2020-2021初二数学下期中试卷及答案
- 格式:doc
- 大小:620.00 KB
- 文档页数:17
2020-2021学年八年级(下)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC 2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义进行判断.【解答】解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=【分析】利用一元二次方程的定义进行分析即可.【解答】解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3【分析】二次根式的被开方数是非负数.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【解答】解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°【分析】根据平行四边形的对角相等、邻角互补,即可得出∠A的度数.【解答】解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°【分析】至少有一个角不小于90°的反面是每个角都小于90°,据此即可假设.【解答】解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的除法法则对B进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4【分析】根据平行四边形的性质得到OB=OD,AD+AB=CD+BC=12,根据三角形的周长公式得到CD﹣BC=4,解方程组求出CD,得到AB的长,根据直角三角形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1【分析】由根的判别式与方程根的情况,可得△<0,从而求出k的取值范围,再确定k 的最小整数.要保证二次项系数不为0.【解答】解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.【分析】连接AC、BC,根据勾股定理求出A1B1,根据三角形中位线定理、菱形的判定定理得到四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,总结规律,根据规律解答.【解答】解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.【分析】根据中位数和众数的定义求解.【解答】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.【分析】二次根式的性质:=a(a≥0),根据性质可以对上式化简.【解答】解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.【分析】根据54米的篱笆,即总长度是54m,BC=xm,则AB=(54﹣x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.【分析】分两种情况讨论,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,推出∠BFE=∠B'FE,进一步推BF=BE=5,在Rt△ABF中,通过勾股定理求出AF的长;当点B'落在CD边上时,在Rt△ECB'中,利用勾股定理求出CB'的长,进一步求出DB'的长,分别在Rt△F A'B'和Rt△FDB'中,利用勾股定理求出含x的FB'的长度,联立构造方程,求出x的值,即AF的长度.【解答】解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△F A'B'中,FB'2=F A'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).【分析】(1)利用二次根式的性质计算;(2)利用二次根式的乘除法则运算.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.【分析】利用因式分解法求解可得.【解答】解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.【分析】(1)利用网格特点和中心对称的性质画出A、B、C的对应点即可;(2)利用勾股定理作出AC2=5,则△ABC2为等腰三角形,此三角形满足条件.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【分析】(1)由角平分线的性质和等腰三角形的性质可得∠DAF=∠E,可证AD∥BE,可得结论;(2)先证△ABE是等边三角形,可求S△ABF的面积,即可求解.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)【分析】(1)直接利用二月销量×(1+x)2=四月的销量进而求出答案.(2)首先设出未知数,再利用每袋的利润×销量=总利润列出方程,再解即可.【解答】解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.【分析】(1)把(4,0)代入y=﹣x+b即可求得b的值;(2)过点D作DE⊥x轴于点E,证明△OAB≌△EDA,即可求得AE和DE的长,则D 的坐标即可求得;(3)分当OM=MB=BN=NO时;当OB=BN=NM=MO=3时两种情况进行讨论.【解答】解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).1、三人行,必有我师。
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b =2a+bC .a 2−b 2a−b=a +bD .(−120)0=04.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)−2=(x+y)2(x−y)2. A .1个 B .2个C .3个D .4个6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x 道题,根据题意,可列出关于x 的不等式为 . 8.若关于x 的分式方程2x−3+x+m 3−x=2有增根,则m 的值为 .9.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 cm 2.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为11.不等式组﹣1<x <4的整数解有 个.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 .三.解答题(共5小题,满分30分,每小题6分) 13.(6分)计算题(1)分解因式:2x 2y ﹣8xy +8y (2)解方程:x x−1=3x 2−2x+114.(6分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =2.15.(6分)如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1. (2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2; ②直接写出点B 2的坐标为 .16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .四.解答题(共3小题,满分24分,每小题8分) 18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:的解;(2)不等式kx+b<0的解集是;(3)当x时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.19.(8分)若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.20.(8分)若3x−5x2−2x−3=ax−3−bx+1(a,b为常数),求(a+2b)b的值.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?22.(9分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B (b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个【解答】解:式子“3x >y ;4x ﹣3y ≥1;4x <0,”属于不等式, 故选:B .3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b=2a+bC .a 2−b 2a−b=a +bD .(−120)0=0 【解答】解:A 、原式=−23,错误; B 、原式=a+bab ,错误; C 、原式=(a+b)(a−b)a−b =a +b ,正确;D 、原式=1,错误; 故选:C .4.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB【解答】解:∵AC =AD ,BC =BD , ∴AB 是线段CD 的垂直平分线, 故选:C .5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)=(x+y)2(x−y). A .1个B .2个C .3个D .4个【解答】解:①(3b 22a )3=27b 68a 3,故选项错误;②(2x x+y )2=4x 2x 2+2xy+y 2,故选项错误;③−a+b −a−b =a−b a+b,故选项错误;④−x+y x−y =−1,故选项正确;⑤x+y x+y=1,故选项错误;⑥(x−y)−2(x+y)=(x+y)2(x−y),故选项正确;所以正确的有2个. 故选:B .6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A.2个B.3个C.4个D.5个【解答】解:①∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=BC,∵CE=12BC,F是AC的中点,∴CF=CE,∴∠E=∠CFE,∵∠ACB=∠E+∠CFE=60°,∴∠E=30°,∴∠BGE=90°,∴EG⊥AB,故①正确;②设AG=x,则AF=FC=CE=2x,∴FG=√3x,BE=6x,Rt△BGE中,BG=3x,EG=3√3x,∴EF=EG﹣FG﹣3√3x−√3x=2√3x,∴GF=12EF,故②正确;③如图,过N作NH⊥AC于H,连接BN,等边三角形ABC,∵AD⊥BC,∴AD平分∠BAC,BN=CN,∵MN⊥AB,∴NH=NM,∵MN是BG的垂直平分线,∴BN=NG,∴BN=CN=NG,在Rt△NGM和Rt△NCH中,{MN=NHGN=NC,∴Rt△NGM≌Rt△NCH(HL),∴∠GNM=∠CNH,∴∠MNH=∠CNG,∵∠ANM=∠ANH=60°,∴∠CNG=120°,故③正确;④∵MN是BG的垂直平分线,∴BM=MG=32x,∴AM=x+32x=52x,等边△ABC中,AD⊥BC,∴∠BAD=30°,∴MN=5√3x 6,∴GN=√GM2+MN2=(32x)2+(53x6)2=√39x2≠FG,故④不正确;⑤∵BN=CN=NG,∴∠DCN=∠DBN,∠NBM=∠NGM,∵∠ACN=∠ACB﹣∠DCN=60°﹣∠DBN=∠ABN=∠NGM,∵MG=32x,MN=5√36x,∴MG≠MN,∴∠NGM≠∠MNG,∴∠MNG≠∠ACN,故⑤不正确;其中正确的有:①②③,一共3个,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160.【解答】解:设他答对x道题,则答错或不答的题数为(20﹣x)道,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160,故答案为:10x﹣5(20﹣x)>160.8.若关于x的分式方程2x−3+x+m3−x=2有增根,则m的值为﹣1.【解答】解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.9.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为168cm2.【解答】解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形DHGW=12(DW+HG)×WG=12×(18+24)×8=168(cm2).故答案为168.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为23【解答】解:由图知△DEF 是由△ABC 向右平移3个单位,再向下平移2个单位得到的, ∴a =3、b =2, 则ba=23,故答案为:23.11.不等式组﹣1<x <4的整数解有 4 个.【解答】解:在﹣1<x <4范围内的整数只有0,1,2,3, 所以等式﹣1<x <4的整数解有4个, 故答案为4.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 26 .【解答】解:∵BO 平分∠ABC , ∴∠MBO =∠CBO , ∵MN ∥BC , ∴∠MOB =∠CBO , ∴∠MOB =∠MBO , ∴OM =BM , 同理CN =NO ,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.故答案为:26.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:xx−1=3x2−2x+1【解答】解:(1)原式=2y(x2﹣4x+4)=2y(x﹣2)2;(2)去分母得:2x=﹣3x+2x﹣2,解得:x=−2 3,经检验x=−23是分式方程的解.14.(6分)先化简,再求值:(2−x−1x+1)÷x2+6x+9x2−1,其中x=2.【解答】解:(2−x−1x+1)÷x2+6x+9x2−1=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x+3 x+1⋅(x+1)(x−1)(x+3)2=x−1 x+3,当x=2时,原式=2−12+3=15.15.