北师大版八年级数学下册期中测试卷
- 格式:doc
- 大小:325.00 KB
- 文档页数:2
北师大版八年级下册数学期中测试卷及答案北师大版八年级下册期中测试卷数学考试时间:100分钟试卷满分:120分一、选择题(共10小题,每小题3分,满分30分)1.如果有意义,那么x的取值范围是()A。
x>1B。
x≥1C。
x≤1D。
x<12.下列各组数中,能构成直角三角形的是()A。
4,5,6C。
6,8,11D。
5,12,233.平行四边形,矩形,菱形,等边三角形,正方形中是轴对称图形的有()A。
1个B。
2个C。
3个D。
4个4.下列根式中属最简二次根式的是()A。
B。
C。
D。
5.若。
则a与3的大小关系是()A。
a<3B。
a≤3C。
a>3D。
a≥36.等边三角形的边长为2,则该三角形的面积为()A。
4B。
C。
2D。
37.能判定四边形ABCD为平行四边形的条件是()A。
AB∥CD,AD=BCC。
AB∥CD,∠C=∠ADD。
AB=AD,CB=CD8.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25.A。
2个B。
3个C。
4个D。
5个9.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A。
平行四边形B。
矩形C。
正方形D。
菱形10.四边形的四边顺次为a、b、c、d,且满足a2+b2+c2+d2=2(ab+cd),则这个四边形一定是()A。
平行四边形B。
两组对角分别相等的四边形C。
对角线互相垂直的四边形D。
对角线长相等的四边形二、填空题(共6小题,每小题3分,满分18分)11.若。
则=。
12.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是cm2.13.如图,在等边△XXX的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为。
14.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm。
北师大版八年级第二学期期中数学试卷一、选择题1.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数个2.(3分)等腰三角形的一个内角是70°,则它顶角的度数是()A.70°B.70°或40°C.70°或50°D.40°3.(3分)下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.44.(3分)下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)25.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD 的长为()A.B.C.D.6.(3分)如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定7.(3分)如图,一次函数y=kx+b的图象交y轴于点A(0,2),则不等式kx+b<2的解集为()A.x<0B.x>0C.x<﹣1D.x>﹣18.(3分)如图,是一个不等式组的解集在数轴上的表示,则该不等式组的解集是()A.1<x≤0B.0<x≤1C.0≤x<1D.0<x<19.(3分)如图,∠ABC=90°,∠C=15°,线段AC的垂直平分线DE交AC于D,交BC于E,D为垂足,CE=10 cm,则AB=()A.4 cm B.5 cm C.6 cm D.不能确定10.(3分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°二、填空题(每小题4分,共28分)11.(4分)在△ABC中,∠A:∠B:∠C=1:2:3,最小边长为4cm,则最长边为cm.12.(4分)不等式(a﹣b)x>a﹣b的解集是x<1,则a与b的大小关系是.13.(4分)已知,在△ABC中,∠ACB=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF ⊥AB,点D、E、F是垂足,且AB=17,BC=15,则OF、OE、OD的长度分别是.14.(4分)若x2+3x=2,则代数式2x2+6x﹣4的值为.15.(4分)如图将直角三角形ABC沿AB方向平移AD距离得到△DEF,已知∠ABC=90°,BE=5,EF=8,CG=3,则图中阴影部分的面积为.16.(4分)不等式3x﹣k≤0的正数解是1,2,3,那么k的取值范围是.17.(4分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,下列结论中:①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2;正确的有(填序号)13题图15题图17题图三、解答题(一)(每小题6分,共18分)18.(6分)小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买多少本笔记本?19.(6分)如图,在△ABC中,∠C=90°.(1)用尺规作图,在AC边上找一点D,使DB+DC=AC(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下若AC=6,AB=8,求DC的长.20.(6分)已知点A(1,0)和点B(1,3),将线段AB平移至A'B',点A'于点A对应,若点A'的坐标为(1,﹣3).(1)AB是怎样平移的?(2)求点B'的坐标.四、解答题(二)(每小题8分,共24分)21.(8分)如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE与DF在数量上有何关系?并给出证明.22.(8分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围.(2)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.23.(8分)已知:如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连结BC′,求BC′的长.五、解答题(三)(每小题10分,共20分)24.(10分)某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,该商店至少盈利多少元?25.(10分)如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.参考答案一.填空题(每小题3分,共30分)1.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数个解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1.故选:A.2.(3分)等腰三角形的一个内角是70°,则它顶角的度数是()A.70°B.70°或40°C.70°或50°D.40°解:本题可分两种情况:①当70°角为底角时,顶角为180°﹣2×70°=40°;②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故选:B.3.(3分)下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.4解:第一个图形是中心对称图形,第二个图形、第三个图形既是中心对称图形,又是轴对称图形,第四个图形是轴对称图形,共2个,故选:B.4.(3分)下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)2解:A和B都不是积的形式,应排除;C中,结果中的因式都应是整式,应排除.D、x2+4x+4=(x+2)2,正确.故选:D.5.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD 的长为()A.B.C.D.解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.6.(3分)如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定解:∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选:C.7.(3分)如图,一次函数y=kx+b的图象交y轴于点A(0,2),则不等式kx+b<2的解集为()A.x<0B.x>0C.x<﹣1D.x>﹣1解:根据图象得,当x<0时,kx+b<2,所以不等式kx+b<2的解集为x<0.