人教版初一数学练习
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
第六章几何图形初步6.2.1直线、射线、线段一、单选题1.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两条直线相交,只有一个交点2.如图,过A、B、C三点中的任意两点画直线,能画()A.2条B.3条C.6条D.无数条3.下列结论正确的是()A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.过一点只能作一条直线4.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是()A.过直线外一点有且只有一条直线与已知直线平行B.两点确定一条直线C.两点之间线段最短D.同一平面内,过一点有且只有一条直线与已知直线垂直5.如图所示,下面给出的直线a,b,射线OA,线段AB中,能相交的图形有()A.1个B.2个C.3个D.4个6.如图所示,下列说法不正确的是()A.点A在直线BD外B.点C在直线AB上C.射线AC与射线BC是同一条D.直线AC和直线BD相交于点B 7.如图,有下列结论:①以点A为端点的射线共有5条;②以点D为端点的线段共有4条;③射线CD和射线DC是同一条射线;④直线BC和直线EF是同一条直线.以上结论正确的是()A.①②B.①④C.②③D.②④8.下列说法不正确的是()A.直线比射线长B.射线是直线的一部分C.线段是直线的一部分D.线段是射线的一部分9.关于如图中的点和线,下列说法错误的是()A.点C在直线AB上B.点C在线段AB上C.点B在射线AC上D.点B在线段AC上10.平面上有A,B,C三点,如果10AB=,6BC=,那么下列说法正AC=,4确的是()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C的位置无法确定二、填空题11.通过画图,我们发现了如下的规律:图形直线上点的个数共有线段的条数213346510………若直线上有11个不同的点,则此图中共有条线段.12.直线AB BC CA,,的位置关系如图所示,下列语句:①点A在直线BC上;②直线BC经过点D;③直线AC BC,交于点C;④点C在直线 直外;⑤直线,,两两相交.以上表述正确的有.(只填写序号)AB BC CA13.如图图中有a条直线,b条射线,c条线段,则a+b-c的值等于.14.直线AB BC CA,,的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB BC CA,,两两相交;④点B 是直线AB BC,的交点,以上语句正确的有(只填写序号)15.可以朝两边的线叫做直线.16.直线上的部分叫做射线,这个点叫做射线的.三、解答题17.用尺规作图,不写作法,但要保留作图痕迹a b a b<;已知:线段,()求作:线段3=-.AB a b18.如图,已知四点A,B,C,D(任意三点都不在一条直线上),按照下列语句画出图形:(1)画线段AB;(2)画射线BD;(3)连接AC与BD相交于点O;(4)画线段BC并反向延长BC至点E,使2=(保留画图痕迹,不写画法).CE BC19.请写出图中以O为端点的各条射线.20.按要求画图:(1)画线段2AB=cm;(2)在AB上取点C,使1==cm;AC BC(3)反向延长AB到F,使1AF=cm;(4)延长AB到E,使2BE=cm;(5)过E作直线EG,以F为端点作一射线FG,并与直线EG相交于G.参考答案1.D2.B3.B4.B5.B6.C7.B8.A9.D10.A11.5512.②③④⑤13.114.①③④15.无限延伸16.一点和它一旁端点17.解:线段AB即为所求.18.(1)解:线段AB即为所求;(2)解:射线BD即为所求;(3)解:点O即为所求;(4)解:CE即为所求,19.解:如图所示:。
人教版七年级上册数学教材同步练习全套第一章有理数《1.1正数和负数》同步练习能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,14;②34,0,212;③113,0.3,7;④1 2,15,2.其中,3个数都不是负数的是( )A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是( )①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有( )A.36B.37C.38D.396.已知一个乒乓球的标准质量为 2.70 g,把质量为 2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 27-2+3千焦的热量,27-2+3千焦的含义是产生的热量在千焦至千焦之间.8.前进 5 m记为+5 m,再前进-5 m,则总共走了m,这时距离出发地m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律: -1,12,-13,14,-15,16,…. 请问:(1)第7个数、第8个数、第9个数分别是什么? (2)第100个数是多少?它是正数还是负数?(3)分数12016,12017是不是这列数中的数?如果是,是第几个数? (4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升 1.D 2.C3.D a 可正、可负、可为0.4.A5.A6.-0.01 g7.25 308.10 0 前进-5m 相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8, 所以班级平均分是85-8=77(分). 所以乙的成绩是77-6=71(分); 丙的成绩是77+12=89(分); 丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m 和50.1m. (2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m. 创新应用11.解:(1)第7个数是-17,第8个数是18,第9个数是-19. (2)第100个数是1100,1100是正数.(3)分数12016是这列数中的数,且是第2016个数;12017不是这列数中的数,当分母为奇数时,这个数应是负数.(4)如果把这列数无限地排列下去,将与0越来越接近.1.2 有理数《1.2.1 有理数》同步练习能力提升1.在-225,π,0,14,-5,0.333…六个数中,整数的个数为( ) A.1B.2C.3D.42.- 12不属于( ) A.负数B.分数C.整数D.有理数3.在下列集合中,分类正确的是( ) A.正数集合{5,32,0.5,…}B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数( )A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,5.已知下列各数:-4,3.5,13非正数有.6.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√”表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-31,99.9,0,4.2(1) (2)9.写出五个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数.10.在七(1)班举行的“数学晚会”上,A,B,C,D,E五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢?创新应用★11.黑板上有10个有理数,小明说“其中有6个正数”,小红说“其中有6个整数”,小华说“其中正分数的个数与负分数的个数相等”,小林说“负数的个数不超过3个”.请你根据四名同学的叙述判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C -12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21 -4,0,-26.0和负整数正分数 17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0. 解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.《1.2.2 数轴》同步练习能力提升1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为( )A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是( )A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-12,0,-412,3,-3的点中,在原点左边的点有个, 表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.10.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C 在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4 -66.27.7 符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1 画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.