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A 1B 1C 1为所作; (2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3). 故答案为(﹣3,3).16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.【解答】解:解方程组{x +y =m +22x −y =5m +4得:{x =2m +2y =−m ,根据题意,得:{2m +2≥0−m >0,解得:﹣1≤m <0, 则整数m =﹣1.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .【解答】证明:如图,连接DF,∵D是CB的中点,∴CD=BD.∵将△ACD沿AD折叠后得到△AED,∴CD=ED,∠AED=∠C=90°,∴BD=ED,∠DEF=90°,∵BF∥AC,∠C=90°,∴∠CBF=180°﹣∠ACB=90°,∴∠DBF=∠DEF=90°,在Rt△DBF和Rt△DEF中,{DF=DFDE=DB,∴Rt△DBF≌Rt△DEF(HL),∴BF=EF.四.解答题(共3小题,满分24分,每小题8分)18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:{y=2x−1y=−12x+32的解;(2)不等式kx+b<0的解集是x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【解答】解:(1)把A (0,﹣1),P (1,1)分别代入y =mx ﹣n 得{−n =−1m −n =1,解得{m =2n =1,所以直线l 1的解析式为y =2x ﹣1,把P (1,1)、B (3,0)分别代入y =kx +b 得{k +b =13k +b =0,解得{k =−12b =32, 所以直线l 2的解析式为y =−12x +32,所以交点P 的坐标(1,1)是一元二次方程组{y =2x −1y =−12x +32的解; (2)不等式kx +b <0的解集为x >3; (3)当x ≤1时,kx +b ≥mx ﹣n ;(4)当y =0时,2x ﹣1=0,解得x =12,则M 点的坐标为(12,0);当x =0时,y =−12x +32=32,则N 点坐标为(0,32),所以四边形OMPN 的面积=S △ONB ﹣S △PMB =12×3×32−12×(3−12)×1 =1.故答案为{y =2x −1y =−12x +32;x >3;≤1.19.(8分)若一多项式除以2x 2﹣3,得到的商式为x +4,余式为3x +2,求此多项式. 【解答】解:根据题意得:(2x 2﹣3)(x +4)+3x +2=2x 3+8x 2﹣10. 20.(8分)若3x−5x 2−2x−3=a x−3−bx+1(a ,b 为常数),求(a +2b )b 的值.【解答】解:a x−3−bx+1=ax+a−bx+3b(x−3)(x+1)=(a−b)x+a+3bx 2−2x−3,∵3x−5x 2−2x−3=a x−3−bx+1,∴{a −b =3a +3b =−5, 解得,{a =1b =−2,∴(a +2b )b =[1+2×(﹣2)]﹣2=(﹣3)﹣2=19.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同. (1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元, 由题意得:300x=4003x−50,解得:x =30,经检验,x =30是原方程的解且符合实际意义, 3x ﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元; (2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40﹣y )瓶, 由题意得:30y +40(40﹣y )=1400, 解得:y =20, ∴40﹣y =40﹣20=20,答:购买了20瓶乙品牌消毒剂.22.(9分)如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点A (0,a ),点B(b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.【解答】解:(1)∵a2−4a+4+√2b+2=0,∴(a−2)2+√2b+2=0,∵(a﹣2)2≥0,√2b+2≥0,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB =∠ABC =45°, ∴AB =CB ,过点C 作CG ⊥OA 于G , ∴∠CAG +∠ACG =90°, ∵∠BAO +∠CAG =90°, ∴∠BAO =∠ACG , 在△AOB 和△BCP 中, {∠CGA =∠AOB =90°∠ACG =∠BAO AC =AB, ∴△AOB ≌△CGA (AAS ), ∴CG =OA =2,AG =OB =1, ∴OG =OA ﹣AG =1, ∴C (2,1),Ⅱ、当∠ABC =90°时,如图2,同Ⅰ的方法得,C (1,﹣1);即:满足条件的点C (2,1)或(1,﹣1) (3)①如图3,由(2)知点C (1,﹣1), 过点C 作CL ⊥y 轴于点L ,则CL =1=BO ,在△BOE 和△CLE 中, {∠OEB =∠LEC ∠EOB =∠ELC BO =CL, ∴△BOE ≌△CLE (AAS ), ∴BE =CE , ∵∠ABC =90°, ∴∠BAO +∠BEA =90°, ∵∠BOE =90°, ∴∠CBF +∠BEA =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中, {∠BAE =∠CBF AB =BC ∠ABE =∠BCF, ∴△ABE ≌△BCF (ASA ), ∴BE =CF , ∴CF =12BC ;②点C 到DE 的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=12BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=CD+CE.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=√2AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴√2AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴∠ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.。
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A .(﹣3,1)B .(−13,3)C .(﹣3,﹣1)D .(13,3) 7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32) 二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 颜色的球的可能性最大.10.在整数20180419中,数字“1”出现的频率是 .11.已知反比例函数y =3x ,x >0时,y 0,这部分图象在第 象限,y 随着x值的增大而 .12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC的度数为 度.13.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC =6,BD=8,则OE 的长为 .14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=.15.如图,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC =6,则BE的长为.16.点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.17.如图,反比例函数y=kx位于第二象限的图象上有A,B两点,过A作AD⊥x轴于点D,过点B作BC⊥y轴于点C.已知,S△OCD=32,S△OAB=12,则反比例函数解析式为.三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.22.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[,];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查【解答】解:A、对我市七年级学生身高的调查,因范围较广,不宜采用全面调查,故A 不符合题意;B、对我国研制的“C919”大飞机零部件的调查,因涉及安全问题,宜采用全面调查,故B符合题意;C、对我市各乡镇猪肉价格的调查,因范围较广,不宜采用全面调查,故C不符合题意;D、对我国“东风﹣41”洲际弹道导弹射程的调查,因破坏性较强,宜采用抽样调查,故D不符合题意;故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定【解答】解:“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选:A.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;故选:B.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(−13,3)C.(﹣3,﹣1)D.(13,3)【解答】解:∵反比例函数y=kx的图象经过(﹣1,3),∴k=﹣1×3=﹣3,∴反比例函数解析式为y=−3 x.当x =﹣3时,y =−3−3=1, ∴反比例函数y =−3x 的图象经过点(﹣3,1),反比例函数y =−3x 的图象不经过点(﹣3,﹣1);当x =−13时,y =−3−13=9, ∴反比例函数y =−3x 的图象不经过点(−13,3);当x =13时,y =−313=−9,∴反比例函数y =−3x 的图象不经过点(13,3).故选:A .7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°﹣120°)=30°,∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°.故选:D .8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32)【解答】解:如图:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥⊥x 轴于点F ,过点A 作AN ⊥BF 于点N ,过点C 作CM ⊥x 轴于点M ,∵∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∴∠EAO =∠COM , 又∵∠AEO =∠CMO , ∴∠AEO ∽△COM , ∴EO AE=CM MO=12,∵∠BAN +∠OAN =90°,∠EAO +∠OAN =90°, ∴∠BAN =∠EAO =∠COM , 在△ABN 和△OCM 中 {∠BNA =∠CMO ∠BAN =∠COM AB =OC, ∴△ABN ≌△OCM (AAS ), ∴BN =CM ,∵点A (﹣1,2),点B 的纵坐标是72,∴BN =32, ∴CM =32,∴MO =3,∴点C 的坐标是:(3,32).故选:D .二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 白 颜色的球的可能性最大. 【解答】解:∵一只不透明的袋子中有1个红球,2个绿球和3个白球,这些球除颜色外都相同,∴P (红球)=16,P (绿球)=26=13,(白球)=36=12, ∴摸到白球的可能性最大. 故答案为:白.10.在整数20180419中,数字“1”出现的频率是14.【解答】解:∵在整数20180419中,数字“1”出现了2次, ∴数字“1”出现的频率是28=14;故答案为:14.11.已知反比例函数y =3x ,x >0时,y > 0,这部分图象在第 一 象限,y 随着x 值的增大而 减小 .【解答】解:反比例函数y =3x ,x >0时,y >0,这部分图象在第一象限,y 随着x 值的增大而减小.故答案为:>;一;减小.12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 100或40 度.【解答】解:∵四边形ABCD 是平行四边形, ∴∠BCA =∠CAD =40°, ①如图1,∠BAC =∠BCA =40°, ∠B =180°﹣40°×2=100°, 则∠ADC =100°;②如图2,∠B=∠BCA=40°,则∠ADC=40°.综上所述,∠ADC的度数为100或40度.故答案为:100或40.13.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD =8,则OE的长为 2.5.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB=√OA2+OB2=√32+42=5,则OE=12AB=2.5.故答案为:2.5.14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=4.【解答】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1,解得k =4,∴反比例函数解析式为y =4x+1, 把x =0代入y =4x+1得:y =4, 故答案为:4.15.如图,正方形ABCD ,∠EAF =45°,当点E ,F 分别在对角线BD 、边CD 上,若FC =6,则BE 的长为 3√2 .