故选:A.8.(3分)如图,是一个不等式组的解集在数轴上的表示,则该不等式组的解集是()A.1<x≤0B.0<x≤1C.0≤x<1D.0<x<1解:不等式的解集表示0与1以及1之间的数.因而解集是0<x≤1.故选:B.9.(3分)如图,∠ABC=90°,∠C=15°,线段AC的垂直平分线DE交AC于D,交BC于E,D为垂足,CE=10 cm,则AB=()A.4 cm B.5 cm C.6 cm D.不能确定解:∵DE是线段AC的垂直平分线,∴EA=EC=10,∴∠EAC=∠C=15°,∴∠AEB=30°,∴AB=AE=5(cm),故选:B.10.(3分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.二、填空题(每小题4分,共28分)11.(4分)在△ABC中,∠A:∠B:∠C=1:2:3,最小边长为4cm,则最长边为8cm.解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,解得x=30°,即∠A=30°,∠C=3×30°=90°,此三角形为直角三角形.故AB=2BC=2×4=8cm.故答案为:8.12.(4分)不等式(a﹣b)x>a﹣b的解集是x<1,则a与b的大小关系是a<b.解:∵不等式(a﹣b)x>a﹣b的解集是x<1,∴a﹣b<0,∴a<b,则a与b的大小关系是a<b.故答案为:a<b.13.(4分)已知,在△ABC中,∠ACB=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF ⊥AB,点D、E、F是垂足,且AB=17,BC=15,则OF、OE、OD的长度分别是3.解:如图,连接OB,∵在Rt△ABC中,∠ACB=90°,AB=17,BC=15,∴AC===8,∵点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,∴OE=OF=OD,又∵OB是公共边,∴Rt△BOF≌Rt△BOD(HL),∴BD=BF,同理AE=AF,CE=CD,∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,∴四边形OECD是正方形,设OE=OF=OD=x,则CE=CD=x,BD=BF=15﹣x,AF=AE=8﹣x,∴15﹣x+8﹣x=17,解得x=3.∴OE=OF=OD=3.故答案为:3.14.(4分)若x2+3x=2,则代数式2x2+6x﹣4的值为0.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为015.(4分)如图将直角三角形ABC沿AB方向平移AD距离得到△DEF,已知∠ABC=90°,BE=5,EF=8,CG=3,则图中阴影部分的面积为.解:∵直角三角形ABC沿AB方向平移AD距离得到△DEF,∴S△ABC=S△DEF,BC=EF=8,∴GB=BC﹣CG=8﹣3=5,∵S阴影部分+S△DBG=S△BDG+S梯形BEFG,∴S阴影部分=S梯形BEFG=×(5+8)×5=.故答案为.16.(4分)不等式3x﹣k≤0的正数解是1,2,3,那么k的取值范围是9≤k<12.解:3x﹣k≤0,3x≤k,x≤,∵不等式3x﹣k≤0的正数解是1,2,3,∴3≤<4,∴9≤k<12,故答案为:9≤k<12.17.(4分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,下列结论中:①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2;正确的有①③④(填序号)解:∵在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,①由旋转,可知:∠CAF=∠BAE,∵∠BAD=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠CAF+∠BAE=∠DAF=45°,故①正确;②由旋转,可知:△ABE≌△ACF,不能推出△ABE≌△ACD,故②错误;③∵∠EAD=∠DAF=45°,∴AD平分∠EAF,故③正确;④由旋转可知:AE=AF,∠ACF=∠B=45°,∵∠ACB=45°,∴∠DCF=90°,由勾股定理得:CF2+CD2=DF2,即BE2+DC2=DF2,在△AED和△AFD中,,∴△AED≌△AFD(SAS),∴DE=DF,∴BE2+DC2=DE2,故答案为:①③④.三、解答题(一)(每小题6分,共18分)18.(6分)小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买多少本笔记本?解:4角=0.4元.设小明购买了x个笔记本,则购买了(30﹣x)个练习本,依题意,得:4x+0.4(30﹣x)≤30,解得:x≤5.答:小明最多能买5本笔记本.19.(6分)如图,在△ABC中,∠C=90°.(1)用尺规作图,在AC边上找一点D,使DB+DC=AC(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下若AC=6,AB=8,求DC的长.解:(1)如图,点D为所作;(2)∵AC=6,AB=8,∴BC==2,设CD=x,则BD=AD=AC﹣CD=6﹣x,在Rt△BCD中,∵BD2=BC2+CD2,∴(6﹣x)2=(2)2+x2,解得x=,即CD的长为.20.(6分)已知点A(1,0)和点B(1,3),将线段AB平移至A'B',点A'于点A对应,若点A'的坐标为(1,﹣3).(1)AB是怎样平移的?(2)求点B'的坐标.解:(1)∵A(﹣1,0)平移后对应点A′的坐标为(1,﹣3),∴A点的平移方法是:向下平移3个单位,∴线段AB向下平移3个单位得到A′B′.(2)∵B点的平移方法与A点的平移方法是相同的,∴B(1,3)平移后B′的坐标是:(1,0).四、解答题(二)(每小题8分,共24分)21.(8分)如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE与DF在数量上有何关系?并给出证明.解:(1)AD⊥BC,∠BAD=∠CAD,AB=AC等.理由如下:∵AB=5,AD=4,BD=3,∴42+32=52.∴△ABD为直角三角形,且∠ADB=90°.∵CD=3,∴,∴AB=AC,又∵BD=CD,∴AD⊥BC,∠BAD=∠CAD;(2)DE=DF,理由如下:∵∠BAD=∠CAD,DE⊥AB于E,DF⊥AC于点F,∴DE=DF.22.(8分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围.(2)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.解:(1)解方程组,得:,根据题意,得:,解得﹣2<m≤3;(2)由(2m+1)x<2m+1的解为x>1知2m+1<0,解得m<﹣,则在﹣2<m<﹣中整数﹣1符合题意.23.(8分)已知:如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连结BC′,求BC′的长.解:如图,连结BB′,∵△ABC绕点A顺时针旋转60°得到△AB′C′.∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′=AB′,延长BC′交AB′于点D,又∵AC′=B′C′,∴BD垂直平分AB′,∴AD=B′D,∵∠C=90°,AC=BC=∴AB==2,∴AB′=2∴AD=B′D=1,∴BD==,C′D==1,∴BC′=BD﹣C′D=.五、解答题(三)(每小题10分,共20分)24.(10分)某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,该商店至少盈利多少元?解:(1)设每件甲商品与每件乙商品的售价分别是x、y元.依题意得:,解得;(2)设进货甲商品a件,则乙商品(80﹣a)件.依题意得:70a+35(80﹣a)≤4200解得a≤40;(3)设进货乙商品b件,利润为M元.由(2)得a≤40,则b≥40M=(90﹣70)(80﹣b)+(60﹣35)b=5b+1600∵5>0∴M随b的增大而增大∴当b=40时,M取得最小值,即5×40+1600=1800(元)25.(10分)如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.解:(1)①在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);②∵CD=3DE∴DE=2,CE=4,设BG=x,则CG=6﹣x,GE=x+2∵GE2=CG2+CE2∴(x+2)2=(6﹣x)2+42,解得x=3,∴CG=6﹣3=3;(2)如图,过C作CM⊥GF于M,∵BG=GF=3,∴CG=3,EC=6﹣2=4,∴GE==5,CM•GE=GC•EC,∴CM×5=3×4,∴CM=2.4,∴S△FGC=GF×CM=×3×2.4=3.6.。