《1.2.3 相反数》同步练习能力提升1.下列说法:①若a,b互为相反数,则a+b=0;②若a+b=0,则a,b互为相反数;③若a,b互为相反数,则ab =-1;④若ab=-1,则a,b互为相反数.其中正确的结论有( )A.1个B.2个C.3个D.4个2.相反数不大于它本身的数是( )A.正数B.负数C.非正数D.非负数3.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( )A.-2B.2C.212D.-2124.如图,表示互为相反数的两个数是( )A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.如果a=-a,那么表示数a的点在数轴上的位置是 ( )A.原点左侧B.原点右侧C.原点或原点右侧D.原点6.若a=-2 016,则-a= .7.-(-8)是的相反数,-(+6)是的相反数.8.在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3)与-(-3)中,互为相反数的是.(填序号)9.已知a-4与-1互为相反数,求a的值.★10.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.创新应用★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数.参考答案能力提升 1.C 2.D3.D 这对相反数在数轴上表示的点之间的距离为5,则这两个数分别为212与-212,由题意知这个数为-212.4.C5.D a=-a,表示一个数的相反数等于它本身,相反数等于它本身的数只有0,故表示数a 的点在数轴上的位置是原点.6.2 0167.-8 6 -(-8)=8,8是-8的相反数;-(+6)=-6,-6是6的相反数. 8.③④9.解:因为1与-1互为相反数,所以a-4=1,所以a=5,即a 的值为5. 10.解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.创新应用11.解:A:1,B:-2,C:0,D:-0.5,E:-1,F:3.《1.2.4绝对值》同步练习一.选择题1.−2的绝对值是( )A .−2B .− 12C .12D .22.|−2|的绝对值的相反数是()A.−2 B.2 C.−3 D.33.|−2|=x,则x的值为()A.2 B.−2 C.±2 D.1 24.绝对值等于本身的数有()A.0个 B.1个 C.2个 D.无数个5.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 6.若a为有理数,且|a|=−a,那么a是()A.正数 B.负数 C.非负数 D.非正数二.填空题7.−|−5|= .三.解答题11.化简下列各数:(4)−[−(−a)];(5)|−(+7)|;(6)−|−8|;12.计算:(1)|−7|−|+4|;(2)|−7|+|−2009|.答案:1.D 2.A 3.A4.D解析:因为正数的绝对值是本身,0的绝对值为0,所以绝对值等于本身的数有无数个.5.C解析:数轴上点A,B,C,D在数轴上表示的数是;A=−2,B=−1,C=1,D=3.5,∴|B|=1,|C|=1,∴绝对值相等的两个点是点B和点C.6.D解:∵|a|=−a,∴a是负数或0,即非正数.7.−58.±3解析:∵|−3|=3,∴|x|=3,∵|±3|=3,∴x=±3.9.±3解析:因为|3|=3,|−3|=3,所以绝对值是3的数是±3.10.相等或互为相反数解析:∵|a|=|b|,∴a和b的关系为:相等或互为相反数.11.解:(1)−(−5)=5;(2)−(+7)=−7;(4)−[−(−a)]=−a;(5)|−(+7)|=7;(6)−|−8|=−8;(8)−|−a|(a<0)=−(−a)=a.12.解:(1)原式=7−4=3;(2)原式=7+2009=2016.《1.2.5有理数比较大小》同步练习一.选择题1.在−4,0,−1,3这四个数中,最大的数是( ) A .−4 B .0 C .−1 D .32.在−4,2,−1,3这四个数中,比−2小的数是( ) A .−4 B .2 C .−1 D .33.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .−3℃B .15℃C .−10℃D .−1℃4.比0大的数是( ) A .−2 B .−32C .−0.5D .15.a 、b 在数轴上位置如图所示,则a 、b 、−a 、−b 的大小顺序是( )A .−a <b <a <−bB .b <−a <a <−bC .−a <−b <b <aD .b <−a <−b <aA .−25B .0C .25 D .2.5 二.填空题9.比较大小:|−134| −(−1.8)(填“>”、“<”或“=”).10.已知a,b两数在数轴上的表示如图所示,则−a b.(填“>”、“=”或“<”)三.解答题11.利用绝对值比较大小.12.比较下列各组有理数的大小:(1)−(−8)和−8;(2)−(+8)和|−8|;(3)+(−5)和−|−8|;(4)−2.25和−|−2.25|.答案:1.D 2.A 3.C 4.D5.B解析:从数轴上可以看出b<0<a,|b|>|a|,∴−a<0,−a>b,−b >0,−b>a,即b<−a<a<−b.6.A 7.>8.一4<一227<0<0.14<2.7 9.<10.>解析:根据数轴的特征,可得a>0>b,而且|a|<|b|,∴−a>b.(3)−(−725)与>−125.12.解:(1)∵−(−8)=8,∴−(−8)>−8.(2)∵−(+8)=−8,|−8|=8,−8<8,∴−(+8)<|−8|.(3)∵+(−5)=−5,−|−8|=−8,又∵|−5|=5,|−8|=8,∴+(−5)>−|−8|.(4)∵−|−2.25|=−2.25,∴−2.25=−|−2.25|.《1.3.1有理数的加法》同步练习一.选择题1.数轴上的点A表示的数是-1,将点A向左移动5个单位,终点表示的数是()A.4 B.-4 C.6 D.-62.一个点从数轴上的-3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A.3 B.-5 C.-1 D.-93.计算3+(-3)的结果是()A.6 B.-6 C.1 D.04.计算-2+6等于()A.4 B.8 C.-4 D.-85.计算(-3)+(-2)的结果是()A.-6 B.-5 C.6 D.56.如果|a|+|b|=0则a与b的大小关系一定是()A.a=b=0 B.a与b不相等C.a与b互为相反数 D.a与b异号二.填空题8.某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午(2)+(-3)=8;(4)(-3)+ =0.三.解答题11.计算:(3)(−0.25)+(+14);(4)(−312)+(+413).12.已知:|a|=2,|b|=3且a>b,求a+b的值.答案:1.D 2.B 3.D 4.A 5.B6.A解析:∵|a|+|b|=0,∴|a|=0,|b|=0,∴a=0,b=0.7.-2 8.3℃9.4或-8.解析:∵a的相反数是2,∴a=-2,∵|b|=6,∴b=±6,①当a=-2,b=6时,a+b=-2+6=4;②当a=-2,b=-6时,a+b=-2+(-6)=-8.10.(1)-5,(2)11,(3)2,(4)3.(2)原式=3.25-2.5=0.75;(3)原式=-0.25+0.25=0;(4)原式=-72+133=−21+266=56.12.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=-3,则a+b=-1.当a=-2时,b=-3,则a+b=-5.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D .可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a ,b 在数轴上的位置如图,则a+b 的值( ) A.大于0B.小于0C.小于aD.大于b3.若a 与1互为相反数,则|a+1|等于( ) A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则( ) A.三个数一定同号 B.三个数一定都是0 C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x 的相反数是-2,|y|=4,则x+y 的值为 .6.绝对值小于2 016的整数有 个,它们的和是 .7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4); (2)|(-7)+(-2)|+(-3); (3)(-0.6)+0.2+(-11.4)+0.8; (4)(-423)+(-313)+(+614)+(-214).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B 地在A 地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-556+(-923)+(-312)+1734.解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34)=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34] =0+(-54)=-54.(2)上述这种方法叫做拆项法,依照上述方法计算:(-201756)+(-201623)+4 034+(-112).