【解答】解:作△ADF 的外接圆⊙O ,连接EF 、EC ,过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N (如图) ∵∠ADF =90°, ∴AF 为⊙O 直径,∵BD 为正方形ABCD 对角线, ∴∠EDF =∠EAF =45°, ∴点E 在⊙O 上, ∴∠AEF =90°,∴△AEF 为等腰直角三角形, ∴AE =EF ,在△ABE 与△CBE 中{AB =CB∠ABE =∠CBE BE =BE ,∴△ABE ≌△CBE (SAS ), ∴AE =CE , ∴CE =EF , ∵EM ⊥CF ,CF =6, ∴CM =12CF =3,∵EN ⊥BC ,∠NCM =90°,∴四边形CMEN 是矩形, ∴EN =CM =3, ∵∠EBN =45°, ∴BE =√2EN =3√2, 故答案为:3√2.16.点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =k3a ,DQ =k2a ,ER =ka , ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.17.如图,反比例函数y =k x位于第二象限的图象上有A ,B 两点,过A 作AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C .已知,S △OCD =32,S △OAB =12,则反比例函数解析式为 y =−9x .【解答】解:作BE ⊥x 轴于E , 设A (m ,km ),∵S △OCD =32,∴12OD •OC =32,即12(﹣m )•OC =32,∴OC =−3m, ∴B (−mk 3,−3m), ∵S △OAB =12,∴S 梯形ABED =S △OAB ﹣S △AOD +S △BOE =12, ∴12(k m−3m)(m +mk3)=12, 解得k =±9,∵反比例函数y =kx 位于第二象限. ∴k =﹣9,∴反比例函数的解析式是y =−9x, 故答案为y =−9x .三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树240棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?【解答】解:(1)由题意可得:20×4×3=240;故答案为:240;(2)设y与x的函数表达式为:y=kx(k≠0),∵当x=20时,y=3.∴3=k 20∴k=60,∴y=60 x,当x=80时,y=6080=34;(3)把y=1.5代入y=60x,得1.5=60 x,解得:x=40,根据反比例函数的性质,y随x的增大而减小,所以为了能在1.5h内完成任务,至少需要40人参加植树.19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.【解答】解:(1)读图可得:A类有60人,占30%,则本次一共调查了60÷30%=200人,因此本次一共调查了200名学生.(2)“B”有200﹣60﹣30﹣10=100人,如图1所示.(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%,则3000×(15%+5%)=3000×20%=600人,因此学校有600人平均每天参加体育锻炼在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图所示,△A′B′C′即为所作;点B的对应点B'的坐标的坐标为(0,﹣6);(2)如图所示,点D的坐标为(﹣5,﹣3)或(﹣7,3)或(3,3).21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.【解答】解:(1)∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠DAG =∠AHB , 在△ADG 和△HAB 中, {∠DAG =∠AHB ∠DGA =∠B AD =AH, ∴△ADG ≌△HAB (AAS ), ∴DG =AB =6;(2)∵EF 是BD 的垂直平分线, ∴BO =DO ,BE =DE , ∵AD ∥BC , ∴∠EDO =∠FBO , 在△DEO 和△BFO 中, {∠EDO =∠FBO DO =BO ∠DOE =∠BOF, ∴△DEO ≌△BFO (ASA ), ∴OE =OF ,∴四边形BFDE 是平行四边形, 又∵BE =DE ,∴四边形BFDE 是菱形.22.【阅读】如图1,四边形OABC 中,OA =a ,OC =8,BC =6,∠AOC =∠BCO =90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ [θ,a ].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC =OD =8,∵D 为OA 的中点,∴OA =a =16,则这个操作过程为FZ [45°,16];故答案为:45°,16;(2)延长MD 、OA ,交于点N ,如图2.∵∠AOC =∠BCO =90°,∴∠AOC +∠BCO =180°,∴BC ∥OA ,∴∠B =∠DAN .在△BDM 和△ADN 中,{∠B =∠DAN BD =AD ∠BDM =∠ADN,∴△BDM ≌△ADN (ASA ),∴DM =DN .∵∠ODM =∠OCM =90°,∴根据线段垂直平分线的性质可得OM =ON ,∴根据等腰三角形的性质可得∠MOD =∠NOD .由折叠可得∠MOD =∠MOC =θ,∴∠COA =3θ=90°,∴θ=30°;【应用】①过点B作BH⊥OA于点H,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB=√BH2+AH2=8√2.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°=7√2,∴AF=OF=2∴AQ=AF=7√2.在Rt△OCB中,OB=√OC2+BC2=√82+62=10.在Rt△OFB中,BF=AB﹣AF=8√2−7√2=√2.由折叠可得EF=BF=√2,∴AE=AF﹣EF=7√2−√2=6√2.在Rt△QAE中,EQ2=AE2+AQ2=(6√2)2+(7√2)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是√170.23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为24°.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=14(3x+y).(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论∠P=90°+12∠C−32∠A.【解答】解:(1)如图1中,∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)如图2中,设∠BAP =∠P AD =x ,∠BCP =∠PCD =y ,则有{x +∠B =y +∠P x +∠P =y +∠D, ∴∠B ﹣∠P =∠P ﹣∠D ,∴P =12(∠B +∠D )=12(28°+20°)=24°.故答案为24°(3)如图3中,设∠CBJ =∠JBF =x ,∠ADP =∠PDE =y .则有{∠P +x =∠A +y ∠P +180°−x =∠C +180°−y, ∴2∠P =∠A +∠C ,∴∠P =12(30°+18°)=24°.(4)如图4中,设∠CAP =α,∠CDP =β,则∠P AB =3α,∠PDB =3β,则有{∠P +β=∠C +α∠P +3α=∠B +3β, ∴4∠P =3∠C +∠B ,∴∠P =14(3x +y ),故答案为∠P =14(3x +y ).(5)如图5中,延长AB 交PD 于J ,设∠PBJ =x ,∠ADP =∠PDE =y .则有∠A +2x =∠C +180°﹣2y ,∴x +y =90°+12(∠C ﹣∠A ),∵∠P +x +∠A +y =180°,∴∠P =90°−12∠C −12∠A .故答案为∠P =90°−12∠C −12∠A .。
第 1 页 共 26 页
2020-2021学年八年级下学期期中考试数学试卷
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )
A .
B .
C .
D .
2.(3分)以长度分别为下列各组数的线段为边,构成的三角形不是直角三角形的是( )
A .6,8,10
B .7,24,25
C .√5,√3,√2
D .1.5,2,3
3.(3分)已知函数y ={x 2+1(x <2)10x
(x ≥2),当y =6时,x 的值是( ) A .−√5 B .53 C .−√5或√5 D .√5或53 4.(3分)如图,三个正比例函数的图象分别对应表达式:①y =ax ②y =bx ③y =cx ,将a ,
b ,
c 从小到大排列为( )
A .a <b <c
B .a <c <b
C .b <a <c
D .c <b <a
5.(3分)如图,▱ABCD 的对角线相交于点O ,且AB ≠AD ,过点O 作OE ⊥BD 交BC 于
点E ,若△CDE 的周长为10,则▱ABCD 的周长为( )
A .14
B .16
C .20
D .18
6.(3分)用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( )
A .(x ﹣4)2=8
B .(x ﹣4)2=40
C .(x ﹣8)2=8
D .(x ﹣8)2=40
7.(3分)如图,在▱ABCD 中,对角线AC 、BD 交于点O ,E 是BC 边上的中点,若OE =
2,AD =5,则▱ABCD 的周长为( )。
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为()A.30°B.60°或120°C.30°或150°D.150°2.下列各组数据为三角形的三边,能构成直角三角形的是()A.4,8,7B.2,2,2C.2,2,4D.13,12,5 3.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.104.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且P A平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.186.顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形7.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.8.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m9.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形10.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个二.填空题(共8小题,满分32分,每小题4分)11.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,CD⊥AB,垂足为D,若BD=1,则AD的长为.13.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是.14.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有个三角形.15.顺次连接四边形ABCD各边的中点得到的四边形一定是.16.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为.17.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三.解答题(共8小题,满分78分)19.(8分)如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.20.(8分)已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.21.(8分)有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?22.(10分)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=45,求线段OE的长.23.(10分)如图,在▱ABCD 中,点E 是BC 上的一点,连接DE ,在DE 上取一点F 使得∠AFE =∠ADC .若DE =AD ,求证:DF =CE .24.(10分)如图所示,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,你能求出CD 的长吗?25.(12分)如图,在矩形ABCD 中,AB =2,AD =4.点E ,F 分别在AD ,BC 上,点A与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证:四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值.26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)(2)线段AC ,AG ,AH 什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为()A.30°B.60°或120°C.30°或150°D.150°【解答】解:当该三角形为锐角三角形时,如图1,∵sin∠A=BDAB=12,∴∠A=30°,即△ABC的顶角为30°;当该三角形为钝角三角形时,如图2,在Rt△ABD中,∵sin∠BAD=BDAB=12,∴∠BAD=30°,∴∠BAC=150°,即△ABC的顶角为150°;综上可知该三角形的顶角为30°或150°,故选:C.2.下列各组数据为三角形的三边,能构成直角三角形的是()A.4,8,7B.2,2,2C.2,2,4D.13,12,5【解答】解:A、42+72≠82,故不为直角三角形;B、22+22≠22,故不为直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形;故选:D.3.