北师大八年级数学下册期中测试试卷(附含答案)(本试卷满分120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分) 1.下列运动形式属于旋转的是( )A .飞驰的动车B .匀速转动的摩天轮C .运动员投掷标枪D .乘坐升降电梯2.下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A B C D3.用反证法证明命题“若|a|<3,则a 2<9”时,应先假设( )A .a >3B .a≥3C .a 2≥9D .a 2>94.如图1,在等边三角形ABC 中,AB=4,D 是边BC 上一点,且∠BAD=30°,则CD 的长为( )A .1B .23C .2D .3① ②图1 图25.已知△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,F 为线段AC 上一点,且∠DFA =80°,则( )A.DE <DFB.DE >DFC.DE =DFD.不能确定DE ,DF 大小关系6.不等式组⎩⎨⎧+≤+-4332,1<2x x x 的解集在数轴上表示正确的是()A BC D7. 已知图2-②是由图2-①经过平移得到的,图2-②还可以看作是由图2-①经过怎样的变换得到的?现给出两种变换方式:①2次旋转;②2次轴对称.下面说法正确的是( )A .①②都不可行B .①②都可行C .只有①可行D .只有②可行8.某种商品的进价为1000元,商场将商品进价涨价35%后标价出售,后来由于该商品积压较多,商场准备进行打折销售,但要保证所获利润不低于8%,则至多可打( )A .9折B .8折C .7折D .6折 9.一次函数y =kx 和y =-x +3的图象如图3所示,则关于x 的不等式组kx <-x +3<3的解集是( ) A .1<x <3 B .0<x <2C .0<x <3D .0<x <1图3 图4 10.如图4,在△ABC 中,AB =AC ,∠A =72°,CD 是∠ACB 的平分线,点E 在AC 上,且DE ∥BC ,连接BE ,则∠DEB 的度数为( )A .20°B .25°C .27°D .30°二、填空题(本大题共6小题,每小题4分,共24分)11.若等腰三角形的一个内角为40°,则该等腰三角形的顶角是 .12.如图5,点A (2,1),将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A 的对应点A′的坐标是 .图5 图6 13.如图6,在△ABC 中,∠ACB =90°,AC =5 cm ,DE 垂直平分AB ,交BC 于点E .若BE =13 cm ,则EC 的长是 cm .14.若关于x 的不等式组⎩⎨⎧---3<,1<25a x x x 的无解,则a 的取值范围是 . 15.如图7,已知∠MAN =60°,点B ,E 在边AM 上,点C 在边AN 上,AB =4,AC =8,连接EC ,以点E 为圆心,CE 的长为半径画弧,交AC 于点D .若BE =6,则AD 的长为 .图7 图816.如图8,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B ,C 分别与点D ,E 对应,如果B ,D ,C 三点恰好在同一直线上,下列结论:①△ACE 是等腰三角形;②∠DAC =∠DEC ;③AD =CE ;④∠ABC =∠ACE ;⑤∠EDC =∠BAD .其中正确的是 .(填序号)三、解答题(本大题共8小题,共66分) 17.(每小题4分,共8分)解下列不等式:(1)2x+1>3(2-x ); (2)21143x x +--≤. 18.(6分)解不等式组⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 并把解集在数轴上表示出来.19.(7分)如图9,在△ABC 中,AB=AC ,∠BAC=120°,点D ,E 在BC 上,AD ⊥AC ,AE ⊥AB . 求证:△AED 为等边三角形.图920.(7分)如图10,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A (5,2),B (5,5),C (1,1)均在格点上.(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标;(2)将△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2,请画出△A 2B 2C 2,并写出点A 2的坐标. E BD C NMA图1021.(8分)小明和同学想利用暑假去植物园参加青少年社会实践项目,到植物园了解那里的土壤、水系、植被,以及与之依存的昆虫世界.小明在网上了解到该植物园的票价是每人10元,20人及以上按团体票,可8折优惠.(1)如果有18人去植物园,请通过计算说明,小明怎样购票更省钱?(2)小明现有500元的活动经费,且每人往返车费共3元,则至多可以去多少人?22.(8分)如图11,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长.图1123.(10分)如图12,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过点B作BE⊥CD,分别交AC,CD于点E,F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和BD的数量关系,并证明你的猜想.图1224.(12分)【问题原型】如图13-①,在等腰直角三角形ABC 中,∠ACB =90°,BC =8.将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作△BCD 的BC 边上的高DE ,易证△ABC ≌△BDE ,从而得到△BCD 的面积为 ;【初步探究】如图13-②,在Rt △ABC 中,∠ACB =90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .用含a 的代数式表示△BCD 的面积,并说明理由;【简单应用】如图13-③,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,求△BCD 的面积(用含a 的代数式表示).① ② ③图13参考答案三、17.(1)x >1.(2)x ≥-2. 18.解:⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 解不等式①,得x ≤1.解不等式②,得x <4.所以不等式组的解集为 x ≤1.解集在数轴上表示略.① ② 答案速览 一、1.B 2.B 3.C 4.C 5.A 6.B 7.B 8.B 9.D 10.C 二、11.40°或100° 12.(-1,3) 13.12 14.a ≤-1 15.2 16.①②④⑤19.证明:因为AB=AC ,∠BAC=120°,所以∠B=∠C=21(180°-∠BAC )=30°. 因为AD ⊥AC ,AE ⊥AB ,所以∠EAB=∠DAC=90°.所以∠AEB=90°-∠B=60°,∠ADC=90°-∠C=60°.所以∠DAE=180°-∠AEB-∠ADC=60°.所以∠ADE=∠AED=∠DAE=60°.所以△AED 为等边三角形. 20.解:(1)如图1,△A 1B 1C 1为所求作,点B 1的坐标为(5,-5).(2)如图1,△A 2B 2C 2为所求作,点A 2的坐标为(-2,5).图121.解:(1)因为10×18=180(元),10×0.8×20=160(元),所以小明购团体票更省钱;(2)设可以去m 人,依题意,得(10×0.8+3)m ≤500,解得m ≤45. 因为m 为正整数,所以m 的最大值为45.答:至多可以去45人.22.解:(1)因为AD ⊥BC ,BD =DE ,所以AD 是BE 的垂直平分线,所以AB =AE . 因为∠BAE =40°,所以∠B =∠AEB =(180°-∠BAE )=70°.所以∠C +∠EAC =∠AEB =70°.因为EF 垂直平分AC ,所以EA =EC .所以∠C =∠EAC =35°.所以∠C 的度数为35°.(2)因为△ABC 的周长为14 cm ,AC =6 cm所以AB +BC =14-6=8(cm ).所以AB +BD +DC =8.所以AE +DE +DC =8.所以EC +DE +DC =8.所以2DC =8.所以DC =4.