于B 地的位移是西北方向5 2 km.答案:西北方向5 2 km向量的概念[学生用书P34]下列关于向量的说法正确的个数是( )①起点相同,方向相同的两个非零向量的终点相同;②起点相同,长度相等的两个非零向量的终点相同;③两个平行的非零向量的方向相同;④两个共线的非零向量的起点与终点一定共线.A .3B .2C .1D .0【解析】 起点相同,方向相同的两个非零向量若长度不相等,则终点不相同,故①不正确;起点相同,长度相等的两个非零向量的终点不一定相同,其终点在一个圆上,故②不正确;两个平行的非零向量的方向相同或相反,故③不正确;两个共线的非零向量的起点与终点不一定共线,所对应的直线可能平行,故④不正确.【答案】 D对于概念性题目,关键把握好概念的内涵与外延,正确理解向量共线、向量相等的概念,清楚它们的区别与联系.给出下列几种说法:①若非零向量a 与b 共线,则a =b ; ②若向量a 与b 同向,且|a |>|b |,则a >b ; ③若两向量有相同的基线,则两向量相等. 其中错误说法的序号是______.解析:①错误.共线向量是指向量的基线互相平行或重合,其方向相同或相反,所以共线向量未必相等.②错误.向量是既有大小,又有方向的量,不能比较大小.③错误.两向量有相同的基线表示两向量共线(或平行),但两向量的大小和方向都不一定相同.答案:①②③向量的表示[学生用书P34]一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解】 (1)如图所示.(2)由题意,易知AB →与CD →方向相反, 故AB →与CD →共线, 即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).用有向线段表示向量的步骤在如图所示的坐标纸中,每个小正方形的边长为1,画出下列向量.(1)|OA →|=3,点A 在点O 正西方向;(2)|OB →|=32,点B 在点O 北偏西45°方向; (3)|BC →|=6,点C 在点B 正东方向. 解:(1)(2)(3)如图:相等向量与共线向量[学生用书P35]如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的长度相等,方向相反的向量有哪些? (2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c 相等的向量.【解】 (1)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(3)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.相等向量与共线向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.如图所示的▱ABCD ,OA →=a ,OB →=b .(1)与OA →的模相等的向量有多少个? (2)与OA →的模相等且方向相反的向量有哪些? (3)写出分别与OA →、AB →共线的向量.解:(1)与OA →的模相等的向量有OC →,AO →,CO →三个向量. (2)与OA →的模相等且方向相反的向量为OC →,AO →.(3)与OA →共线的向量有AO →,AC →,OC →,CO →,CA →;与AB →共线的向量有DC →,CD →,BA →.1.向量既有大小又有方向,但不能比较大小,向量的模是数量,可以比较大小.对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的.2.平行(共线)概念不是平面几何中平行线概念的简单移植,这里的平行是指方向相同或相反的一对向量,它与长度无关,与是否在一条直线上无关.向量平行与直线平行的区别1.直线的平行具有传递性,即a ∥b ,b ∥c ⇒a ∥c .2.向量的平行不具有传递性,即若a ∥b ,b ∥c ,则未必有a ∥c ,因为若b =0,它与任意向量共线,故a ,c 两向量不一定共线.1.下列物理量:①速度;②位移;③力;④加速度;⑤路程;⑥密度.其中不是向量的有( )A .1个B .2个C .3个D .4个解析:选B.由于速度、位移、力、加速度都是由大小和方向确定,具备了向量的两个要素,所以是向量;而路程、密度只有大小没有方向,所以不是向量.故选B.2.下列关于零向量的说法不正确的是( ) A .零向量是没有方向的向量 B .零向量的方向是任意的 C .零向量与任一向量平行 D .零向量只能与零向量相等解析:选A.零向量的方向是任意的,是有方向的.3.如图,小正方形的边长为1,则|AB →|=________;|CD →|=________;|EF →|=________.解析:根据勾股定理可得|AB →|=32,|CD →|=26, |EF →|=2 2. 答案:3 226 2 24.在四边形ABCD 中,若AB →∥CD →,且|AB →|≠|CD →|,四边形ABCD 为________. 解析:由题意可知,对边AB 与CD 平行且不相等,故四边形ABCD 为梯形.答案:梯形, [学生用书P103(单独成册)])[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等; ④与非零向量a 共线的单位向量是a |a|. A .3 B .2 C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的. 2.