创新应用★11.用[x ]表示不超过x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+[-13].★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升 1.D2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6 因为|4|=4,|-4|=4,所以y=±4.又因为x 的相反数为-2, 所以x=2.再将x ,y 的值代入x+y 求值. 6.4 031 07.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9. (2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11. (4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12)]=[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)] =0+[(-56)+(-46)+(-36)] =-2. 创新应用11.解:(1)原式=3+(-3)=0. (2)原式=-8+(-1)=-9. 12.解:本题答案不唯一,如:1.3.2有理数的减法《第1课时有理数的减法》同步练习能力提升1.某地2019年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的一天是()A.1月1日B.1月2日C.1月3日D.1月4日2.下列计算正确的是()A.(-4)-|-4|=0B.14−12=12C.0-5=5D.(-5)-(-4)=-1★3.下列说法中正确的是() A.两数之差一定小于被减数B.某个数减去一个负数,一定大于这个数减去一个正数C.0减去任何一个数,都得负数D.互为相反数的两个数相减一定等于04.在数轴上,表示a 的点总在表示b 的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或95.小明家冰箱冷冻室的温度为-5 ℃,调低4 ℃后的温度为 .6.-13的绝对值与-212的相反数的差是 . 7.计算:(-14)-(-6)= ; (-8)-( )=-8; 0-(-2.86)= ;-(-5)=-3; (-135)-( )=0.8.已知|x|=5,y=3,则x-y= .9.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少? (2)以华氏度为单位,有记录的最高温度和最低温度相差多少?10.某中学九(1)班学生的平均身高是166 cm .(1)下表给出了该班6名同学的身高(单位:cm).试完成下表:(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?11.设a是-4的相反数与-12的绝对值的差,b是比-6大5的数.(1)求a-b与b-a的值;(2)从(1)的结果中,你知道a-b与b-a之间的关系吗?创新应用★12.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案能力提升1.D2.D3.B4.D5.-9 ℃(-5)-4=(-5)+(-4)=-9(℃).6.-136|-13|=13,-212的相反数等于212,13-212=13−52=26−156=-136.7.-802.86-8-1358.2或-8由|x|=5,知x=±5,故x-y=5-3=2或x-y=-5-3=-8.9.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.10.解:(1)173158168-6+9(2)小武最高,小华最矮.(3)因为9-(-8)=17(cm),所以最高与最矮的同学身高相差17cm.11.解:由题意知a=-(-4)-|-12|=4-12=4+(-12)=-8,b=-6+5=-1. (1)a-b=-8-(-1)=-8+(+1)=-7,b-a=-1-(-8)=-1+8=7. (2)a-b 和b-a 互为相反数. 创新应用12.解:因为|a|=7,|b|=9,所以a=±7,b=±9.又|a+b|=-(a+b ), 故a+b<0.所以a=±7,b=-9. 因此,当a=7,b=-9时,b-a=-9-7=-16; 当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.《第2课时 有理数的加减混合运算》同步练习能力提升1.等式-2-7不能读作( ) A.-2与7的差B.-2与-7的和C.-2与-7的差D.-2减去72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律D.加法的交换律与结合律★3.在广西壮族自治区柳江县尧村有一眼奇特的报时泉,泉眼在距山脚约100 m 处的半山腰,中国地质科学院广西岩溶所的专家沿洞向上游走了1512 m,又向下游走了1513 m,再向上游走了423 m,这时专家在洞口的( )A.上游1113 m 处B.下游11 m 处C.上游23 m 处 D.上游456 m 处4.“负8、正15、负20、负8、正12的和”用算式表示为 .5.0-2123+(+314)−(-23)−(+14)的值为 . 6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .7.一只跳蚤在某条直线上从点O 开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是 个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c= . 9.计算:(1)|112-111|+|113-112|+|114-113|; (2)1-[-1-(-37)-5+47]+|-4|; (3)314+(-235)+534+(-825).10.已知a=-312,b=+2.5,c=+3,d=-113,求(a+b)+(c+d)的值.11.下表为某公司股票在本周内每日的涨跌情况:(单位:元)计算这一周内该公司股票每股价格的变化是上涨还是下跌,上涨或下跌了多少元?创新应用★12.如图所示,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m 后,又往下滑了0.1 m;第二次往上爬了0.47 m 后,又往下滑了0.15 m;第三次往上爬了0.6 m 后,又往下滑了0.15 m,第四次往上爬了0.8 m 后,又往下滑了0.1 m;第五次往上爬了0.55 m 没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案能力提升 1.C 2.D 3.D4.-8+15-20-8+125.-18 原式=-2123+314+23−14=-2123+23+314−14=-21+3=-18.6.07.50 设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100=(-1)+(-1)+…+(-1)⏟50个=-50. 所以第100次落在点O 左侧50个单位处, 故落点处离点O 的距离是50个单位.8.-10 根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解:(1)原式=(111-112)+(112-113)+(113-114)=111−114=3154. (2)原式=1-(-1-5+47+37)+4=1+5+4=10.(3)原式=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 10.解:(a+b)+(c+d)=[(-312)+(+2.5)]+[(+3)+(-113)] =-1+123=23.11.解:(+1.25)+(-1.05)+(-0.25)+(-1.55)+(+1.3) =[(+1.25)+(-0.25)]+[(-1.05)+(-1.55)]+(+1.3) =(+1)+(-2.6)+(+1.3) =[(+1)+(+1.3)]+(-2.6) =(+2.3)+(-2.6) =-0.3.答:本周内该公司股票每股价格下跌了,下跌了0.3元. 创新应用 12.解:因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3, 所以它不能爬出井口,第六次它至少要往上爬3-2.42=0.58(m). 13.解:根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.1.4.1 有理数的乘法《第1课时 有理数的乘法》同步练习能力提升1.如图所示,数轴上A,B 两点所表示的两数的 ( )A.和为正数B.和为负数C.积为正数D.积为负数 2.下列计算正确的是( ) A.(-0.25)×(-16)=-14 B.4×(-0.25)=-1 C.(-89)×(-1)=-89 D.(-313)×(-115)=-43.一个有理数和它的相反数的积一定是( ) A.正数B.负数C.非正数D.非负数4.在-7,4,-4,7这四个数中,任取两个数相乘,所得的积最大是( ) A.28B.-28C.49D.-49★5.若a+b<0,且ab<0,则( ) A.a>0,b>0 B.a<0,b<0C.a,b 异号且负数的绝对值大D.a,b 异号且正数的绝对值大 6.-45的倒数的相反数是 .7.若|a|=5,b=-2,且ab>0,则a+b= .8.对任意有理数a,b,规定a*b=ab-b,则0*(-2 016)的值为 . 9.