所以DC 的长为4.23.(1)证明:因为BE ⊥CD ,所以∠BFC =90°.所以∠EBC +∠BCF =90°.因为∠ACB =∠BCF +∠ACD =90°,所以∠EBC =∠ACD .因为AD =CD ,所以∠A =∠ACD .所以∠A =∠EBC .(2)解:BE =BD .证明:如图2,过点D 作DG ⊥AC 于点G .因为DA =DC ,DG ⊥AC ,所以AC =2CG .因为AC =2BC ,所以CG =BC .因为∠DGC =90°,∠ECB =90°,所以∠DGC =∠ECB .在△DGC 和△ECB 中,∠DGC =∠ECB ,CG =BC ,∠DCG =∠EBC ,所以△DCG ≌△EBC . 所以CD =BE .因为BD =CD ,所以BE =BD .24.解:【问题原型】由作图可知所以∠BED =∠ACB =90°.因为AB 绕点B 顺时针旋转90°得到BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =8.所以S △BCD =21BC •DE =32. 【初步探究】△BCD 的面积为21a 2.理由: 如图3,过点D 作BC 的垂线,与CB 的延长线交于点E .所以∠BED =∠ACB =90°.因为线段AB 绕点B 顺时针旋转90°得到线段BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =a .所以S △BCD =21BC •DE =21a 2.图3 图4【简单应用】如图4,过点A 作AF ⊥BC 于点F ,过点D 作DE ⊥BC ,交CB 的延长线于点E . 所以∠AFB =∠E =90°,BF =21BC =21a . 所以∠F AB +∠ABF =90°.因为∠ABD =90°,所以∠ABF +∠DBE =90°.所以∠F AB =∠EBD .图2因为线段BD 是由线段AB 旋转得到的,所以AB =BD .在△AFB 和△BED 中,∠AFB =∠E ,∠F AB =∠EBD ,AB=BD ,所以△AFB ≌△BED . 所以BF =DE =21a . 所以S △BCD =21BC •DE =21•a •21a =41a 2.。
北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。
八年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有()①AB//DE,AB=DE;②AD//BE//CF,AD=BE=CF;③AC//DF,AC=DF;④BC//EF,BC=EF.A. 1个B. 2个C. 3个D. 4个2.下列不等式中是一元一次不等式的是()x−y<1 B. x2+5x−1≥0A. 12C. x+y2>3D. 2x<4−3x3.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A. 三条中线的交点B. 三条角平分线的交点C. 三条边的垂直平分线的交点D. 三条高的交点4.如图,l1,l2,l3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A. 1处B. 2处C. 3处D. 4处5. 如图,已知点B,C,D,E在同一直线上,△ABC是等边三角形,且CG=CD,DF=DE,则∠E=()A. 35°B. 30°C. 25°D. 15°5.用不等式表示:“a的12与b的和为正数”,正确的是()A. 12a+b>0 B. 12(a+b)>0 C. 12a+b≥0 D. 12(a+b)≥06.已知m<n,则下列不等式中错误的是()A. 2m<2nB. m+2<n+2C. m−n>0D. −2m>−2n7.如图,将△OAB绕点O逆时针旋转70°,得到△OCD,若∠A=2∠D=100°,则α的度数是()A. 50°B. 60°C. 40°D. 30°8.如图,在正方形网格中有△ABC,△ABC绕点O逆时针旋转90°后的图案应该是()A. B. C. D.9.如图,是平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30∘,OA=2.将△AOB绕点O逆时针旋转90∘,点B的对应点B′的坐标是()A. (−√3,3)B. (−3,√3)C. (−√3,2+√3)D. (−1,2+√3)10.下列说法中,错误的是()A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个11.如图,在Rt△ABC中,∠A=90°,∠C=30°,BC的垂直平分线交AC于点D,交BC于点E.若ED=3,则AC的长为()A. 3√3B. 3C. 6D. 912.如图△ABC中,∠BAC=90°,AB=AC,BM是AC边的中线,有AD⊥BM,垂足为点E,交BC于点D,且AH平分∠BAC交BM于N,交BC于H,连接DM,则下列结论:①∠AMB=∠CMD②HN=HD③BN=AD④∠BNH=∠MDC⑤MC= DC中,错误的有()个.A. 0个B. 1个C. 2个D. 4个13.若不等式组{x>ax−3<0只有两个整数解,则a的取值范围为()A. 0<a <1B. 0<a ≤1C. 0≤a <1D. 0≤a <2 14. 如图,每次旋转都以图中的A 、B 、C 、D 、E 、F 中不同的点为旋转中心,旋转角度为k ⋅90°(k 为整数),现在要将左边的阴影四边形正好通过n 次旋转得到右边的阴影四边形,则n 的值可以是( )A. n =1可以,n =2,3不可B. n =2可以,n =1,3不可C. n =1,2可以,n =3不可D. n =1,2,3均可卷Ⅱ二、填空题(本大题共5小题,共25.0分)15. 如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点 (填“A ”“B ”或“C ”).16. 如图,直线y =kx +b(k,b 是常数,k ≠0)与直线y =2交于点A(4,2),则关于x 的不等式kx +b <2的解集为 .17. 如图,已知OC 平分∠AOB ,CD//OB ,若OD =6 cm ,则CD 的长为________cm .18. 若不等式组{2x <3(x −3)+1,3x+24>x +a恰有四个整数解,则a 的取值范围是 .19.如图,将△ABC绕点A旋转一定角度后得到△ADE.若∠CAE=60∘,∠E=65∘,且AD⊥BC,则∠BAC=°.三、解答题(本大题共7小题,共80.0分)20.(8分)解下列不等式:①3(x+2)<4(x−1)+7.②x+43−x−12>1.21.(10分)如图,∠MAN=90°,B,C分别为射线AM,AN上的两个动点,将线段AC绕点A逆时针旋转30°到AD,连接BD交AC于点E.(1)当∠ACB=30°时,依题意补全图形,并直接写出DEBE 的值;(2)写出一个∠ACB的度数,使得DEBE =12,并证明.22.(8分)如图,在等边△AOB中,点B(2,0),点O是原点,点C是y轴正半轴上的动点,以OC为边向左侧作等边△COD,当AD=2√213时,求AC的长.23.(12分)如图,△ABC为等边三角形,点M是线段BC上任意一点,点N是线段CA上任意一点,且BM=CN,BN与AM相交于点Q.(1)求证:AM=BN;(2)求∠BQM的度数.24.(12分)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数表达式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?25.(14分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为______________,点C的坐标为______________;(2)将△ABC向下平移7个单位长度,请画出平移后的△A1B1C1;(3)如果M为△ABC内的一点,其坐标为(a,b),那么平移后点M的对应点M1的坐标为______________.26.(16分)如图,已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=8cm,将Rt△OAB绕点O顺时针旋转60°,得到△ODC,连接BC.点M从点D出发,沿DB 方向匀速行动,速度为1cm/s;同时,点N从点O出发,沿OC方向匀速运动,速度为2cm/s;当一个点停止运动,另一个点也停止运动.连接AM,MN,MN交CD 于点P.设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,OM平分∠AMN?(2)设四边形AMNO的面积为S(cm2),求S与t的函教关系式;(3)在运动过程中,当∠AMO=45°时,求四边形AMNO的面积;(4)在运动过程中,是否存在某一时刻t,使点P为线段CD的中点?