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.10【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.4.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且P A平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA【解答】解:由已知得,AP=AP,∠DAP=∠EAP,∠ADP=∠AEP所以符合AAS判定.故选:B.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形【解答】解:如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.7.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.8.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB=√62+82=10米.所以大树的高度是10+6=16米.故选:C.9.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形【解答】解:A、只有两组对边平行的四边形是平行四边形,故此选项错误;B、根据有一个角是直角的平行四边形是矩形,故此选项错误;C、四条边相等的四边形是菱形,此选项正确;D、根据对角线互相垂直平分且相等的四边形是正方形,故此选项错误;故选:C.10.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个【解答】解:分为三种情况:①正方形对角线的交点P1;②作AD边的垂直平分线MN,以点D为圆心,以DC为半径画弧,交MN于点P2和P3;以点C为圆心,以DC为半径画弧,交MN于点P4和P5,如图:③同理,作AB边的垂直平分线,分别以点A和点B为圆心,AD为半径画弧,与该垂直平分线也有4个交点.综上,符合题意的所有点P的个数为:1+4+4=9(个).故选:B.二.填空题(共8小题,满分32分,每小题4分)11.若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,CD⊥AB,垂足为D,若BD=1,则AD的长为3.【解答】解:∵在三角形ABC中,∠ACB=90°,∠ABC=60°,∴∠A=30°,∵CD⊥AB,∴∠BCD=30°,∴在Rt△BCD中,BC=2BD=2,∴在Rt△ABC中,AB=2BC=4,∴AD=AB﹣BD=4﹣1=3,故答案为:3.13.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是Rt△ABE≌Rt△DCF,△AEC≌△DFB..【解答】证明:∵AE⊥BC,DF⊥BC,垂足分别为E、F,∴∠AEB=∠DFC=90°,而AB=DC,AE=DF,∴Rt△ABE≌Rt△DCF,∴BE=CF,∴EC=BF,而AE=DF,∴△AEC≌△DFB.故填空答案为:Rt△ABE≌Rt△DCF,△AEC≌△DFB.14.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073个三角形.【解答】解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.15.顺次连接四边形ABCD各边的中点得到的四边形一定是平行四边形.【解答】解:连接BD,∵E、F、G、H分别是边AD、DC、BC、AB的中点,∴EH∥BD,FG∥BD,EH=12BD,FG=12BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形,故答案为:平行四边形.16.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为 4.8cm.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=12AC•BD=AB•DH,∴DH=AC⋅BD2AB=4.8cm.17.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=√82+62=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为(a+b).(用含a,b的代数式表示)【解答】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=14a,∴正方形ABCD的面积=4×14a+b=a+b.故答案为(a+b).三.解答题(共8小题,满分78分)19.(8分)如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.【解答】证明:在▱ABCD中,则AB∥CD,AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形.20.(8分)已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC=√AB2+BC2=√22+22=2√2,∵CD=1,AD=3,AC=2√2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=12AB×BC+12×AC×CD=12×2×2+12×1×2√2=2+√2.21.(8分)有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=√AE2+EC2=√62+82=10m,故小鸟至少飞行10m.22.(10分)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=45,求线段OE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠DBC,∵∠DBA=∠DBC,∴∠ADB=∠DBA,∴AD=AB,∴四边形ABCD为菱形;(2)解:∵四边形ABCD为菱形,∴AC⊥BD,AD=AB=5,OB=OD,∵sin∠ADB=OAAD=45,∴OA=4,∴OB=OD=2−OA2=3,∵OE⊥AB,△OAB的面积=12AB×OE=12OA×OB,∴OE=OA×OBAB=4×35=125.23.(10分)如图,在▱ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE=∠ADC.若DE=AD,求证:DF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠ADC,∴∠AFD=∠C,在△AFD 和△DEC 中,{∠ADF =∠DEC∠AFD =∠C AD =DE,∴△AFD ≌△DCE (AAS ),∴DF =CE .24.(10分)如图所示,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,你能求出CD 的长吗?【解答】解:在Rt 三角形中,由勾股定理可知:AB =√BC 2+AC 2=√82+62=10. 由折叠的性质可知:DC =DE ,AC =AE ,∠DEA =∠C .∴BE =4,∠DEB =90°.设DC =x ,则BD =8﹣x .在Rt △BDE 中,由勾股定理得:BE 2+ED 2=BD 2,即42+x 2=(8﹣x )2.解得:x =3.∴CD =3.25.(12分)如图,在矩形ABCD 中,AB =2,AD =4.点E ,F 分别在AD ,BC 上,点A与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证:四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值.【解答】解:(1)证明:如图,连接AF ,CE ,AC 交EF 于点O∵四边形ABCD 是矩形∴AB =CD ,AD =BC ,AD ∥BC∴∠AEO =∠CFO ,∠EAO =∠FCO∵点A 与点C 关于EF 所在的直线对称∴AO =CO ,AC ⊥EF∵∠AEO =∠CFO ,∠EAO =∠FCO ,AO =CO∴△AEO ≌△CFO (AAS )∴AE =CF ,且AE ∥CF∴四边形AFCE 是平行四边形,又∵AC ⊥EF∴四边形AFCE 是菱形;(2)如图,作点F 关于CD 的对称点H ,连接EH ,交CD 于点P ,此时△PEF 的周长最小∵四边形AFCE 是菱形∴AF =CF =CE =AE∵AF 2=BF 2+AB 2∴AF 2=(4﹣AF )2+4∴AF =52∵AD ∥BC∴△DEP ∽△CHP∴DP CP =DE CH =35. 答:当△PEF 的周长最小时,DP CP 的值为35. 26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC=∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°,∠DAC=∠BAC=45°,∴AC=√42+42=4√2,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,AH AC =ACAG,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(4√2)2=16.∴△AGH的面积为16.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴BC AH =BE AE =12, ∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4(可以证明△GAH ≌△HDC 得到) ∵BC ∥AH ,∴BE AE =BC AH =1,∴AE =BE =2.如图3中,当CG =CH 时,易证∠ECB =∠DCF =22.5°.在BC 上取一点M ,使得BM =BE , ∴∠BME =∠BEM =45°,∵∠BME =∠MCE +∠MEC ,∴∠MCE =∠MEC =22.5°,∴CM =EM ,设BM =BE =x ,则CM =EM =√2x , ∴x +√2x =4,∴x =4(√2−1),∴AE =4﹣4(√2−1)=8﹣4√2,综上所述,满足条件的m 的值为83或2或8﹣4√2.。
2020-2021学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3分)计算×2=.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子有意义,则x的取值范围是.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.3610.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.1011.(4分)下列计算中,正确的是()A.B.C.D.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18三、解答题(本大题共9小题,共70分)15.(6分)计算:16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.19.(7分)先化简,再求值:,其中a=﹣1.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.参考答案一、填空题1.(3分)计算×2=4.解:×2=2×2=4.故答案为:4.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.解:由勾股定理得,斜边长==5,故答案为:5.3.(3分)要使式子有意义,则x的取值范围是x≥﹣5.解:因为式子有意义,则x的取值范围是x≥﹣5.故答案为:x≥﹣5.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为4.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是10m.解:如图,作BE⊥OC于点E,由题意得:AD=BE=3m,AB=DE=2m,∵DC=6m,∴EC=4m,∴由勾股定理得:BC==5(m),∴大树的高度为5+5=10(m),故答案为:10m.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为或.解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=AC=2,BO=BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF===;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF===,综上所述,BF长为或.故答案为:或.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.解:A、是最简二次根式;B、==,被开方数含分母,不是最简二次根式;C、==2,被开方数含能开得尽方的因数,不是最简二次根式;D、=,被开方数含分母,不是最简二次根式;故选:A.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=×6×8=24,故选:B.10.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.10解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故选:D.11.(4分)下列计算中,正确的是()A.B.C.D.解:(A)原式=3,故A错误.(B)原式==3,故B错误.(D)原式=×=2,故D错误.故选:C.