计算:(1)(-214)×(-325);(2)|-14|×(-112).★10.用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?创新应用★11.观察下列各式:-1×12=-1+12;-12×13=-12+13;-13×14=-13+14;…….(1)你发现的规律是-1n ×1n+1= .(n 为正整数) (2)用规律计算:(-1×12)+(-12×13)+(-13×14)+…+(-12014×12015)+(-12015×12016).参考答案能力提升 1.D 2.B3.C 由相反数的定义知,互为相反数的两个数异号或都为0,故它们的乘积是非正数.4.A 这四个数中,任取两个数相乘,所得的积分别为-28,28,-49,-16,28,-28,其中28最大.5.C 由ab<0可知a,b 异号;由a+b<0可知负数的绝对值较大.6.547.-7 由|a|=5知a=±5.因为ab>0,b=-2<0, 所以a=-5.所以a+b=-5+(-2)=-7.8.2 016 由题意,得0*(-2016)=0×(-2016)-(-2016)=0+2016=2016.9.解:(1)原式=94×175=15320.(2)原式=14×(-32)=-14×32=-38. 10.解:下降3cm,记作-3cm. (-3)×4=-12(cm).答:4天后这个水库水位下降了12cm. 创新应用11.解:(1)-1n +1n+1(2)原式=-1+12−12+13−13+…-12014+12015−12015+12016=-1+12016=-20152016.《第2课时 有理数的乘法运算律》同步练习能力提升1.大于-3且小于4的所有整数的积为( ) A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了( )A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是( ) ①(3-412)×2=3-412×2②-4×(-7)×(-125)=-(4×125×7) ③91819×15=(10-119)×15=150-1519④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50 A.1B.2C.3D.44.绝对值不大于2 015的所有整数的积是 .5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为 .7.计算(1-2)×(2-3)×(3-4)×…×(2 014-2 015)×(2 015-2 016)的结果是 .8.计算:(1)(-991516)×8; (2)(-11)×(-25)+(-11)×(+235)+(-11)×(-15).9.计算:(1100-1)×(199-1)×(198-1)×…×(13-1)×(12-1).10.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b -2)×(c -3)的值.11.已知|ab cd |称为二阶行列式,规定的运算法则为|a bcd|=ad-bc,例如|3524|=3×4-5×2=2.根据上述内容计算|-79-132-314|的值.★12.观察下列等式(式子中的“!”是一种数学运算符号):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1, (2016)2015!的值.创新应用★13.学习了有理数的运算后,王老师给同学们出了这样一道题: 计算711516×(-8),看谁算得又对又快. 下面是两位同学给出的不同解法:小强:原式=-115116×8=-920816=-57512;小莉:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512. (1)以上两种解法,你认为谁的解法比较简便? (2)你还有其他解法吗?如果有,那么请写出解答过程;(3)你能用简便方法计算-999899×198吗?如果能,那么请写出解答过程.参考答案能力提升1.C 大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A ①错误,3也应乘2;②③④正确.4.0 符合条件的整数中有一个为0,所以它们的积为0.5.-168 2106.0 原式=(-8)×[(-2)+(-1)-(-3)] =(-8)×[(-2)+(-1)+(+3)] =(-8)×0=0.7.-1 原式=(-1)×(-1)×(-1)×…×(-1)⏟2015个(-1)=-1.8.解:(1)原式=(-100+116)×8 =-100×8+116×8 =-800+12 =-79912.(2)原式=(-11)×(-25+235-15) =-11×2=-22.9.解:原式=(-99100)×(-9899)×(-9798)×…×(-23)×(-12)=-99100×9899×9798×…×23×12=-1100.10.解:因为|a+1|+|b+2|+|c+3|=0, 所以a+1=0,b+2=0,c+3=0, 所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48. 11.解:|-79-132-314|=(-79)×(-314)−(-13)×2=16+23=56. 12.解:2016!2015!=2016×2015×2014×…×2×12015×2014×2013×…×2×1=2016.创新应用13.解:(1)小莉的解法比较简便.(2)有,原式=(72-116)×(-8)=72×(-8)-116×(-8)=-57512.(3)能,原式=-(100-199)×198=-100×198+199×198=-19800+2=-19798.1.4.2 有理数的除法《第1课时 有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②(-7289)÷8=-(72+89)×18=-919;③0.75÷(-558)=-34×845=-215;④|-9|÷|-111|=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A.ab>0 B.a+b<0C.ba <0D.a-b<03.下列结论错误的是( )A.若a,b 异号,则a·b<0,ab <0 B.若a,b 同号,则a·b>0,ab >0 C.-ab =a-b =-ab D.-a-b =-a b4.若m<0,则m|m |等于( ) A.1 B.±1C.-1D.以上答案都不对5.若一个数的相反数是114,则这个数是 ,这个数的倒数是 .6.计算:16÷(-2.5)= .7.若有理数a 与b(b≠0)互为相反数,则ab = . 8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-123÷24×(16+34-512)÷(-212). 下面是小明和小亮两位同学的计算过程:小明:原式=-53÷(4+18-10)÷(-52)=-53×112×(-25)=118. 小亮:原式=-53×124×(212+912-512)÷(-52)=53×124×12×25=172. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求-b+c -a的值.创新应用★11.若ab≠0,则a|a|+|b|b的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以ba>0.3.D4.C 因为m<0,所以|m|=-m,m|m|=m-m=-1,故选C.5.-114-4 56.-11516÷(-2.5)=-16×25=-115.7.-18.解:原式=-10×18×4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:-b+c-a =-(-2)+5-(-3)=2+53=73.创新应用11.B a和b都是正数时,a|a|+|b|b的值为2;a和b都是负数时,a|a|+|b|b的值为-2;a和b一正一负时,a|a|+|b|b的值为0.《第2课时有理数的混合运算》同步练习能力提升1.下列等式中成立的是( ) A.(-5)÷(1-2)=(-5)÷(-1) B.1÷(-2 015)=(-2 015)÷1 C.(-5)×6÷15=(-5)×15÷6 D.(-7)÷(17-1)=(-7)÷17-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出来的值最小,应填入的运算符号是( )A.+B.-C.×D.÷3.计算(-6)÷(13-12)的结果是( ) A.6B.-6C.-36D.364.一个容器装有1 L 水,按照如下要求把水倒出:第1次倒出12 L 水,第2次倒出的水量是12 L 的13,第3次倒出的水量是13 L 的14,第4次倒出的水量是14 L 的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1011LB .19LC .110LD .111L5.计算:(-312)÷(-112)×313= .6.已知a=-1,b=23,c=-20,则(a-b )÷c 的值是 .7.已知C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,……,观察上面的计算过程,寻找规律并计算C 106= .8.计算:(1)(213-312+1445)÷(-116); (2)(79-56+718)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱销售情况制成表格如下:种类 售价/元 盈利/% 甲种冰箱1 50025乙种冰箱 1 500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本,盈利,盈了多少?