若存在,求出t的值;若不存在,请说明理由.答案1.D2.D3.C4.D5.D6.A7.C8.C9.A10.A11.C12.D13.B14.C15.D16.平移;A17.x<418.619.−114≤a<−5220. 8521.解:(1)去括号,得:3x+6<4x−4+7,移项,得:3x−4x<−4+7−6,合并同类项,得:−x<−3,系数化为1,得:x>3;(2)去分母,得:2(x+4)−3(x−1)>6,去括号,得:2x+8−3x+3>6,移项,得:2x−3x>6−8−3,合并同类项,得:−x>−5,系数化为1,得:x<5.22.解:(1)补全图形如下:由旋转的性质可得AC=AD,∠DAC=30°,如图1,过点D作DF⊥AC于点F,∴DF//AB,∴△DFE∽△BAE,∴DFAB =DEBE,设DF=x,则DA=2x,则AC=2x,∴AB=2√33x,∴DFAB=√32∴DEBE =√32.(2)解:∠ACB=45°.证明:∵∠ACB=45°,∴AB=AC.∵AC=AD,∴AB=AD.如图2,过点D作DF⊥AC于点F,∴∠DFE=90°∵∠CAD=30°,∴DF=12AD=12AB.∵∠BAE =90°,∴∠DFE =∠BAE =90°.∵∠FED =∠AEB .∴△FED∽△AEB . ∴DE BE =DF AB =12. 23.解:如图,连结BC ,作AH ⊥OB 交OB 于点H ,∵△AOB 和△COD 是等边三角形,∴∠DOC =∠AOB =60°,∴∠DOC +∠COA =∠AOB +∠COA =90°, ∵B(2,0),∴OB =OA =2,又∵AD =2√213, ∴CO =DO =√AD 2−AO 2=4√33, ∴C(0,4√33), ∵OH =BH =1,∴AH =√AO 2−HO 2=√3,∴A(1,√3),∴AC =√(0−1)2+(4√33−√3)2=2√33. ∴AC 的长为2√33.24.解:(1)证明:∵△ABC 为等边三角形, ∴∠ABC =∠C =60°,AB =BC .在△AMB 和△BNC 中,{AB =BC,∠ABM =∠C,BM =CN,∴△AMB≌△BNC(SAS).∴AM =BN .(2)60°.25.解:(1)y 甲=0.9x .y 乙={x(0≤x ≤100),0.8x +20(x >100).(2)当购物在200元以内时,选择甲商场购物更省钱;当购物200元时,去两家商场购物一样优惠;当购物超过200元时,选择乙商场购物更省钱. 26.解:(1)(2,7);(6,5)(2)图略.(3)(a,b −7)27.解:(1)∵Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =8, ∴∠AOB =60°,OA =12AB =4,AB =√OB 2−OA 2=√82−42=4√3, 由旋转的性质得:OB =OC =8,AB =CD =4√3,∠DOC =∠AOB =60°, 当OM 平分∠AMN 时,即∠AMO =∠NMO ,在△AMO 和△NMO 中,{∠AMO =∠NMOOM =OM ∠AOM =∠NOM,∴△AMO≌△NMO(ASA),∴OA =ON =4,∴t =42=2(s), ∴当t 为2s 时,OM 平分∠AMN ;(2)过点A 作AE ⊥OB 于E ,过点N 作ZF ⊥OB 于F ,如图1所示:∵∠DOC =∠AOB =60°,∴AE =OA ⋅sin60°=4×√32=2√3,NF =ON ⋅sin60°=2t ×√32=√3t ,∵OM =OD +DM =4+t ,∴S =S △AOM +S △NOM =12OM ⋅AE +12OM ⋅NF =12(4+t)×2√3+12(4+t)×√3t =√32t 2+3√3t +4√3;(3)当∠AMO =45°时,则△AEM 为等腰直角三角形,∴AE =ME ,∵∠AOE =60°,∴∠OAE =30°,∴OE =12OA =2,∴DE=OD−OE=4−2=2,∴ME=2+t,∴2+t=2√3,∴t=2√3−2,∴S=√32t2+3√3t+4√3=√32(2√3−2)2+3√3(2√3−2)+4√3=6√3+6;(4)存在某一时刻t,使点P为线段CD的中点,理由如下:过点N作NQ⊥OB于Q,如图2所示:∵P为线段CD的中点,∴DP=12CD=2√3,∵∠NOQ=60°,∴∠ONQ=30°,NQ=ON⋅sin60°=2t×√32=√3t,∴OQ=12ON=t,∴DQ=OD−OQ=4−t,∵S△NOM=12OM⋅NQ=12(4+t)×√3t,S△NOM=S△MDP+S梯形DQNP +S△OQN=12DM⋅DP+12(DP+NQ)⋅DQ+12OQ⋅NQ=1 2t×2√3+12(2√3+√3t)(4−t)+12×t×√3t,∴12t×2√3+12(2√3+√3t)(4−t)+12×t×√3t=12(4+t)×√3t,整理得:t2=8,∴t=2√2,即存在t=2√2s时,使点P为线段CD的中点.。
北师大版八年级数学下册期中测试题班级姓名学号得分一、选择题1.无论取何值时,下列分式一定有意义的是()A.B.C.D.2.下列因式分解正确的是()A.B.C.D.3.实数a、b、c在数轴上对应的点位置如图所示,下列式子正确的是()①b+c>0 ②a+b>a+c ③bc<ac ④ab>acA.1个B.2个C.3个D.4个4.下列运算正确的是()A. B.C. D.5、如果把分式中的 x,y都扩大7倍,那么分式的值()。
A、扩大7倍B、扩大14倍C、扩大21倍D、不变6.关的分式方程,下列说法正确的是()A.<一5时,方程的解为负数B.方程的解是x=+5C.>一5时,方科的解是正数D.无法确定7.将不等式的解集在数轴上表示出米,正确的是()a221aa+21aa+112+-aa112+-aa()222baba-=-()22224yxyx+=+()()aaa21212822-+=-()()yxyxyx44422-+=-abab11+-=+-babababa321053.02.05.0-+=-+12316+=+aaxyxyyxyx+-=+-yxx25-x15=-xmm mm⎪⎩⎪⎨⎧-≤-<+xxxx238211488.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .B .C .D .9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .<B .>C .≤D .≥10.在盒子里放有三张分别写有整式+1、+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .B .C .D .11.关的不等式组有四个整数解,则的取值范同是( )A .B .C .D . 二、填空题12、 一项工程,A 单独做m 小时完成。
北师大版初中数学八年级下册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:100分学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共12小题,共36分)1.如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC的长是()A. 6B. 5C. 4D. 32.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 17AB的长为半径画圆3.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于12弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B. 10C. 11D. 134.若a <b ,则下列变形正确的是()A. a−1>b−1B. a4>b4C. −3a>−3bD. 1a>1b5.不等式组{3(x+1)>x−1x+72≥2x−1的非负整数解的个数是()A. 3B. 4C. 5D. 66.如图,直线y=kx+b(k≠0)经过点(−1,3),则不等式kx+b≥3的解集为()A. x>−1B. x<−1C. x≥3D. x≥−17.下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A. 4个B. 3个C. 2个D. 1个8.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分的面积为()A. 42B. 48C. 84D. 9610.现规定一种新运算,a※b=ab+a−b,其中a、b为常数,若(2※3)+(m※1)=6,则不等式3x−22<−m的解集是()B. x<0C. x>1D. x<2A. x<−4311.