若a 为任一非零向量,b 的模为1,给出下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1. 其中正确的是( ) A .①④ B .③ C .①②③D .②③解析:选B.①中,|a |的大小不能确定,故①错误;②中,两个非零向量的方向不确定,故②错误;④中,向量的模是一个非负实数,故④错误;③正确.选B.3.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则两向量共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形B .矩形C .菱形D .等腰梯形解析:选C.由BA →=CD →,知AB =CD 且AB ∥CD , 即四边形ABCD 为平行四边形. 又因为|AB →|=|AD →|, 所以四边形ABCD 为菱形.5.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A .AB →=OC → B .AB →∥DE → C .|AD →|=|BE →|D .AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →不共线,故AD →≠FC →,故选D. 6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22, 所以|OA →|= 2. 答案: 27.给出下列三个条件:①|a |=|b |;②a 与b 方向相反;③|a |=0或|b |=0,其中能使a ∥b 成立的条件是________.解析:由于|a |=|b |并没有确定a 与b 的方向, 即①不能够使a ∥b 成立; 因为a 与b 方向相反时,a ∥b , 即②能够使a ∥b 成立; 因为零向量与任意向量共线, 所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是②③. 答案:②③8.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在如图的方格纸(每个小方格的边长为1)上,已知向量a .(1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么. 解:(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如图所示.(2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如图所示.10.如图所示,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明:因为AB →=DC →, 所以|AB →|=|DC →|且AB ∥CD , 所以四边形ABCD 是平行四边形, 所以|DA →|=|CB →|且DA ∥CB .同理可得,四边形CNAM 是平行四边形, 所以CM →=NA →. 所以|CM →|=|NA →|, 所以|MB →|=|DN →|, 又DN →与MB →的方向相同, 所以DN →=MB →.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图所示,已知四边形ABCD 是矩形,O 为对角线AC 与BD 的交点,设点集M ={O ,A ,B ,C ,D },向量的集合T ={PQ →|P ,Q ∈M ,且P ,Q 不重合},则集合T 有________个元素.解析:以矩形ABCD 的四个顶点及它的对角线交点O 五点中的任一点为起点,其余四点中的一个点为终点的向量共有20个.但这20个向量中有8对向量是相等的,其余12个向量各不相等,即为AO →(OC →)、OA →(CO →),DO →(OB →),BO →(OD →),AD →(BC →),DA →(CB →),AB →(DC →),BA →(CD →),AC →,CA →,BD →,DB →,由元素的互异性知T 中有12个元素.答案:1213.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示:(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=55米.14.(选做题)如图所示方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC →|= 5.(1)画出所有的向量AC →;(2)求|BC →|的最大值与最小值.解:(1)画出所有的向量AC →,如图所示.(2)由第一问所画的图知,①当点C 位于点C 1和C 2时,|BC →|取得最小值12+22=5;②当点C 位于点C 5和C 6时,|BC →|取得最大值42+52=41.所以|BC →|的最大值为41,最小值为 5.。