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°解:∵CE=CA,∴∠E=∠CAE,∵四边形ABCD是矩形,∴∠B=90°,∴∠ACB=90°﹣∠BAC=90°﹣52°=38°,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=19°;故选:B.14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18解:∵a=2+,b=2﹣,∴a+b=4,ab=4﹣3=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)计算:解:原式=2+1﹣+8=+9.16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)解:由勾股定理得:BC=(米);60÷4=15米/秒=54千米/小时<60千米/小时,所以不超速了.17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠FCE,∠F=∠BAE,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∵AB=DC,∴DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.解:∵AB=1,AD=,BD=2,∴AB2+AD2=BD2,∴∠DAB=90°,∵∠ABC+∠ADC=180°,∴∠C=90°∴BC===,∴四边形ABCD的面积=×AB×AD+×CD×CB=×1×+××=1+.19.(7分)先化简,再求值:,其中a=﹣1.解:===,当a=﹣1时,原式==.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.解:设CE=x,则DE=20﹣x,由勾股定理得:在Rt△ACE中,AE2=AC2+CE2=82+x2,在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,由题意可知:AE=BE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距C点13.3km,即CE=13.3km.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5,由(1)得:四边形ABCD是矩形,∴∠ABC=90°,AC=2OA=10,∴BC===5.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.解:(1)化简:,观察已知等式可知:原式=﹣;(2)因为,所以a(﹣1)+b(+1)=2﹣1,(a+b)﹣(a﹣b)=2﹣1,所以a+b=2,a﹣b=1,答:a+b的值为2.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS);(2)解:连接AC,BD交于点O,则AC⊥BD,∵菱形ABCD中,∠ABC=60°,AB=10,∴∠ABD=30°,AC=10,∴BO=5,∴BD=10,∴菱形ABCD的面积为==50;(3)解:因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时,∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵∠ABC=60°,AB=10,∴BP=2AB=20.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴AO=OE=AB=5,∴OB=OD=5,∴ED=5﹣5,BE=5+5.∵AD∥BP,∴△ADE∽△PBE,∴,∴,∴BP=10+5.综上所述,当△EPC是直角三角形时,线段BP的长为20或10+5.1、三人行,必有我师。
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√1252.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.33.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±47.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>68.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是分.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班24初三(2)班2421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.18.如图,四边形ABCD是矩形.(1)尺规作图:在图中,求作AB的中点E(保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE,DE,若AB=2,AD=√3,求证:CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.21.如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.2.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.3【解答】解:x=15(2+0+1+4+3)=2,∴S2=15[(2﹣2)2+(0﹣2)2+(1﹣2)2+(4﹣2)2+(3﹣2)2]=2,故选:A.3.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.【解答】解:A、能表示y是x的函数,故此选项不合题意;B、不能表示y是x的函数,故此选项符合题意;C、能表示y是x的函数,故此选项不合题意;D、能表示y是x的函数,故此选项不合题意;故选:B.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°【解答】解:延长NP至A,连结AM,根据勾股定理可得MP=AM=√12+22=√5,AP=√32+12=√10,又∵(√5)2+(√5)2=(√10)2,∴△AMP是等腰直角三角形,∴∠APM=45°,∴∠MPN=135°.故选:B.6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4【解答】解:A、√2与√3不能合并,所以A选项错误;B、原式=5,所以B选项正确;C、原式=√2,所以C选项错误;D、原式=4,所以D选项错误.故选:B.7.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>6【解答】解:由图象可知函数y=kx+b与x轴的交点为(6,0),则函数y=﹣kx+b与x 轴的交点为(﹣6,0),且y随x的增大而增大,∴当x<﹣6时,﹣kx+b<0,所以关于x的不等式﹣kx+b<0的解集是x<﹣6,故选:A.8.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°【解答】解:如图,连接BD,∵矩形ABCD中,∠BAC=40°,OA=OB,∴∠ABD=40°,∠DBE=90°﹣40°=50°,∵AC=BD,AC=BE,∴BD=BE,∴△BDE中,∠E=12(180°﹣∠DBE)=12(180°﹣50°)=65°,故选:A.10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1【解答】解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,△BCD是等边三角形,∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,如图,连接AE,交BD于点P,此时,△PCE的周长最小,∵DE=CD•sin60°=√3,CE=12BC=1,∴在Rt△ADE中,AE=√AD2+DE2=√7,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=√7+1,故选:B.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是77分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分).故答案为:77.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是①③.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.【解答】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是(4,160).【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是AC=BD.【解答】解:∵E、F、H分别是边AD、AB、CD的中点,∴EF=12BD,EH=12AC,∵四边形EFGH是菱形,∴EF=EH,∵EF=12BD,EH=12AC,∴AC=BD,故答案为:AC=BD.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.【解答】解:(1)√12×(√75+3√13−√48=2√3×(5√3+√3−4√3)=12;(2)(√2−1)2+√3×(√3−√6)+√8=2﹣2√2+1+3﹣3√2+2√2=6﹣3√2.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班242424初三(2)班242421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.【解答】解:(1)初三(1)班平均分:110(21×3+24×4+27×3)=24(分);有4名学生24分,最多,故众数为24分;把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分, 填表如下:班级 平均数/分中位数/分众数/分 初三(1)班 24 24 24 初三(2)班 242421故答案为:24,24,24;(2)初三(1)班优秀学生所占的百分比是:4+310×100%=70%,初三(1)班优秀学生约是70%×40=28人; 初三(2)班优秀学生所占的百分比是:610×100%=60%,初三(2)班优秀学生约是60%×40=24人.(3)S 12=110[(21﹣24)2×3+(24﹣24)2×4+(27﹣24)2×3] =110×(27+27) =5.4;S 22=110[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(15﹣24)2]=110×198 =19.8; ∵S 12<S 22,∴初三(1)班的学生纠错的得分更稳定. 18.如图,四边形ABCD 是矩形.(1)尺规作图:在图中,求作AB 的中点E (保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE ,DE ,若AB =2,AD =√3,求证:CE 平分∠BED .【解答】解:(1)如图所示,点E即为所求.(2)∵E是AB的中点,∴AE=12AB=1,∵四边形ABCD是矩形,∴∠A=90°,AB=CD=2,∴DE=√AD2+AE2=2,∴DE=DC,∴∠DEC=∠DCE,∵AB∥CD,∴∠CEB=∠DCE,∴∠CEB=∠DEC,∴CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD =x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【解答】(1)证明:如图1中,∵∠EDE ′=∠C =90°,∴∠ADP +∠CDE =90°,∠CDE +∠DEC =90°, ∴∠ADP =∠DEC .(2)解:如图1中,当C ′E ′与AB 相交于Q 时,即65<x ≤127时,过P 作MN ∥DC ′,设∠B =α∴MN ⊥AC ,四边形DC ′MN 是矩形, ∴PM =PQ •cos α=45y ,PN =43×12(3﹣x ), ∴23(3﹣x )+45y =x ,∴y =2512x −52,当DC ′交AB 于Q 时,即127<x <3时,如图2中,作PM ⊥AC 于M ,PN ⊥DQ 于N ,则四边形PMDN 是矩形,∴PN =DM ,∵DM =12(3﹣x ),PN =PQ •sin α=35y , ∴12(3﹣x )=35y ,∴y =−56x +52. 综上所述,y ={−56x +52(127<x <3)2512x −52(65<x ≤127)21.如图,已知四边形ABCD 是正方形,点E 、F 分别在AD 、DC 上,BE 与AF 相交于点G ,且BE =AF .(1)求证:△ABE ≌△DAF ; (2)求证:BE ⊥AF ;(3)如果正方形ABCD 的边长为5,AE =2,点H 为BF 的中点,连接GH .求GH 的长.【解答】解:(1)证明:∵四边形ABCD 为正方形, ∴∠BAE =∠D =90°,AB =AD , 在Rt △ABE 和Rt △DAF 中, {BE =AFAB =AD, ∴Rt △ABE ≌Rt △DAF (HL ); (2)证明:∵Rt △ABE ≌Rt △DAF ,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∴BE⊥AF;(3)∵BE⊥AF,∵点H为BF的中点,∴GH=12BF,∵在Rt△BCF中,BC=5,CF=CD﹣DF=5﹣2=3,根据勾股定理,得∴BF=√BC2+CF2=√34,∴GH=√34 2.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.【解答】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵OC =3,则C (3,0),设直线BC 的解析式为y =kx +b ,则有{3k +b =0b =4,解得{k =−43b =4,∴直线BC 的解析式为y =−43x +4;(2)设M (m ,−43m +4), ∵S △AMB =S △AOB , ∴S △ABC ﹣S △AMC =S △AOB , ∴12×5×4−12×5×(−43m +4)=12×2×4, ∴m =65, ∴M (65,125);(3)∵F A =FB ,A (﹣2,0),B (0,4), ∴F (﹣1,2),设G (0,n ),①当n >2时,如图1,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,∴∠MGF +∠NGQ =90°,∠NGQ +∠NQG =90°, ∴∠MGF =∠NQG ,∵∠FMG =∠GNQ =90°,GF =GQ , ∴△FMG ≌△GNQ (AAS ), ∴MG =NQ =1,FM =GN =n ﹣2, ∴Q (n ﹣2,n ﹣1),第 21 页 共 21 页∵点Q 在直线y =−43x +4上,∴n ﹣1=−43(n ﹣2)+4,∴n =237,∴G (0,237);②当n <2时,如图2﹣2中,同法可得Q (2﹣n ,n +1),∵点Q 在直线y =−43x +4上,∴n +1=−43(2﹣n )+4,∴n =﹣1,∴G (0,﹣1).综上所述,满足条件的点G 坐标为(0,237)或(0,﹣1).。