亏本,亏了多少?★10.下面是小明计算-20÷15÷15的解题过程,他的计算正确吗?如果不正确,请改正.-20÷15÷15=-20÷(15÷15)=-20÷1=-20.11.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果为24,请写出这样的一个算式.12.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,求|abc|abc的值.创新应用★13.若定义一种新的运算为a*b=ab1-ab ,计算[(3*2)]*16.参考答案能力提升1.A2.C 根据算式的特点,要使计算出来的值最小,需使|-3□5|的值最大,故只有“×”号.3.D (-6)÷(13-12)=(-6)÷(26-36)=(-6)÷(-16)=(-6)×(-6)=36. 4.D5.709 原式=72×23×103=709.6.112 当a=-1,b=23,c=-20时,(a-b )÷c=[(-1)-23]÷(-20)=(-123)÷(-20)=53×120=112.7.210 由题意可知,C 106=10×9×8×7×6×51×2×3×4×5×6=210.8.解:(1)(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)−72×(-67)+4945×(-67) =-2+3-1415=1-1415=115. (2)(79-56+718)×18-1.45×6+3.95×6=14-15+7-8710+23710=6+15010=21.9.解:1500÷(1+25%)=1200(元), 1500÷(1-25%)=2000(元).1200+2000=3200(元),1500×2=3000(元). 3000-3200=-200(元). 所以亏了,亏了200元. 10.解:小明的计算不正确. 原式=-20×5×5=-500.11.解:本题答案不唯一,如:(4+4)×(-3)÷(-1)=8×(-3)×(-1)=24. 12.解:已知|a |a+|b |b+|c |c=1,则a ,b ,c 必为一负二正,所以|abc |abc=-abc abc=-1.创新应用13.解:因为a*b=ab1-ab ,所以[(3*2)]*16=3×21-3×2∗16=(-65)∗16=-65×161-(-65)×16=-151+15=-16.1.5 有理数的乘方 《1.5.1 乘方》同步练习能力提升1.(-1)2 016的值是( ) A.1 B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( ) A.(-3)2=32 B.(-3)3=33 C.-32=|-32| D.(-3)3=|(-3)3|3.28 cm 接近于( ) A.珠穆朗玛峰的高度 B.三层住宅楼的高度 C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b -1,如3*2=32-1=8,则(-12)*3等于( )A.-78 B.-118C.-212D.-325.把13×13×13×13×13写成乘方的形式为 ,其底数是 .6. 的平方是164, 的立方是-164.7.若x,y 互为倒数,则(xy)2 015= ;若x,y 互为相反数,则(x+y)2016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷(-13)2; (2)(-5)2×(-35)+32÷(-2)3×(-114).创新应用 ★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.92016-18D.92017-18★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,….(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A 一定成立;(-3)3为负,33为正,所以B 不成立;-32为负,|-32|为正,所以C 不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B (-12)*3=(-12)3-1=-12×12×12-1=-18-1=-118.5.(13)513 6.±18 -147.1 0 若x,y 互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y 互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n .9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=92017-18.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.《1.5.2 科学记数法》同步练习能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n ,则m,n 的值分别是( )A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=5。
5.3实际问题与一元一次方程—方案选择问题一、单选题1.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的每3家共取一头,恰好取完.问城中有多少户人家?( )A .55户B .65户C .75户D .85户2.甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到两店购物花费一样时为( )A .累计购物不超过50元B .累计购物超过50元不超过100元C .累计购物超过100元D .累计购物不超过50元或刚好为150元 3.大丰新华书店推出售书优惠方案,如果李明同学一次性购书付款162元,那么李明同学所购书的原价可能是( )①一次性购书不超过100元,不享受优惠①一次性购书超过100元但不超过200元,一律打九折①一次性购书超过200元,一律打八折A .180元B .202.5元C .180元或202.5元D .180元或200元4.近年来,网购的蓬勃发展方便了人们的生活,某快递分派站现有包裹若干件需快递员派送,若每个快递员派送12件,则还剩5件;若每个快递员派送14件,则还差7件.设该分派站有x 名快递员,则可列方程为( )A .125147x x +=-B .125147x x -=+C .512714x x +=-D .512714x x -=+ 5.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,没有x 辆汽车,可列方程( )A .()452850112x x +=--B .()452850112x x +=-+C .45285012x x +=-D .()452850112x x -=-+6.某商场举行促销活动,有两种优惠办法:第一种,顾客所购买商品一律按9折算;第二种,采取“满一百元送十元,并且连环赠送”的酬宾方式,即顾客消费每满100元(100元可以是现金,也可以是购物券,或二者合计)就送10元购物券,满200元就送20元购物券,依此类推……现有两位顾客甲和乙,甲顾客选择第一种优惠办法,共付费10000元;乙顾客选择第二种优惠办法,第一次就付了10000元购物,并用所得购物券继续购物.按所享受的折扣算,谁享受的折扣更优惠?(精确到十分位)().A.甲、乙折扣一样B.甲C.乙D.无法比较二、填空题7.为响应国家号召,某单位组织所有员工分x组去接种新冠疫苗加强针.若每组50人,则只有一组缺15人;若每组45人,则余下10人,根据题意,可列方程为.8.某学校需要购买一批电脑,有两种方案.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其他费用合计3000元,学校添置台电脑时,两种方案的费用相同.9.中国古代数学名著《孙子算经》中有个问题,原文:今有四人共车,二车空;三人共车,五人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余2辆车,若每3人共乘一车,最终剩余5个人无车可乘,问共有辆车.10.梦洁和嘉丽是邻居,星期天他们两家人准备去郊外的农家乐游玩,早上两家人同时乘坐了两辆不同价格的出租车,梦洁家乘坐的是起步4公里8元,以后每公里收1.2元,嘉丽家乘坐的是起步3公里6元,以后每公里收1.3元,两家人几乎同时到达农家乐,付款后梦洁发现两家人的车费仅差1.5元.则两家住地离公园的路程为公里.11.学校为“中国共产党建党100周年合唱比赛”印制宣传册,某复印店的收费标准如下:①印制册数不超过100册时,每册2元;①印制册数超过100册但不超过300册时,每册按原价打八折;①印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省..元.12.一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若单独租用甲车,15天可以完成任务;若单独租用乙车,30天可以完成任务.已知两车合运,共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.在租甲、乙两车,单独租甲车,单独租乙车这三种方案中,租金最少是元.三、解答题13.