符号[x]为不超过x的最大整数,如[2.8]=2,[−3.8]=−4.对于任意实数x,下列式子中错误的是()A. [x]≤xB. 0≤x−[x]<1C. [x−1]=[x]−1D. [x+y]=[x]+[y]12.有不足30个苹果分给若干个小朋友,若每个小朋友分3个,则剩2个苹果;若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个.已知小朋友人数是偶数个,那么苹果的个数是()A. 25B. 26C. 28D. 29第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.若关于x的不等式组{2x+1>3,a−x>1的解集为1<x<3,则a的值为(1).14.如图,长方形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,则CE的长为________.15.不等式组{2x+1≤35≥3−x的解集为______.16.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为______.三、计算题(本大题共8小题,共52分)17.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF//AD交AB于F.交CA的延长线于P,CH//AB交AD的延长线于H.解答以下问题.(1)求证:△APF是等腰三角形;(2)试在图中找出一对全等的三角形并给予证明;(3)试猜想AB与PC的大小有什么关系?并证明你的猜想.18.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?19.如图,∠1=∠2,CE⊥AB于E,CF⊥AD交AD的延长线于F,且BC=DC.(1)BE与DF是否相等?请说明理由;(2)若DF=1cm,AD=3cm,则AB的长为______cm.20. 解不等式组{−1−x ≤0,①x+12−1<x3,②并写出它的正整数解.21. 我市在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求A ,B 两种树苗每棵各多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案? (3)某包工队承包种植任务,若种好一棵A 种树苗可获工钱30元,种好一棵B 种树苗可获工钱20元,在第(2)问的购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?22. 岳阳市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元;(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?23.如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线//BC,求∠1的度数.24.如图,在正方形ABCD中,AB=6,用一块含45°的三角板,把45°角的顶点放在D点,将三角板绕着点D旋转,使这个45°角的两边与线段AB、BC分别相交于点E、F.(1)由几个不同的位置,分别测量AE、EF、FC的长,从中你能发现AE、EF、FC的数量之间具有怎样的关系?并证明你所得到的结论;(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出自变量的取值范围.答案和解析1.【答案】D【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.由AD是△ABC的平分线推出DF=DE,结合三角形面积公式求出答案.【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=12×4×2+12×AC×2,∴AC=3.故选D.2.【答案】B【解析】【分析】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为11.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.3.【答案】A【解析】【分析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.4.【答案】C【解析】【分析】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.根据不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴a−1<b−1,故本选项不符合题意;B、∵a<b,∴a4<b4,故本选项不符合题意;C、∵a<b,∴−3a>−3b,故本选项符合题意;D、若a<b,则1a >1b不一定成立,比如a=−2,b=2,但−12<12,故本选项不符合题意;故选:C.5.【答案】B【解析】解:{3(x+1)>x−1①x+72≥2x−1②,解①得:x>−2,解②得x≤3,则不等式组的解集为−2<x≤3.故非负整数解为0,1,2,3,共4个故选:B.先求出不等式组的解集,在取值范围内可以找到整数解.本题考查不等式组的解法及整数解的确定.解不等式组应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.6.【答案】D【解析】解:观察图象知:当x≥−1时,kx+b≥3,故选:D.结合函数的图象利用数形结合的方法确定不等式的解集即可.本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.7.【答案】A【解析】【分析】本题考查了旋转和轴对称的性质.①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心;②轴对称图形的对应线段、对应角相等.图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称,据此解答即可.【解答】解:图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有4个.故选:A.8.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.9.【答案】B【解析】由题意可知,BE=6,DE=AB=10,∴OE=DE−DO=10−4=6,∵△ABC≌△DEF,∴S△ABC=S△DEF,∴S△ABC−S△COE=S△DEF−S△COE,∴S四边形ODFC =S梯形ABEO=12(AB+OE)⋅BE=12×(10+6)×6=48.故选B.10.【答案】B【解析】【分析】本题考查了新定义及解一元一次不等式:先去分母和括号,再移项、合并,然后把未知数的系数化为1得到不等式的解集.也考查了阅读理解能力.先根据新定义得到2×3+2−3+m ×1+m −1=6,解得m =1,则不等式化为3x−22<−1,然后通过去分母、移项可得到不等式的解集.【解答】解:∵(2※3)+(m※1)=6,a※b =ab +a −b ,∴2×3+2−3+m ×1+m −1=6,∴m =1,∴3x−22<−1,去分母得3x −2<−2,移项并合并得3x <0,系数化为1得x <0.故选B .11.【答案】D12.【答案】B【解析】【分析】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.设小朋友的人数为x 人,则苹果的个数为(3x +2)个,根据“若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个”,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,结合x 为偶数即可得出x 的值,再将其代入(3x +2)中即可求出结论.【解答】解:设小朋友的人数为x 人,则苹果的个数为(3x +2)个,依题意,得:{3x +2>4(x −2)3x +2<4(x −2)+3, 解得:7<x <10.又∵x 为偶数,∴x =8,∴3x +2=26.故选B .13.【答案】414.【答案】136【解析】【分析】本题考查的是线段垂直平分线的性质.关键是要设所求的量为未知数利用勾股定理求解.本题首先利用线段垂直平分线的性质推出△AOE≌△COE,再利用勾股定理即可求解.【解答】解:EF垂直且平分AC,故AE=EC,AO=CO.所以△AOE≌△COE.设CE为x.则DE=AD−x,CD=AB=2.根据勾股定理可得x2=(3−x)2+22,.解得CE=136故答案为13.615.【答案】−2≤x≤1【解析】解:解不等式2x+1≤3,得:x≤1,解不等式5≥3−x,得:x≥−2,则不等式组的解集为−2≤x≤1,故答案为:−2≤x≤1.