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1 2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6 3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√124.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125 5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 6.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 27.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤08.已知x−1x=2,则x2+1x2的值为()A.2B.4C.6D.89.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)12.已知最简二次根式√7−2a与2√3可以合并,则a的值是.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√508.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?20.四边形ABCD是长方形,将长方形ABCD折叠,如图①所示,点B落在AD边上的点E处,折痕为FG,将图②折叠,点C与点E重合,折痕为PH.(1)在图②中,证明:EH=EP;(2)若EF=6,EH=8,FH=10,求长方形ABCD的面积.21.阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3用上述类似的方法解答问题:若a是√5的小数部分,求√5a的值.22.已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP ⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.(1)若AP=√5,AB=13BC,求矩形ABCD的面积;(2)若CD=PM,求证:AC=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1【解答】解:∵√x−1有意义,∴x﹣1≥0,解得x≥1.故选:D.2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6【解答】解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.4.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 【解答】解:∵√−a3b有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴3b=−a√−ab.故选:A.6.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.7.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤0【解答】解:∵代数式√2x+6有意义,∴2x+6>0,∴x>﹣3,故选:C.8.已知x−1x=2,则x2+12的值为()A.2B.4C.6D.8【解答】解:原式=(x−1x)2+2=22+2=6,故选:C.9.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5【解答】解:如图,它运动的最短路程AB=√(2+2)2+(22)2=√17,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.√(判断对错)【解答】解:∵√12x=2√3x,∴若√12x是一个整数,则x可取的最小正整数是3,故答案为:√.12.已知最简二次根式√7−2a与2√3可以合并,则a的值是2.【解答】解:由最简二次根式√7−2a与2√3可以合并,得7﹣2a=3.解得a=2,故答案为:2.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为5或√7.【解答】解:∵|x−4|≥0,√y−3≥0,|=0,√y−3=0,∴|x−4即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为√42−32=√7;(2)边长为4的边是直角边,则第三边即斜边的长为√32+42=5,故答案为5或√7.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是132+842=852.【解答】解:∵第一个等式是:32+42=52;第二个等式是52+122=132;第三个等式是72+242=252;第四个等式是92+402=412;第五个等式是112+602=612…按照这样的规律,第六个等式是:132+842=852,故答案为:132+842=852.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4√5.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE =90°.当B′C=B′D时,AG=DH=12DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G=√B′E2−EG2=√132−52=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=√B′H2+DH2=√42+82=4√5(ii)如图2所示:当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B 重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4√5.故答案为:16或4√5.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√508.【解答】解:(1)原式=√6×3−2√15×3−3√2=3√2−6√5−3√2=﹣6√5;(2)原式=2+2√2+1−√32×508=3+2√2−10√2=3﹣8√2.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.【解答】解:(1−4x+3)÷x2−2x+12x+6=x+3−4x+3⋅2(x+3) (x−1)2=x−11⋅2(x−1)2=2x−1,当x=√2+1时,原式=2+1−1=√2.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?【解答】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行.19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC 为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l ,b .h 的长方体纸箱装满了一层高为h 的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【解答】解:(1)由题意,⊙O 是△ABC 内接圆,D 为切点,如图1,连结OD ,OC .设⊙O 半径为r ,纸盒长度为h ',则CD =√3r ,BC =2√3r 则圆柱型唇膏和纸盒的体积之比为:2√34(2√3r)2ℎ′#/DEL/#=√39π#/DEL/#(若设△ABC 的边长为a 112πa 2√34a =√39π) (2)易拉罐总体积和纸箱容积的比:l 2r ⋅b 2r ⋅πr 2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1 ∴第二种包装的空间利用率大.20.四边形ABCD是长方形,将长方形ABCD折叠,如图①所示,点B落在AD边上的点E处,折痕为FG,将图②折叠,点C与点E重合,折痕为PH.(1)在图②中,证明:EH=EP;(2)若EF=6,EH=8,FH=10,求长方形ABCD的面积.【解答】(1)证明:如图2,由折叠得:∠CHP=∠EHP,∵EG∥BC,∴∠EPH=∠CHP,∴∠EHP=∠EPH,∴EP=EH;(2)解:∵EF=6,EH=8,FH=10,∴∠FEH=90°,∴S△EFH=12EF×EH=24,由折叠得:BF=EF=6,CH=EH=8,∴BC=BF+FH+HC=6+10+8=24,过E作EM⊥BC于M,∴S△EFH=12FH×EM=24,∴FH×EM=48,∵FH=10,∴EM=4.8,∴S矩形ABCD=BC×EM=115.2.21.阅读下列材料,并解决相应问题: √5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3 用上述类似的方法解答问题:若a 是√5的小数部分,求√5a 的值. 【解答】解:∵2<√5<3,a 是√5的小数部分,∴a =√5−2, ∴√5a =√5√5−2=√5(√5+2)(√5−2)(√5+2)=5+2√5. 22.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP =PC ,AP⊥PC .PC 交AD 于点N ,连接DP ,过点P 作PM ⊥PD 交AD 于M .(1)若AP =√5,AB =13BC ,求矩形ABCD 的面积;(2)若CD =PM ,求证:AC =AP +PN .【解答】(1)解:∵AP ⊥CP 且AP =CP ,∴△APC 为等腰直角三角形,∵AP =√5,∴AC =√10,∵AB =13BC ,∴设AB =x ,BC =3x ,∴在Rt △ABC 中, x 2+(3x )2=10,10x 2=10,x=1,∴S ABCD=AB•BC=1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵{∠1=∠2 AP=CP ∠3=∠4,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵{∠1=∠2AP=CP∠APC=∠CPQ,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是 3.8或2.6厘米/秒.(直接写出答案)【解答】解:(1)①△BMN≌△CDM.理由如下:…(1分)∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM…(1分)∵CD=4(cm)∴BM=CD…(1分)∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)…(1分)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,…(1分)∴3t=2×(10﹣3t)∴t=209(秒);…(1分)Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,…(1分).∴10﹣3t=2×3t∴t=109(秒).…(1分)∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.…(2分)。
