《向量的概念及表示》
- 格式:ppt
- 大小:1.55 MB
- 文档页数:33
向量的概念及表示一、知识、能力聚焦1、向量的概念(1)向量:既有方向,又有大小的量叫做向量。
【注:和量与数量的区别,表示向量的大小称为向量的模(也就是用来表示向量的有向线段的长度)】 向量 的大小称为向量的长度(或称为模),记作│ │。
(2)零向量:长度为零的向量叫做零向量,记作 。
(3)单位向量:长度等于1的向量叫单位向量。
(5)相等向量:长度相等且方向相同的两个向量叫做相等向量,若向量 和 相等,则记作 = 。
2、共线向量共线向量(也称平行向量),应注意两个向量共线但不一定相等,而两个向量相等是一定共线。
平面几何的三点共线与两个向量共线不同:首先共线向量不考虑起点,其次明确共线向量分为如下五种情况:(1)方向相同、模相等;(2)方向相同、模不等。
(3)方向相反、模相等;(4)方向相反、模不等;(5)零向量和任何向量共线。
例:把平面一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是什么? 解:因任一单位向量的始点移到同一点O 时,终点一定落在以O 为圆心,半径为1的单位圆上,反过来,单位圆上的任一点P 都对应一个单位向量 ,故构成的图形为一单位圆。
(4)平行向量:方向相同或相反的非零向量叫做平行向量。
例: 向量 、 平行,记作// 。
向量 、 、 平行,记作// // 。
(6)零向量与任一向量平行(7)相反向量:与向量 长度相等且方向相反的向量叫做 的相反向量。
记为- , 与- 互为相反向量,且规定:零向量的相反向仍是零向量。
例: 在平行四边形ABCD 中,向量 和向量 方向相同O AB a b a b OP a b a b a b c a b c a a a a a AB DC AB且长度相等; = 。
向量 和向量 长度相等但方向相反,是一对相反向量; =- 。
3、向量的表示 几何法:用有向线段来表示,即用有向线段的起点、终点来表示,如 用| |表示长度。
例: 如图,四边形ABCD 与ABDE 都是平行四边形;①用有向线段表示与向量 相等的向量; ②用有向线段表示与向量 共线的向量;解:①与 相等的向量是 、 、 。
向量的基本概念向量是应用广泛的数学概念,它在物理学、工程学、计算机科学等领域中都有重要的应用。
本文将介绍向量的基本概念,包括向量的定义、向量的表示方式、向量的运算以及向量的性质等。
1. 向量的定义向量是具有大小和方向的量,用来表示空间中的位移、速度、力等物理量。
一个向量通常用一个有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
向量常用字母小写加箭头表示,如a→。
2. 向量的表示方式向量可以通过坐标表示或分量表示来表示。
2.1 坐标表示在直角坐标系中,一个向量可以用它在坐标轴上的投影来表示。
例如,在二维空间中,向量a→可以表示为(a₁, a₂),其中a₁是向量在x轴上的投影,a₂是向量在y轴上的投影。
在三维空间中,向量a→可以表示为(a₁, a₂, a₃),其中a₁、a₂、a₃分别是向量在x、y、z轴上的投影。
2.2 分量表示向量的分量表示指的是将一个向量根据坐标轴的方向拆分成多个独立的分量。
以二维空间为例,向量a→可以表示为a→ = a₁i→ + a₂j→,其中i→和j→分别是x轴和y轴上的单位向量。
a₁和a₂分别是向量a→在x轴和y轴上的分量。
3. 向量的运算向量具有多种运算,包括加法、减法、数量乘法和点乘法等。
3.1 加法向量的加法满足交换律和结合律。
设有向量a→和向量b→,它们的和记为c→ = a→ + b→,那么c→的大小等于a→和b→的大小之和,c→的方向与a→和b→相同。
3.2 减法向量的减法可以看作是加法的逆运算。
设有向量a→和向量b→,它们的差记为c→ = a→ - b→,即c→ = a→ + (-b→)。
其中,-b→表示b→的反向量。
减法也满足交换律和结合律。
3.3 数量乘法向量的数量乘法指的是一个向量乘以一个实数。
设有向量a→和实数k,那么ka→表示向量a→的长度缩放k倍,并且方向与a→相同(当k>0)或相反(当k<0)。
数量乘法也满足结合律和分配律。
向量知识点向量是数学中的一个重要概念,它具有许多应用领域,包括物理学、工程学和计算机科学等。
在这篇文章中,我将介绍向量的基本概念、运算规则以及一些常见的应用。
一、向量的基本概念向量是一个有大小和方向的量。
它可以用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
在数学中,向量通常用加粗的小写字母(例如a)表示。
一个向量可以在坐标系中表示为一个有序的数字组合,这些数字称为向量的分量。
例如,在二维平面上,一个向量可以表示为(a, b),其中a和b分别是向量在x和y方向的分量。
在三维空间中,一个向量可以表示为(a, b, c)。
二、向量的运算规则1.向量的加法:向量的加法是按照分量进行的。
对于两个向量a=(a1,a2, a3)和b=(b1, b2, b3),它们的和为(a1+b1, a2+b2, a3+b3)。
2.向量的数乘:向量的数乘是将向量的每个分量乘以一个标量。
对于向量a=(a1, a2, a3)和标量c,它们的数乘为(c a1, c a2, c*a3)。
3.向量的点积:向量的点积是将两个向量对应分量相乘后相加得到的结果。
对于向量a=(a1, a2, a3)和b=(b1, b2, b3),它们的点积为a1b1 + a2b2 + a3*b3。
4.向量的叉积:向量的叉积是只适用于三维空间的一种运算。
对于向量a=(a1, a2, a3)和b=(b1, b2, b3),它们的叉积为(a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)。
三、向量的应用1.物理学中的向量:在物理学中,速度、加速度和力等都是向量。
通过使用向量,我们可以更好地描述和计算物体的运动。
2.工程学中的向量:在工程学中,向量可以用于表示力的合成、电路中的电流和电压以及机器人的运动轨迹。
3.计算机科学中的向量:在计算机图形学中,向量常用于表示点、线、面和体素等几何对象。
此外,向量在机器学习和数据挖掘中也有广泛的应用,例如在聚类、分类和回归分析中。