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.【答案】x<−1【解析】【分析】观察函数图象可知,当x<−1时,函数y=k2x图象都在函数y=k1x+b的图象上方,从而可得到关于x的不等式k2x>k1x+b的解集.【解答】解:由图知,当x<−1时,k2x>k1x+b所以不等式k2x>k1x+b的解集为x<−1.故答案为x<−1.17.【答案】证明:(1)∵EF//AD,∴∠P=∠DAC,∠PFA=∠DAF,∵AD平分∠BAC,∴∠DAC=∠DAF,∴∠P=∠PFA,∴AP=AF,∴△APF是等腰三角形.(2)△DCH≌△BEF.证明:∵AB//CH,∴∠BAD=∠H(两直线平行,内错角相等),∠B=∠DCH(两直线平行,内错角相等),又∵EF//AD(已知),∴∠BFE=∠BAD;∴∠BFE=∠H,在△DCH和△EBF中,{∠BFE=∠H ∠B=∠HCD BE=CD,∴△DCH≌△EBF(AAS).(3)AB=PC,理由:∵AD平分∠BAC, ∴∠BAD=∠HAC,∵AB//CH,∴∠BAH=∠H,∴∠HAC=∠H,∴AC=CH,∴△BEF≌△CDH,∴BF=CH,∴AC=BF,∵△APF为等腰三角形,∴AP=AF,∴AC+AP=BF+AF,即AB=PC.【解析】(1)由平行线EF//AD,可得同位角、内错角相等,即∠P=∠DAC,∠PFA=∠DAF,进而再由平分线的性质以及角之间的转化,即可得出结论;(2)可由两角夹一边求解△DCH≌△BEF;(3)在(2)的基础上可得出线段之间的关系,通过等量代换即可.本题主要考查了平行线的性质以及全等三角形的判定及性质和等腰三角形的判定问题,能够熟练掌握并运用.18.【答案】解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4−2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4−2t=t.∴t=4.3当t=4时,△PBQ为等边三角形;3(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4−2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4−2t),∴t=8.5即当t =85或t =1时,△PBQ 为直角三角形.【解析】用含t 的代数式表示出BP 、BQ .(1)由于∠B =60°,当BP =BQ 时,可得到关于t 的一次方程,求解即得结论;(2)分两种情况进行讨论:当∠BOP =90°时,当∠BPQ =90°时.利用直角三角形中,含30°角的边间关系,得到关于t 的一次方程,求解得结论.本题考查了含30°角的直角三角形、等边三角形以及分类讨论的思想方法,利用“直角三角形中,30°角所对的边等于斜边的一半”及“有一个角是60°的等腰三角形是等边三角形”,得到关于t 的一次方程是解决本题的关键.19.【答案】5【解析】解:(1)BE =DF ,证明:∵∠1=∠2,CE ⊥AB 于E ,CF ⊥AD 于F ,∴CE =CF =90°.在Rt △CEB 和Rt △CFD 中,{BC =DC,CE =CF.∴Rt △CEB≌Rt △CFD(HL).∴BE =DF .(2)在△AFC 与△AEC 中{∠1=∠2∠F =∠CEB AC =AC,∴△AFC≌△AEC(AAS),∴AE =AF =3+1=4,DF =BE =1,∴AB =5.故答案为:5.(1)首先利用角平分线的性质求出CF =CE ,再根据斜边直角边证明Rt △CEB≌Rt △CFD ,推的BE =DF ;(2)利用(AAS)证明△AFC≌△AEC ,推AE =AF =3+1=4,DF =BE =1,最后求出AB 长.本题考查了全等三角形的判定与性质、角平分线的性质,熟练掌握全等三角形的判定方法与性质,角平分线的性质应用是解题关键.20.【答案】解:−1≤x <3.不等式组的正整数解是1,2.【解析】略21.【答案】解:(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据题意,得:{8x +3y =9505x +6y =800, 解得:{x =100y =50, 答:A 种树苗每棵100元,B 种树苗每棵50元;(2)设购进A 种树苗m 棵,则购进B 种树苗(100−m)棵,根据题意,得:{m ≥52100−m ≥0100m +50(100−m)≤7650,解得:52≤m ≤53,所以购买的方案有:1、购进A 种树苗52棵,B 种树苗48棵;2、购进A 种树苗53棵,B 种树苗47棵;(3)方案一的费用为52×30+48×20=2520元,方案二的费用为53×30+47×20=2530元,所以购进A 种树苗52棵,B 种树苗48棵所付工钱最少,最少工钱为2520元.【解析】(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据“购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元”列二元一次方程组求解可得;(2)设购进A 种树苗m 棵,则购进B 种树苗(100−m)棵,根据“A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元”列不等式组求解可得;(3)根据(2)中所得方案,分别计算得出费用即可.本题主要考查一元一次不等式组、二元一次方程组的应用,解题的关键是仔细审题,找到题目蕴含的相等或不等关系得出方程组、不等式组.22.【答案】解:(1)设去年餐饮利润x 万元,住宿利润y 万元,依题意得:{x +y =20×80%x =2y +1, 解得:{x =11y =5, 答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m 万元,依题意得:16+16×(1+10%)+m −20−11≥10,解之得,m ≥7.4,答:今年土特产销售至少有7.4万元的利润.【解析】(1)设去年餐饮利润为x 万元,住宿利润为y 万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m 万元,根据题意列出不等式,求出不等式的解集即可得到结果.此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的不等及相等关系是解本题的关键.23.【答案】解:∵△BAC 中,∠BAC =90°,∠C =30°,∴∠B =90°−30°=60°,∵△ABC 绕着点A 逆时针旋转,得到△AMN ,∴AB =AM ,∴△ABM 是等边三角形,∴∠AMB =60°,∵∠AMN =60°,∴∠CMN =180°−60°−60°=60°,∵l//BC ,∴∠1+∠ANM =∠NMC ,∵∠ANM =∠C =30°,∴∠1+30°=60°,∴∠1=30°.【解析】首先根据直角的性质求出∠B=60°,利用旋转的性质求出△ABM是等边三角形,进而求出∠NMC=60°,再利用平行线的性质得到∠1+∠ANM=∠NMC,结合∠ANM=∠C=30°,即可求出∠1的度数.本题主要考查了旋转的性质的知识,解答本题的关键是求出∠NMC=60°,利用平行线的性质即可解题,此题难度不大.24.【答案】解:(1)EF=AE+FC.理由:如图所示:延长BC至E′,使CE′=AE,连接DE′,∵AD=CD,AE=CE′,∠A=∠DCE′=90°,∴△ADE≌△CDE′,∴DE=DE′,∠ADE=∠CDE′,∠FDE′=∠FDC+∠CDE′=∠FDC+∠ADE=90°−∠EDF=45°,∴△DEF≌△DE′F,∴EF=E′F=CE′+FC=AE+FC;(2)如图所示,已知AE=x,CF=y,则BE=6−x,BF=6−y,由(1)可知EF=x+y,在Rt△BEF中,由勾股定理,得BE2+BF2=EF2,即(6−x)2+(6−y)2=(x+y)2,(0≤x≤6).解得:y=36−6xx+6【解析】(1)延长BC至E′,使CE′=AE,连接DE′,利用旋转法证明△ADE≌△CDE′,根据已知证明∠FDE′=∠EDF=45°,可证△DEF≌△DE′F,再根据全等三角形的性质可得EF=AE+FC;(2)由(1)的结论,将条件集中在Rt△BEF中,由勾股定理建立x、y的函数关系式.本题考查了旋转法在证题中的运用,勾股定理在建立函数关系式中的运用.关键是通过旋转,将条件相对集中.。
水塘初级中学八年级数学试卷
(本试卷满分150分,考试时间:120分钟)
班级: 姓名: 学号: 得分: 一、选择题:(每小题3分,共36分,每小题只有一个答案) 1.将不等式组 的解集在数轴上表示出来,应是 ( ).