秋天是一个丰收、美丽和温馨的季节,为了让学生更好的接触自然、增强身体素质,某校计划组织七年级学生开展一次“徒步赏秋”的秋游活动,去时步行,返回时坐车.小明发现:若租用45座的客车若干辆,则有25人没有座位;若租用60座的客车,则可以少租3辆,且有一辆空了20个座位.求此次秋游的人数.14.某工厂生产一种产品,每件产品的出厂价为 40元,其成本价为 20元,在生产过程中平均每生产一件产品有0.1m 3的污水排出,为净化环境,工厂设计了两种处理污水的方案.方案一①工厂污水先净化处理后再排出,每处理1m 3污水所用费用为2元,并且每月排污设备损耗为15000元.方案二①工厂将污水排到污水处理厂统一处理,每处理1m 污水需付8元的排污费.(1)设该工厂每月生产x 件产品,则方案一的利润是 元,方案二的利润是 元.(用含x 的式子表示)(2)当该工厂每月生产多少件产品时,依方案一处理污水每月所获利润比依方案二处理污水每月所获利润少6000元?(3)当该工厂每月生产10000件产品时,若你作为厂长,在获得更多利润的前提下,会选用哪种处理污水的方案?请通过计算加以说明.(利润=出厂价-成本价-污水处理费) 15.爱读书是一种美德,快乐读书吧为促进孩子们阅读,特推出两种付费借阅方式(每借阅一本为一次).方式一:先购买会员证,每张会员证50元,只限本人当年使用,凭证借阅每次再付费1元;方式二:不购买会员证,每次借阅付费3元.设小明一年内借阅x 次x 为正整数).(1)根据题意填空,如表中:m =______,n =______; 借阅次数 10 20 (x)方式一的总费用(元) 60 70 …m 方式二的总费用(元) 30 60 … n(2)当借阅次数为x 时,求方式二比方式一的总费用多多少元?(3)通过计算说明当23x =和27x =时,分别应选择哪种付费方式更合算?(4)若小明计划今年到该书吧借阅的总费用为100元,请说明他选择哪种付费方式借阅次数比较多?16.东方影院筹备举办“2024跨年晚会”,成人票售价每张120元,学生票售价每张60元.影院制定了两种团体购票优惠方案,方案1:每购买一张成人票赠送一张学生票;方案2:按购票总价的80%付款.育才学校将组织10名老师与x名(不少于10名)学生参加晚会.(1)则育才学校选择优惠方案1的付款金额是元(用含x的式子表示),选择优惠方案2的付款金额是元(用含x的式子表示);(2)当x取何值时,两种优惠方案的付款金额相同x 时,选择哪种优惠方案更省钱?(3)当4017.中小学生研学旅行是由教育部门和学校有计划地组织安排,通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动.红星学校组织七年级学生参加研学旅行,便与秦城汽车租赁有限公司商议,单独租用45座A型客车若干辆,则刚好坐满;若单独租用60座B型客车,可少租1辆,并且还有15个空位.(1)该校参加这次研学旅行有多少人?(2)45座A型客车每天的租金600元,60座B型客车每天的租金700元,该校租那种车型更划算?18.某校为纪念“一二·九运动”八十七周年,丰富校园文化生活,增强学生的身体素质,培养同学们的集体荣誉感和团结协作精神,特举办一场文体活动,全校各班都积极参与本次活动,为表彰在本次活动中表现出色的班级,学校将购买一些乒乓球和乒乓球拍作为活动奖励,经向两家商店进行价格咨询,了解情况如下:若该校需购买乒乓球拍10副,乒乓球若干盒(不小于10盒)(1)当购买乒乓球多少盒时,甲、乙两家商店收费金额一样多?(2)当购买30盒乒乓球时,从节约角度考虑,学校应该去哪家商店购买?为什么?。
初一数学练习册答案人教版上册【第一章:有理数】1. 判断题:- 有理数包括整数和分数。
(√)- 0是最小的有理数。
(×)2. 选择题:- 下列哪个数是有理数?A. πB. √2C. 1/2D. -3答案:C, D3. 填空题:- 绝对值是其本身的数是______。
答案:非负数4. 计算题:- 计算下列各数的和:-3, 5, -1, 2答案:3【第二章:代数式】1. 判断题:- 代数式中的字母可以代表任何数。
(√)- 代数式2x + 3y是二次代数式。
(×)2. 选择题:- 代数式3a - 2b的值是:A. 3aB. 2bC. 3a - 2bD. 无法确定答案:D3. 填空题:- 如果3x + 2 = 11,那么x的值为______。
答案:34. 计算题:- 计算下列代数式的值:2(3x - 1),当x = 2时。
答案:10【第三章:方程】1. 判断题:- 方程是含有未知数的等式。
(√)- 所有等式都是方程。
(×)2. 选择题:- 下列哪个是一元一次方程?A. x + y = 5B. 2x + 3 = 7C. x^2 = 4D. 3x - 5y = 0答案:B3. 填空题:- 解方程2x - 3 = 7,得到x = ______。
答案:54. 应用题:- 一个数的三倍加上5等于23,求这个数。
答案:x = (23 - 5) / 3 = 6【结束语】本练习册答案仅供参考,希望同学们在做完练习后,能够认真核对答案,理解解题过程,提高自己的数学能力。
数学学习是一个不断探索和思考的过程,希望每位同学都能在数学的世界里找到乐趣。
结束。
人教版七年级数学上册精品练习题七年级有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点此日的温差是6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请给予它实际的意义:___________________。
9、绝对值大于1而小于4的整数有____________,其和为_________。
10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。
11、若0|2|)1(2=++-b a ,则b a +=_________。
12、数轴上表示数5-和表示14-的两点之间的距离是__________。
13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、若是0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值必然是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为()(A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几回数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次考试的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再宣称以8折(80%)大拍卖,那么该商品三月份的价钱比进货价………………………………………()A 、高%B 、低%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
人教版初一数学练习题在人教版初一数学课程中,学生将学习到许多基础数学概念和技能,包括但不限于有理数的运算、代数表达式的简化、几何图形的基本性质等。
以下是一些练习题,旨在帮助学生巩固和深化对这些概念的理解。
# 人教版初一数学练习题一、有理数的运算1. 计算下列各题的结果,并写出运算过程:- \( 3 - 5 + 2 \)- \( -4 + 7 - 3 \)- \( -8 - (-3) \)2. 比较下列数的大小:- \( -7 \) 和 \( -5 \)- \( -3 \) 和 \( -2 \)3. 将下列各数转换为绝对值:- \( -12 \)- \( -10 \)- \( 0 \)二、代数表达式的简化4. 简化以下代数表达式:- \( 3x + 2y - 5x + 4y \)- \( 2a^2 - 3ab + 5b^2 - a^2 + 2ab \)5. 合并同类项:- \( 4x + 7 - 2x - 3 \)6. 解下列方程:- \( 3x - 7 = 2x + 5 \)- \( 2y + 5 = 3y - 4 \)三、几何图形的基本性质7. 如果一个三角形的两边长分别是 5 厘米和 7 厘米,第三边长可能是多少?8. 一个圆的半径是 4 厘米,求它的周长和面积。
9. 一个长方形的长是 10 厘米,宽是 5 厘米,求它的周长和面积。
四、应用题10. 一个班级有 40 名学生,其中 2/3 参加了数学竞赛。
求参加数学竞赛的学生人数。
11. 一个商店在打折促销,原价 100 元的商品现在打 8 折出售。
求现在的价格。
12. 一个工厂计划生产 1000 个零件,每个零件的成本是 5 元。
如果工厂希望获得 10% 的利润,那么每个零件的售价应该是多少?# 结束语通过完成这些练习题,学生可以加深对初一数学知识的理解和应用能力。
希望这些题目能够帮助学生在数学学习中取得进步。
如果有任何疑问或需要进一步的解释,请随时向老师寻求帮助。