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.在线段、角、等腰三角形、平行四边形、矩形、菱形这几个图形中是中心对称图形的个数是( )A .2个B .3个C .4个D .5个【解答】解:由题可得,中心对称图形的有:线段、平行四边形、矩形、菱形共4个. 故选:C .2.如果分式x 2−4x+2的值为零,那么x 的值为( ) A .2B .﹣2C .0D .±2 【解答】解:∵分式x 2−4x+2的值为零,∴{x 2−4=0x +2≠0, 解得,x =2,故选:A .3.将分式x 2y x−y 中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大6倍B .扩大9倍C .不变D .扩大3倍 【解答】解:∵把分式x 2y x−y 中的x 与y 同时扩大为原来的3倍, ∴原式变为:27x 2y 3x−3y =9x 2y x−y=9×x 2y x−y , ∴这个分式的值扩大9倍.故选:B .4.如果反比例函数y =a−2x (a 是常数)的图象在第二、四象限,那么a 的取值范围是( ) A .a >2 B .a <2C .a >0D .a <0 【解答】解:∵反比例函数y =a−2x 的图象分布在第二、四象限,∴a ﹣2<0,解得a <2,故选:B .5.已知∠AOB =30°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,则△P 1OP 2是( )A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.6.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=kx(k>0,x>0)的图象经过AC的中点D,则k的值为()A .4B .5C .6D .8【解答】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1,∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO ,∴∠OAB =∠CBE ,∵∠AOB =∠BEC ,∴△AOB ∽△BEC ,∴BE OA =CE OB ,即BE 2=21, ∴BE =4,∴OE =5,∵点D 是AB 的中点,∴D (52,2). ∵反比例函数y =k x(k >0,x >0)的图象经过点D ,∴k =52×2=5. 故选:B .8.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A.45°B.60°C.70°D.90°【解答】解:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=12(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.9.如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线y=kx(k≠0)上,边AD与y轴相交于点E,S四边形BEDC=5S△ABE=10,则k的值是()A.﹣16B.﹣9C.﹣8D.﹣12【解答】解:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵BO∥DG,∴∠OBC=∠GDE,∴∠HDC=∠ABO,在△CDH和△ABO中,{∠ABO =∠HDC ∠AOB =∠CDH AB =CD,∴△CDH ≌△ABO (AAS ),∴CH =AO =1,DH =OB =2,设C (m ﹣1,n ),D (m ,n +2),则(m ﹣1)n =m (n +2)=k ,解得n =﹣2m ,则D 的坐标是(m ,﹣2m +2),设直线AD 解析式为y =ax +b ,将A 、D 两点坐标代入得{a +b =0ma +b =−2m +2, 由①得:a =﹣b ,代入②得:﹣mb +b =﹣2m +2,即﹣b (m +1)=﹣2(m +1),解得b =2,则{a =−2b =2, ∴y =﹣2x +2,∴E (0,2),BE =4,∴S △ABE =12×BE ×AO =2, ∵S 四边形BCDE =5S △ABE =5×12×4×1=10,∵S 四边形BCDE =S △ABE +S 四边形BEDM =10,即2+4×m =10,解得:m =2,∴n =2m =4,∴|k |=(m +1)n =12.∵双曲线图形在第二象限,∴k =﹣12故选:D .10.如图,以Rt△ABC的两条直角边向内分别作两个等边三角形△ABD与△ACE,连结DE,若∠AED=45°,则下列叙述正确的是()A.DE=12AE B.DE=√22AE C.DE=12AB D.DE=√22AB【解答】解:设BD与AE交于F点,∵∠BAC=90°,△ABD和△AEC是等边三角形,∴∠BAD+∠CAE=120°,∴∠DAE=∠BAD+∠CAE﹣∠BAC=120°﹣90°=30°,∴AF为∠BAD的平分线,∴AF⊥BD,且F为BD的中点,∵∠AED=45°,∴∠FDE=90°﹣∠FED=90°﹣45°=45°,∴△FED是等腰直角三角形,∴FD =FE ,设FD =x ,在Rt △FED 中,DE =√FD 2+FE 2=√x 2+x 2=√2x ,在Rt △AFD 中,∠F AD =30°,∴AB =AD =2FD =2x ,∴AF =√AD 2−FD 2=√4x 2−x 2=√3x ,∴AE =AF +FE =(√3+1)x ,∴DE =√2√3+1=√6−√22AE ,故选:D .二.填空题(共8小题,满分16分,每小题2分)11.若分式2x−3x+2无意义,则x 的值为 ﹣2 .【解答】解:由分式2x−3x+2无意义,得x +2=0.解得x =﹣2,故答案是:﹣2. 12.若关于x 的分式方程m(x+1)−52x+1=m −3无解,则m = 6,10 . 【解答】解:∵关于x 的分式方程m(x+1)−52x+1=m −3无解, ∴x =−12, 原方程去分母得:m (x +1)﹣5=(2x +1)(m ﹣3)解得:x =26−m ,m =6时,方程无解.或26−m =−12是方程无解,此时m =10. 故答案为6,10.13.如图,在菱形ABCD 中,AB =18cm ,∠A =60°,点E 以2cm /s 的速度沿AB 边由A 向B 匀速运动,同时点F 以4cm /s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.设运动时间为t 秒,当△DEF 为等边三角形时,t 的值为 3s .【解答】解:连接BD .如图:∵四边形ABCD 是菱形,∠A =60°,∴AD =CD =BC =AB =18,△ADB ,△BDC 都是等边三角形,∴AD =BD ,∠ADB =∠DBF =60°,∵△DEF 是等边三角形,∴∠EDF =60°,∴∠ADB =∠EDF ,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,{∠A =∠DBF =60°AD =BD ∠ADE =∠BDF,∴△ADE ≌△BDF (ASA ),∴AE =BF ,∴2t =18﹣4t ,∴t =3,故答案为:3s .14.如图,一次函数y =ax +b 的图象交x 轴于点B ,交y 轴于点A ,交反比例函数y =k x 的图象于点C ,若AB =BC ,且△OBC 的面积为2,则k 的值为 8 .【解答】解:作CD ⊥y 轴于D ,则OB ∥CD ,∴OA OD =AB BC ,∵AB =BC ,∴OA =OD ,∴S △OCD =S △AOC∵AB =BC ,∴S △AOB =S △OBC =2,∴S △AOC =S △AOB +S △OBC =4,∴S △OCD =4,∵反比例函数y =k x的图象经过点C ,∴S △OCD =12|k |=4,∵在第一象限,∴k =8.故答案为8.15.如图,在矩形ABCD 中,AB =6,AD =8,以A 为圆心,任意长为半径画弧交AB ,AC于M ,N ,再分别以M ,N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接AG ,交边BC 于E ,则△AEC 的面积为 15 .【解答】解:作EF ⊥AC 于F ,如图:由题意得:AE 平分∠BAC ,∵四边形ABCD 是矩形,∴∠B =90°,BC =AD =8,∴AC =2+BC 2=√62+82=10,EB ⊥AB ,∵AE 平分∠BAC ,∴EF =EB ,在Rt △AEF 和Rt △AEB 中,{AE =AE EF =EB, ∴Rt △AEF ≌Rt △AEB (HL ),∴AF =AB =6,∴CF =AC ﹣AF =4,设EF =EB =x ,则CE =8﹣x ,在Rt △CEF 中,由勾股定理得:x 2+42=(8﹣x )2, 解得:x =3,∴EF =3,∴△AEC 的面积=12AC ×EF =12×10×3=15; 故答案为:15.16.如图,点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是9.【解答】解:∵点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,∴S△AOD=S△BOE=12×12=6,∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∴S△AOB=12(4+2)×(6﹣3)=9,故答案为9.17.如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115°.【解答】解:∵四边形ABCD 是菱形, ∴CA 平分∠BCD ,AB ∥CD ,∴∠BAE +∠AEC =180°,∠B +∠BCD =180°, ∴∠BCD =180°﹣∠B =180°﹣50°=130°, ∴∠ACE =12∠BCD =65°, ∵AE =AC ,∴∠AEC =∠ACE =65°, ∴∠BAE =180°﹣∠AEC =115°; 故答案为:115.18.如图,矩形ABCD 的两个顶点A 、B 分别落在x 、y 轴上,顶点C 、D 位于第一象限,且OA =3,OB =2,对角线AC 、BD 交于点G ,若曲线y =kx (x >0)经过点C 、G ,则k =72.【解答】解:如图,分别过C 、G 两点作x 轴的垂线,交x 轴于点E 、F , ∴CE ∥GF , 设C (m .n ),∵四边形ABCD 是矩形, ∴AG =CG ,∴GF =12CE ,EF =12(3﹣m ), ∴OF =12(3﹣m )+m =32+12m , ∴G (3+m 2,12n ),∵曲线y =kx (x >0)经过点C 、G , ∴mn =3+m 2×12n ,解得m =1, 作CH ⊥y 轴于H , ∴CH =1, ∵∠ABC =90°, ∴∠CBH +∠ABO =90°, ∵∠OAB +∠ABO =90°, ∴∠OAB =∠CBH , ∵∠AOB =∠BHC =90°, ∴△AOB ∽△BHC , ∴BH OA=CH OB,即BH 3=12,∴BH =32, ∴OH =32+2=72, ∴C (1,72),∴k =1×72=72; 故答案为72.三.解答题(共10小题,满分64分)19.(8分)阅读下面的材料,并解答后面的问题 材料:将分式3x 2+4x−1x+1拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x +1,可设3x 2+4x ﹣1=(x +1)(3x +a )+b . 因为(x +1)(3x +a )+b =3x 2+ax +3x +a +b =3x 2+(a +3)x +a +b , 所以3x 2+4x ﹣1=3x 2+(a +3)x +a +b . 所以{a +3=4a +b =−1,解之,得{a =1b =−2.所以3x 2+4x−1x+1=(x+1)(3x+1)−2x+1=(x+1)(3x+1)x+1−2x+1=3x +1−2x+1这样,分式就被拆分成了一个整式3x +1与一个分式2x+1的差的形式.问题:(1)请将分式2x 2+3x+6x−1拆分成一个整式与一个分式(分子为整数)的和(差)的形式; (2)请将分式5x 4+9x 2−3x +2拆分成一个整式与一个分式(分子为整数)的和(差)的形式.【解答】解:(1)由分母为x ﹣1,可设2x 2+3x +6=(x ﹣1)(2x +a )+b . 因为(x ﹣1)(2x +a )+b =2x 2+ax ﹣2x ﹣a +b =2x 2+(a ﹣2)x ﹣a +b , 所以2x 2+3x +6=2x 2+(a ﹣2)x ﹣a +b . 所以{a −2=3−a +b =6,解得{a =5b =11.所以分式2x 2+3x+6x−1=(x−1)(2x+5)+11x−1=2x +5+11x−1.(2)由分母为x 2+2,可设5x 4+9x 2﹣3=(x 2+2)(5x 2+a )+b . 因为(x 2+2)(5x 2+a )+b =5x 4+ax 2+10x 2+2a +b =5x 4+(a +10)x 2+2a +b ,所以5x 4+9x 2﹣3=5x 4+(a +10)x 2+2a +b . 所以{a +10=92a +b =−3,解得{a =−1b =−1.所以5x 4+9x 2−3x 2+2=(x 2+2)(5x 2−1)−1x 2+2=5x 2﹣1−1x 2+2.20.(4分)解方程:4x 2−1+x+21−x=−1.【解答】解:两边都乘以(x +1)(x ﹣1),得:4﹣(x +2)(x +1)=﹣(x +1)(x ﹣1), 解得:x =13,检验:当x =13时,(x +1)(x ﹣1)≠0, 所以原分式方程的解为x =13. 21.(5分)计算:2x+2+2x−2−x 2+4x 2−4.【解答】解:原式=2(x−2)(x+2)(x−2)+2(x+2)(x−2)(x+2)−x 2+4(x+2)(x−2),=2x−4+2x+4−x 2−4(x+2)(x−2),=4x−4−x 2(x+2)(x−2), =−(x−2)2(x−2)(x+2),=−x−2x+2.22.(6分)先化简,再求值:(x 2+4x +4)÷x 2−4x 2−2x −x−x 2x−1,然后在0,1,2,3中选一个你认为合适的x 值,代入求值.【解答】解:原式=(x+2)2x ÷(x+2)(x−2)x(x−2)−x(1−x)x−1=2x +2不能代入0,1,2 所以只能代入3得:8. 23.(5分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【解答】解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人, 由题意得240x−30=2404x,解得x =6,经检验x =6是分式方程的解,答:2017年每小时客运量24万人.24.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A1B1C1为所作;(2)①画如图,△A2B2C2为所作;②点B2的坐标为(﹣3,3).故答案为(﹣3,3).25.(5分)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=6,AC=4,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.【解答】解:(1)∵AD是高,∴∠ACB=∠ADC=90°,在Rt△ADB中,E是AB的中点,∴DE=12AB=3,AE=12AB=3,同理可得,AF=DF=12AC=2,∴四边形AEDF的周长=3+3+2+2=10;(2)EF垂直平分AD,理由如下:∵EA=ED,F A=FD,∴EF是AD的垂直平分线.26.(7分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=2−BE2=√102−62=8,在Rt△AEC中,AC=√AE2+EC2=√82+42=4√5,∵四边形ABCD是菱形,∴OA=OC,∴OE=12AC=2√5.27.