张喜林制2.1.1 向量的概念考点知识清单1.位移只表示质点位置的变化,起、终点间位置关系,而与无关.2.我们把具有___ _称为向量,本节主要学习的是____,只有____ 两个要素,3.具有方向的线段,叫做____.____ 就是向量的直观形象.有向线段的方向表示____,线段的长度表示____.位移的距离叫做____.4.用有向线段表示向量时,与它的始点位置____,即同向且‘等长的有向线段表示____,或.5.两个向量a和b同向且等长,即a和b相等,记作____.6.长度等于零的向量,叫做.记作0.零向量的方向7.通过有向线段AB的直线,叫做向量AB的8.如果向量的基线互相平行或重合,则这些向量.共线的向量称共线向量(或平行向量).向量a平行于b,记作OA 则点A相对于点O的位置被向量a唯一确定,这时9.任给一定点O和向量a,过点0作有向线段a向量OA叫做点A相对于点O的要点解读1.位移的概念在物理学中,研究物体在平面内的位置和运动规律时,一般忽略它的大小,把它看做__个质点,用点表示它在平面的位置.如图2 -1 -1 -1所示,一个质点从点A运动到点A’,这时点A’相对于点A的位置是北偏东300,3个单位.如果我们不考虑质点运动的路线,只考虑点A’相对点A的“方向”和“直线距离”,这时,我们就说质点在平面上做了一次位移,“直线距离”叫做位移距离.2.向量的概念在高中阶段,我们暂且把具有大小和方向的量称为向量,更具体些,我们先把一个向量理解为?一个位移”或表达为“一点相对于另一点的位置”的量.3.向量的表示方法(1)用有向线段来表示的几何表示法①有向线段从点A 位移到点日,用线段AB 的长度表示位移的距离,在点B 处画上箭头表示位移的方向,这时我们说线段AB 具有从A 到B 的方向.具有方向的线段,叫做有向线段.点A 叫做有向线段的始点,点B 叫做有向线段的终点.显然,有向线段就是向量的直观形象,有向线段的方向表示向量的方向,线段的长度表示位移的距离,位移的距离叫做向量的长度.②向量的几何表示法以A 为始点,以B 为终点的有向线段记AB :(如图2 -1 -1 -2),应注意,始点一定要写在终点的前面, 已知AB AB ,的长度记作.||AB 如果有向线段AB 表示一个向量,通常我们就说向量.AB(2)用字母表示向量向量除了用上面的符号表示外,通常在印刷时,用黑体小写字母a 、b 、c 、…表示向量,手写时,可写成带箭头的小写字母 c b a ,,在图2 -1-1-3中,有向线段 ,,CC BB AA 、都表示同一向量a ,这时可记作.a CC BB M ====由以上分析,一个平面向量的直观形象是平面上“同向且等长的有向线段的集合”.4.向量的模如果,a AB =那么AB 的长度,表示向量a 的大小,也叫做a 的长(或模),记作.||a5.与向量有关的概念(1)相等向量长度相等且方向相同的向量叫做相等向量.两个向量a 和b 同向且等长,即a 和b 相等,记作a=b.(2)零向量长度等于零的向量,叫做零向量,记作O ,零向量的方向不确定,是任意的.(3)单位向量长度等于1个单位的向量,叫做单位向量.(4)共线向量(平行向量)通过有向线段AB 的直线,叫做向量AB 的基线(如图2 -1 -1 -4).如果向量的基线互相平行或重合,则称这些向量共线或平行.这就是说,共线向量的方向相同或相反,向量a平行于b,记作a //b.6.用向量表示点的位置OA=则点A相对于点0的位置被向量a 任给一定点0和向量a(如图2 -1 -1 -5),过点0作有向线段aOA又常叫做点A相对于点0的位置向量,所唯一确定,这时向量,例如,在谈到天津相对于北京的位置时(如图2-1-1-6),我们说,“天津位于北京东偏南50。
数学导学案 平面向量 班级______姓名_________2.1.1向量的概念一、复习引入:有一类量如长度、质量、面积、体积等,只有 没有 ,这类量我们称之为数量. 而力是常见的物理量,重力、浮力、弹力等都是既有 又有 的量;那这样的量叫什么呢?二、知识梳理:1、向量的概念:数学中,我们把这种既有 ,又有 的量叫做向量.问题1:数量和向量的异同点有哪些?2、向量的表示法:问题2:向量有几种表示方法?(1)人们常用 来表示向量,线段按一定比例画出,它的长短表示向量的大小,箭头的指向表示向量的方向.⑵ 以A 为起点,B 为终点的有向线段记作 ,线段AB 的长度称为模,记作AB .有向线段包含两个要素:(3)有向线段也可用字母如a , , 表示.3、几个特殊的向量:零向量:长度为 的向量;单位向量:长度等于 的向量.说明:零向量、单位向量的定义都只是限制了大小.平行向量(共线向量):方向相同或相反的非零向量. 若向量a ,b 平行,记作://a b . 因为任一组平行向量都可以移动到同一条直线上,因此,平行向量也叫做共线向量问题3:如何理解零向量的方向?4、相等向量:长度相等且 的向量叫做相等向量,用有向线段表示的向量a 与b 相等,记作:a b .发光并非太阳的专利,你也可以发光 姓名_____________班级____________ 例题与练习例1、如右图,设O 是正六边形ABCDEF 的中心,分别写出图中与OD ,OE , OF 相等的向量.变式:(1)与AB 相等的向量有哪些?(2)OA 与EF 相等吗?OB 与AF 相等吗?例2、判断下列命题是否正确,若不正确,请简述理由. ①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.例3、(1)下列说法中错误..的是( ) A.零向量是没有方向的 B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的(2)把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.圆上一群孤立点D.一个单位圆思考:1、已知非零向量b a //,若非零向量a c //,则c 与b 必定 .2、已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 .。