4.1.2点、线、面、体能力提升1.如左下图,绕虚线旋转得到的实物图是()2.下列几何体中,有6个面的几何图形有()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1个B.2个C.3个D.4个3.如果一个直棱柱有12个顶点,那么它的面的个数是()A.10B.9C.8D.74.下列说法正确的有()①四面体的各个面都是三角形;②圆柱、圆锥的底面都是圆;③圆柱是由两个面围成的;④长方体的面不可能是正方形.A.1个B.2个C.3个D.4个5.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()6.薄薄的硬币在桌面上转动时,看上去像球,这说明了.7.航天飞机拖着“长长的火焰”,我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1)一只小蚂蚁爬行留下的路线可解释为.(2)电动车车辐条运动形成的图形可解释为.8.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体从正面看的图形的面积是 cm2.9.观察如图所示的图形,写出下列问题的结果:(1)这个图形的名称是;(2)这个几何体有个面,有个底面,有个侧面,底面是形,侧面是形.(3)侧面的个数与底面多边形的边数有什么关系?10.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.11.观察下列多面体,并把下表补充完整.61012观察上表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.★12.如图所示,长方形绕虚线旋转一周后,形成的图形是什么?旋转半周呢?创新应用★13.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.参考答案能力提升1.D要能想象到它转动后的形状,面动成体.一个梯形以底所在直线为轴旋转,上、下两部分形成圆锥,中间形成圆柱,是由两个圆锥和一个圆柱组合而成,故应选D.2.C3.C直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8.4.B①②正确;圆柱是由三个面围成的,所以③错误;长方体的面可能是正方形,所以④错误.5.D由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,旋转一周后可能形成的立体图形是一个管状的物体.6.面动成体从运动的观点可知,薄薄的硬币在桌面上转动时,看上去像球,这种现象说明面转动成体.7.(1)点动成线(2)线动成面8.18将正方形旋转一周所形成的图形是圆柱,从正面看圆柱是一个长方形,长方形的一边长为3cm,另一边长为6cm.所以面积为18cm2.9.解:(1)六棱柱(2)826六边长方(3)侧面的个数与底面多边形的边数相等.10.解:从第一行的平面图形绕某一边旋转或沿某一方向平移可得到第二行的立体图形,从第二行的立体图形的上面看可得到第三行的平面图形.(1)→(三)→(D);(2)→(二)→(C);(3)→(四)→(B);(4)→(一)→(A).11.解:填表为:681012根据表中结果,发现a,b,c之间的关系为a+c-b=2.12.解:长方形绕图示虚线旋转一周后形成的图形是圆柱,旋转半周所形成的图形也是圆柱.创新应用13.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为V+F-E=2.(2)由题意得,F-8+F-30=2,解得F=20.(3)因为有24个顶点,每个顶点处都有3条棱,两点确定一条直线,所以共有24×3÷2=36条棱.那么24+F-36=2,解得F=14,所以x+y=14.4.2直线、射线、线段第1课时直线、射线、线段能力提升1.下列说法中错误的是()A.过一点可以作无数条直线B.过已知三点可以画一条直线C.一条直线通过无数个点D.两点确定一条直线2.射线OA,射线OB表示同一条射线,下面正确的是()3.图中共有条线段.4.看图填空:(1)点C在直线AB;(2)点O在直线BD,点O是直线与直线的交点;(3)过点A的直线共有条,它们是.5.如图所示,在线段AB上任取D,E,C三个点,则这个图中共有条线段.6.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.7.按下列语句画出图形.(1)直线l经过A,B,C三点,点C在点A与点B之间;(2)经过点O的三条直线a,b,c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.★8.阅读下表:361015解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有多少种不同的票价?②要准备多少种车票?创新应用★9.如图,l1与l2是同一平面内的两条相交直线,它们有一个交点.如果在这个平面内再画第三条直线l3,那么这3条直线最多可有个交点;如果在这个平面内再画第4条直线l4,那么这4条直线最多可有个交点.由此,我们可以猜想:在同一平面内,n(n为大于1的整数)条直线最多可有个交点.(用含n的式子表示)参考答案能力提升1.B过三点画直线,要看这三点在不在一条直线上,若不在,则无法画出.2.B射线自端点向一方无限延伸,因为表示射线时字母有顺序性,即端点字母写在前面,所以点A、点B应在点O的同侧且三点在同一条直线上.3.104.(1)外(2)上AC BD(3)3直线AD、直线AB、直线AC这类题,必须认真观察图形,弄清各元素的位置关系,用精练、准确的语言表达.5.10只要有一个端点不相同,就是不同的线段.6.解:经过两点有且只有一条直线.7.解:(1)(2)(3)(4)8.解:(1)N=1+2+3+…+(n-1)=n(n-1).2=10条线段,即(2)①A,B两地之间有三个站点,说明在这条线段上有5个点,则共有5×(5-1)2有10种票价;②由于从A到B和从B到A的车票不同,则要准备10×2=20种车票.创新应用9.36n(n-1)通过作图发现:3条直线最多有交点1+2=3(个);4条直线最多有交点21+2+3=6(个);5条直线最多有交点1+2+3+4=10(个)……n条直线最多有交点1+2+3+…+(n-1)=n(n-1)(个).2。
⼈教版初⼀数学练习题⼈教版初⼀数学七年级数学上练习题四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
(7分) 26、若x>0,y<0,求32---+-x y y x 的值。
(7分)27、已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm cb mn --++-2的值(7分) 28、现规定⼀种运算“*”,对于a 、b 两数有:ab a b a b 2*-=, 试计算2*)3(-的值。
(7分)整式⼀.判断题(1)31+x 是关于x 的⼀次两项式. ( )(2)-3不是单项式.( )(3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) ⼆、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有()A .2个B .3个C .4个 D5个 2.多项式-23m 2-n 2是()A .⼆次⼆项式B .三次⼆项式C .四次⼆项式D 五次⼆项式 3.下列说法正确的是() A .3 x 2―2x+5的项是3x 2,2x ,5B .3x-3y 与2 x 2―2xy -5都是多项式C .多项式-2x 2+4xy 的次数是3D .⼀个多项式的次数是6,则这个多项式中只有⼀项的次数是6 4.下列说法正确的是() A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是⼀次⼆项式 5.下列代数式中,不是整式的是()A 、23x -B 、745b a -C 、xa 523+ D 、-20056.下列多项式中,是⼆次多项式的是()A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平⽅的差,⽤代数式表⽰正确的是() A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬⼀楼梯,从楼下爬到楼顶后⽴刻返回楼下。
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
人教版初一数学上册线段练习1.如图,点A、B、C在一直线上,则图中共有射线()。
A。
1条 B。
2条 C。
4条 D。
6条答案:B。
解析:由于三点在一条直线上,所以只能有两条射线。
2.下列各直线的表示法中,正确的是()。
A。
直线AB B。
直线ABC C。
直线ab D。
直线Ab答案:A。
解析:直线的表示法应该用大写字母表示,所以选项A正确。
3.下列说法正确的是()。
A。
过一点P只能作一条直线B。
直线AB和直线BA表示同一条直线C。
射线AB和射线BA表示同一条射线D。
射线a比直线b短答案:B。
解析:直线没有起点和终点,所以直线AB和直线BA表示同一条直线。
4.手电筒射出去的光线,给我们的形象是()。
A。
直线 B。
射线 C。
线段 D。
折线答案:B。
解析:手电筒射出去的光线是从一个点出发,沿着一定方向无限延伸的,所以是射线。
5.下列说法中正确的个数为()。
1) 过两点有且只有一条直线;2) 连接两点的线段叫两点间的距离;3) 两点之间所有连线中,线段最短;4) 射线比直线小一半。
A。
1个 B。
2个 C。
3个 D。
4个答案:B。
解析:只有(1)和(2)正确,所以选项B正确。
6.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()。
A。
B。
C。
D.答案:C。
解析:只有C图中的两条直线相交。
7.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()。
A。
1条 B。
2条 C。
3条 D。
4条答案:B。
解析:只有AB、BC两条线段。
8.XXX所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()。
A。
A→C→D→B B。
A→C→F→B C。
A→C→E→F→B D。
A→C→M→B答案:A。