A
2.已知x y >,则下列不等式不成立的是 ( ). A .66x y ->- B .33x y > C .22x y -<- D .3636x y -+>-+ 3.函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于
x 的不等式kx+b>0的解集为( ). A .x>0 B .x<0 C .x<2 D .x>2
4.下列从左到右的变形中,是分解因式的是( ) A .a 2–4a+5=a(a –4)+5 B .(x+3)(x+2)=x 2+5x+6 C .a 2–9b 2=(a+3b)(a –3b) D .(x+3)(x –1)+1=x 2+2x+2 5.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C. b(a –2b)2与a (2b –a )2 D. x+1与x 2–1 6.下列因式分解正确的是 ( )
A .–4a 2+4b 2=–4(a 2–4b 2)=–4(a+2b)(a –2b)
B.3m 3–12m=3m(m 2–4) C .4–9m 2=(2+3m)(2–3m) D.4x 4y –12x 2y 2+7=4x 2y(x 2–3y)+7
7.下列四个分式的运算中,其中运算结果正确的有 ( )
①b a b a +=+211; ②()32
3
2a a a =;③b a b a b a +=++22;④31932-=--a a a ; A .0个 B .1个 C.2个 D. 3个
8.若将分式
2
4a b
a +中的a 与
b 的值都扩大为原来的2倍,则这个
分式的值将 ( )
A .扩大为原来的2倍 B. 分式的值不变 C. 缩小为原来的
2
1 D .缩小为原来的
4
1
9.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来
又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原来包车旅游的同学有x 人,则根据题意可列方程( )
A .32180180=+-x x
B .3
180
2180=-+x x C .3180180+-x x =2 D .21803180=-+x x
10. 两地实际距离是500 m ,画在图上的距离是25 cm ,若在此图上
量得A 、B 两地相距为40cm ,则A 、B 两地的实际距离是 ( ) A .800 m B 。
8000 m C .32250 cm D 。
3225 m 11.下面两个三角形一定相似的是 ( )
A .两个等腰三角形
B 。
两个直角三角形
C .两个钝角三角形
D 。
两个等边三角形 12. 已知
y x 32=,则下列比例式成立的是 ( )
A .32
y x =
B 。
32=y x
C 。
23y x =
D 。
y x 32= 二、填空题:(每小题3分,共30分) 13.用不等式表示: (1) x 与5的差不小于x 的2倍: ; (2)小明的身高h 超过了160cm : . 14.不等式930x ->的非负整数解是 .
15.将–x4–3x2+x 提取公因式–x 后,剩下的因式是 .
16.若4a4–ka2b+25b2是一个完全平方式,则k= . 17.若一个正方形的面积是9m2+24mn+16n2,则这个正方形的边长是 . 18、分解因式: =+-122
a a _______________. 19、当x = 时,分式
3
9
2+-x x 的值为0.
20、已知关于x 的不等式(1-a )x >2的解集为x <a
-12 ,则a 的取值范
围是__________.
21. 若点C 是线段AB 的黄金分割点,且AC>BC ,那么AB,AC,BC 之间的关系式可用式子来表示__ __。
22. 一根竹竿的高为1.5cm ,影长为2m ,同一时刻某塔影长为40m ,则塔的高度为_______ ___m 。
三、计算题:(每小题5分,共计20分)
23、分解因式:2
2)(16)(4b a b a ++--
24、解方程:()
635
11x x x x x ++=
--
25、先化简,再求值:,
22121222x x x
x x x x ÷--++--其中.15+=x
26、解不等式组⎪
⎩⎪
⎨⎧-≥+-<-x x x 221
132,并把解集在数轴上表示出来。
四、解答题(每小题7分,共14分)
27.已知多项式(a 2+ka+25)–b 2,在给定k 的值的条件下可以因式分解。
(即:前半部分可以写成完全平方公式.) (1)写出常数k 可能给定的值;
(2)针对其中一个给定的k 值,写出因式分解的过程.
C A B D
13
{
x x ≥≤
28. 如图,AB是斜靠的长梯,长4.4米,梯脚B距墙根1.6米,梯上点D距离墙1.4米,已知△ADE∽△ABC,那么点A与点D之间的长度AD为多少米?
五、操作与探索(每小题10分,共50分)
29.甲,乙两地相距360km,新修的高速公路开通后,在甲,乙两地之间行驶的长途汽车平均车速提高了50%,而从甲地到乙地的时间缩短了2h。
试确定原来的平均车速。
30.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬
衫,面市后果然供不应求。
商厦又用17.6万元购进了第二批这种衬衫,所
购数量是第一批进量的二倍,但单价贵了4元。
商厦销售这种衬衫时每件
定价都是58元,最后剩下150件按八折销售,很快售完。
在这两笔生意
中,商厦共盈利多少元?
31.若
.
1
,1
1
,1
1
的值
求
b
ab
a
c
c
b
+
=
+
=
+
32(10分).请你阅读下列计算过程,再回答所提出的问题
)1
)(
1
(
)1
(3
)1
)(
1
(
3
1
3
)1
)(
1
(
3
1
3
1
3
2+
-
+
-
+
-
-
=
-
-
+
-
-
=
-
-
-
-
x
x
x
x
x
x
x
x
x
x
x
x
x
=
6
2
)1
(3
3-
-
=
+
-
-x
x
x。
⑴上述计算过程中,从哪一步开始出现错误(每个“=”,表示一步
变形),
适当说明错误原因;⑵从第二步到第三步是否正确,适当说明错误
理由;
⑶请你给出正确解答。
33.(10分)某超市规定:凡一次购买大米180kg以上可以按原价打
折出
售,购买180kg(包括180kg)以下只能按原价出售。
小明家到超市买
大
米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,
则
按打折价格付款,恰巧需要也是500元。
⑴求小明家原计划购买大米数量x(千克)的范围;⑵若按原价购买
4kg
与打折价购买5kg的款相同,那么原计划小明家购买多少大米?。