解析:根据三角形两边之和大于第三边的原理,AC+CD+DB的值最小,所以A→C→D→B最短。
9.要在墙上固定一根木条,XXX说只需要两根钉子,这其中用到的数学道理是()。
A。
两点之间,线段最短B。
小升初数学分班考试模拟试题及分析1、试求1×2+2×3+3×4+4×5+5×6+…+99×100的结果。
n(n+1)=n²+n∴1×2+2×3+3×4+4×5+5×6+…+99×100=1×(1+1)+2×(2+1)+3(3+1)+...+99×(99+1)=1²+1 + 2²+2 +3²+3 +4²+4 +...+ 99²+99=(1²+2²+3²+4²+...+99²)+(1+2+3+...99)有公式1²+2²+3²+....+N²=n(n+1)(2n+1)/61+2+3+...+99=4950 1²+2²+3²+....+99²=99(99+1)(198+1)/6=325050∴原式=325050+4950=3300002、甲、乙、丙三人都在银行有存款,乙的存款数比甲的2倍少100元,丙的存款数比甲、乙两人的存款和少300元,甲的存款是丙的,那么甲、乙、丙共有存款多少元?解:甲800、乙1500、丙2000设甲为x元,乙即为(2x-100)元,丙即为(3x-400)元。
列方程:(3x-400)=x解得:x=8003、华校给思维训练课老师发洗衣粉.如果给男老师每人3包,女老师每人4包,那么就会多出8包;如果给男老师每人4包,女老师每人5包,那么就会少7包。
已知男老师比女老师多1人,那么共有多少包洗衣粉?提示:由"男老师每人3包,女老师每人4包"到"男老师每人4包,女老师每人5包"每位老师增加1包,共用去8+7=15包,说明有15位老师,其中男老师8位,女老师7位。
洗衣粉的包数是定下来的是吧,那就可以列出一个等式,设男老师人数为X,3X+4(X-1)+8=4X+5(X-1)-7解出X=8洗衣粉包数就是3*8+4(8-1)+8=604、商店购进了一批钢笔,决定以每支9.5元的价格出售.第一个星期卖出了60%,这时还差84元收回全部成本.又过了一个星期后全部售出,总共获得利润372元.那么商店购进这批钢笔的价格是每支多少元?求钢笔总数量:(372+84)÷9.5=4848÷(1-60%)=120支。
372÷120=3.1元9.5-3.1=6.4元5、我们规定两人轮流做一个工程是指,第一个人先做一个小时,第二个人做一个小时,然后再由第一个人做一个小时,然后又由第二个人做一个小时,如此反复,做完为止。
如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?考点:工程问题.分析:依题意可知,两次做每人所花时间为:甲乙轮流做一个工程,甲工作了5小时,乙工作了4.8小时;乙甲轮流工作时,乙工作了5小时,甲工作了4.6小时.由此可知甲工作0.4小时相当于乙工作 0.2小时,推出甲工作5小时相当于乙工作2.5小时,故求出乙单独做此工程需要的时间,解决问题.解答:解:甲乙轮流做一个工程,甲工作了5小时,乙工作了4.8小时;乙甲轮流工作时,乙工作了5小时,甲工作了4.6小时.所以甲做0.4小时完成的工程等于乙做0.2小时,乙的效率是甲的0.4÷0.2=2(倍),甲做5小时完成的任务乙只要2.5小时就能完成.所以乙单独完成这个工程要:2.5+4.8=7.3(小时).答:乙单独做这个工程需要7.3小时.点评:此工程问题有一定难度,认真分析后,求出甲乙6.甲、乙两地相距120千米,客车和货车同时从甲地出发驶向乙地,客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇。
之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇。
已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?考点:多次相遇问题.分析:第一次相遇,两车合走2个全程,第二次相遇,两车又比第一次相遇时多走2个全程,因为客车、货车第一次相遇时各自走的路程与第一次相遇到第二次相遇时各自走的路程分别相等.两次相遇又都在丙点,设乙丙之间路程为1份,可得甲丙之间路程为2份,所以乙丙间路程=120÷3=40,由此可以求出客车的速度.解答:解:120÷3=40(千米),(120+40)÷2,=160÷2,=80(千米);答:客车的速度是每小时80千米.7、如图5,在长为490米的环形跑道上,A、B两点之间的跑道长50米,甲、乙两人同时从A、B两点出发反向奔跑.两人相遇后,乙立刻转身与甲同向奔跑,同时甲把速度提高了25%,乙把速度提高了20%.结果当甲跑到点A时,乙恰好跑到了点B.如果以后甲、乙的速度和方向都不变,那么当甲追上乙时,从一开始算起,甲一共跑了多少米?解:相遇后乙的速度提高20%,跑回B点,即来回路程相同,乙速度变化前后的比为5:6,∴所花时间的比为6:5。
设甲在相遇时跑了6单位时间,则相遇后到跑回A点用了5单位时间。
设甲原来每单位时间的速度V甲,由题意得:6V甲+5×V甲×(1+25%)=490,得:V甲=40。
从A点到相遇点路程为40×6=240,∴V乙=(490-50-240)÷6=两人速度变化后,甲的速度为40×(1+25%)=50,乙的速度为(1+20%)=40,从相遇点开始,甲追上乙时,甲比乙多行一圈∴甲一共跑了490÷(50-40)×50+240=2690(米)8、俏皮猪25元一个,加菲猫比俏皮猪便宜,但价格也是整数元,并比俏皮猪少买2个,共花了280元。
问买了多少只俏皮猪?解:假设买了x个俏皮猪,那么猫买了x-2个。
设猫a元一个那么25x+a(x-2)=280X=(280+2a)/(25+a)=2+230/(25+a)所以25+a是230的约数,25+a=46a=21那么X=7所以买了7个。
9、有些自然数,它们除以7的余数与除以8的商和等于26,那么所有这样的自然数的和是多少?解:若除以7余0,那么除以8的商是26,则该数为26*8+2=210若除以7余1,那么除以8的商是25,则该数为25*8+4=204若除以7余2,那么除以8的商是24,则该数为24*8+6=198若除以7余3,那么除以8的商是23,则该数为23*8+1=185若除以7余4,那么除以8的商是22,则该数为22*8+3=179若除以7余5,那么除以8的商是21,则该数为21*8+5=173若除以7余6,那么除以8的商是20,则该数为20*8=160或20*8+7=167因此所有这样自然数的和是1476。
10、三个班分别有44、41、34名同学,他们包车去春游,规定3个班中一个班乘大车、一个班乘中车、另一个班乘小车,已知大、中、小车分别能容纳7、6、5名同学,每辆车收费80、70、60元,那么这三个班至少要花多少元车费?解:44名同学的坐小车,41名同学的坐中车,34名同学的坐大车,这样浪费的座位最少,车费为80*5+70*7+60*9=1430元.从三种车的单人票价考虑,大车每人11又3/7元,中车每人11又2/3元,小车每人12元。
由此可见大车最便宜,小车最贵。
考虑多人座大车且尽量不浪费座的情况,41人坐大车,34人中车,44人小车。
车费为80*6+70*7+60*9=1440元,更贵了。
可见决定作用的是不浪费座位,因此至少要花1430元车费。
11、今有若干个底面半径和高均为1的圆柱体和若干个底面半径和高均为2的圆柱体,它们的体积和为50,表面积和为120.那么一共有多少个圆柱体?设底面半径和高均为1的圆柱体x个底面半径和高均为2的圆柱体y个,底面半径和高均为1的圆柱体体积是π,表面积是2π+2π=4π,底面半径和高均为2的圆柱体体积是2×2×2π=8π,表面积是2×2π×2+2×2×2π=16π,x+8y=50 4x+16y=120,x=10,y=5,所以一共有10+5=15个圆柱体12、如下图,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和L形区域乙和丙。
已知三块区域甲、乙、丙的周长之比4:5:7,并且区域丙的面积为48,求大正方形的面积。
考点:长方形、正方形的面积.分析:周长之比就等于边长之比,设甲、乙、丙的边长为4a,5a,7a;根据“正方形的面积=边长×边长”分别求出大正方形和中正方形的面积,然后根据“大正方形的面积-中正方形的面积=丙的面积”列出方程,求出a2=2;进而求出大正方形的面积.解:周长之比就等于边长之比,设甲、乙、丙的边长为4a,5a,7a 49a2-25a2=48,a2=2;大正方形的面积:49a2=98;答:大正方形的面积是98.点评:解答此题的关键:根据题意,设出甲、乙、丙的边长,进而根据正方形的面积计算公式分别求出大正方形和中正方形的面积,然后根据大正方形的面积、中正方形的面积和丙的面积三者之间的关系列出方程,求出a2=2;进而求出大正方形的面积.13.石老师和向老师带38个小朋友去春游,下面哪种购票方式划算?方式一:大人:10元/人小孩:半价方式二:团体票:8元/人(10人及10人以上可购团体票)分析:(1)本题根据参加春游的人数及两种购票方式进行分析计算即可:石老师和向老师带38个小朋友去春游,即共有成人2人,儿童38人.方式一:成人每人10元,儿童单价即10÷2=5元.需花:10×2+38×5=210元;方式二:团体票:8元/人(10人及10人以上可购团体票).共38+2=40人,需花40×8=320元;210元<320元,所以方式一购票比较划算.14.一支铅笔1.2元,一支钢笔8.5元,一支圆珠笔0.5元,买6支铅笔的钱够买一支钢笔吗?差(多)多少钱?分析:根据单价×购买数量=所需钱数可知,解答:购买6支铅笔需要:1.2×6=7.2元,8.5元>7.2元,所以不够.8.5-7.2=1.3(元).答:买6支铅笔的钱不够买一支钢笔,差1.3元钱.。