(9分)已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=1 2.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=OBOA=12,∴OA=8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD =∠AOB =∠DOE =90°,∴∠OAB +∠ADC =90°,∠DEO +∠ODE =90°, ∵∠ADC =∠ODE , ∴∠OAB =∠DEO , ∴△AOB ∽△EOD , ∴OA OE=OB OD,∴OE :OD =OA :OB =2,设OD =m ,则OE =2m , ∵12•m •2m =16,∴m =4或﹣4(舍弃), ∴D (﹣4,0),E (0,﹣8), ∴直线DE 的解析式为y =﹣2x ﹣8, ∵A (﹣8,0),B (0,4), ∴直线AB 的解析式为y =12x +4,由{y =−2x −8y =12x +4,解得{x =−245y =85, ∴C (−245,85),∵若反比例函数y =kx的图象经过点C , ∴k =−19225.(3)如图1中,当四边形MNPQ 是矩形时,∵OD =OB =4, ∴∠OBD =∠ODB =45°, ∴∠PNB =∠ONM =45°, ∴OM =DM =ON =2, ∴BN =2,PB =PN =√2, ∴P (﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);28.(9分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=√13;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是√15+√3,√39+√3,2√15.【解答】解:(1)①∵∠ABC=90°,∴BD=AC=2+BC2=√4+9=√13,故答案为√13,②∵A(0,3),B(5,0),∴AB=√52+32=√34,设点P(m,n),O(0,0),∴OP=√m2+n2=√34,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠EBF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3)√15+√3,√39+√3,2√15∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2√3,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE=12AB=1,∴DE=√AD2−AE2=√16−1=√15,∴S准矩形ABCD=S△ADE+S梯形BCDE=12DE×AE+12(BC+DE)×BE=12×√15+12(2√3+√15)×1=√15+√3;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=12BC=√3,∴DF=√CD2−CF2=√16−3=√13,∴S准矩形ABCD=S△DCF+S梯形ABFD=12FC×DF+12(AB+DF)×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当AD=CD,如图3,连接AC中点和D并延长交BC于M,连接AM,连接BG,过B作BH⊥DG,在Rt△ABC中,AC=2AB=4,∴BD=AC=4,∴AG=12AC=2,∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=2√33,HM=√33,∴CM=4√3 3,在Rt△DHB中,BH=1,BD=4,∴DH=√15,∴DM=DH﹣MH=√15−√3 3,∴S准矩形ABCD=S△ABM+S四边形AMCD,=12BM×AB+12AC×DM=12×2√33×2+12×4×(√15−√33)=2√15;故答案为√15+√3,√39+√3,2√15.。
2020-2021学年八年级下学期期中考试数学试卷
一.选择题(共8小题,满分24分,每小题3分)
1.(3分)下列代数式中,二次根式√m+n的有理化因式可以是()A.√m+√n B.√m−√n C.√m+n D.√m−n.2.(3分)一组数据﹣3,2,2,0,2,1的众数是()
A.﹣3B.2C.0D.1
3.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()
A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8 4.(3分)下列命题中,不正确的是()
A.对角线相等的矩形是正方形
B.对角线垂直平分的四边形是菱形
C.矩形的对角线平分且相等
D.顺次连结菱形各边中点所得的四边形是矩形
5.(3分)已知x1,x2,x3的平均数x=2,方差S2=3,则2x1,2x2,2x3的平均数和方差分别为()
A.2,3B.4,6C.2,12D.4,12
6.(3分)为了调查某校学生课后参加体育锻炼的时间,学校体育组随机抽样调查了若干名学生的每天锻炼时间,统计如表:
20406080每天锻炼时间(分
钟)
学生数(人)2341
下列说法错误的是()
A.众数是60分钟B.平均数是52.5分钟
C.样本容量是10D.中位数是50分钟
7.(3分)关于一次函数y=﹣3x+1,下列说法正确的是()
A.图象过点(﹣1,3)
B.y随x的增大而增大
C.图象经过第一、二、三象限
第1 页共19 页。
2020-2021初二数学下期中试卷及答案一、选择题1.一次函数1y ax b 与2y bx a 在同一坐标系中的图像可能是( )A .B .C .D .2.如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b +D .222a b - 3.估计26的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间 4.把式子1a a -号外面的因式移到根号内,结果是( ) A .a B .a - C .a - D .a --5.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AB ,BC 边上的中点,连接EF.若3EF =,BD=4,则菱形ABCD 的周长为( )A .4B .6C .47D .286.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<7.下列各组数据中能作为直角三角形的三边长的是( )A .1,2,2B .1,1,3C .4,5,6D .1,3,2 8.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .240 9.在矩形ABCD 中,AB=2,AD=4,E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上一点,当∠PAE=∠DAE 时,AP 的长为 ( )A .4B .C .D .510.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE⊥BC,垂足为E,则AE 的长为( )A .4B .2.4C .4.8D .511.如图所示,▱ABCD 的对角线AC ,BD 相交于点O ,AE EB =,3OE =,5AB =,▱ABCD 的周长( )A .11B .13C .16D .2212.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A .∠BCA =45°B .AC =BD C .BD 的长度变小 D .AC ⊥BD二、填空题13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+-a b a b,如3※2=32532+=-.那么12※4=_____. 14.一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.15.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,且另外两条边长均为无理数,满足这样条件的点C 共__个.16.如图,点E 在正方形ABCD 的边AB 上,若1EB,2EC =,那么正方形ABCD的面积为_.17.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.18.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.19.123x x --有意义的x 的取值范围是_____. 20.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN=_____.三、解答题=+的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点21.如图,已知一次函数y kx bC,交y轴于点D.(1)求该一次函数的解析式;(2)△ABC的面积.22.如图,四边形ABCD为菱形,E为对角线AC上的一个动点,连结DE并延长交射线AB于点F,连结BE.(1)求证:∠AFD=∠EBC;(2)若∠DAB=90°,当△BEF为等腰三角形时,求∠EFB的度数.23.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形;(2)操作与计算:已知平行四边形ABCD的邻边长分别为l,a(a>1),且是3阶准菱形,请画出平行四边形ABCD及裁剪线的示意图,并在图形下方写出a的值.24.123101010 23425.计算:5615)15【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y1的图象可知a< 0,b> 0;由y2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y1的图象可知a< 0,b> 0;由y2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y1的图象可知a> 0,b> 0;由y2的图象可知a<0,b<0,两结论相矛盾,故错误;故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k及b值的关系是解题的关键. 2.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +,∴BD 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】10a∴-≥ 0a ∴<∴==故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.5.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .6.C解析:C【解析】【分析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.7.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.8.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,13AB∴==,故菱形的周长为52.故选B.9.B解析:B【解析】【分析】根据矩形的性质结合等角对等边,进而得出CF的长,再利用勾股定理得出AP的长.【详解】在中, 得 故选:B点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出FC 的长是解题关键.10.C解析:C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=,∵AC =6,∴AO =3, ∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.11.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB=,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.12.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.【解析】试题解析:根据题意可得:故答案为解析:1 2【解析】试题解析:根据题意可得:41 124.124882 ====-※故答案为1 . 214.-2<m<3【解析】【分析】【详解】解:由已知得:解得:-2<m<3故答案为:-2<m<3解析:-2<m<3【解析】【分析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.15.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C共8个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共 8个.故答案为8.16.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,223BC EC EB=-=∴正方形ABCD的面积23BC==,故答案为:3.本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.18.16【解析】【分析】首先证明四边形ADEF是平行四边形根据三角形中位线定理求出DEEF即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E解析:16【解析】【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【详解】解:∵BD=AD,BE=EC,∴DE=12AC=5,DE∥AC,∵CF=FA,CE=BE,∴EF=12AB=3,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=16,故答案为16.【点睛】本题考查三角形中位线定理、平行四边形的判定和性质等知识,熟练掌握三角形中位线定理是解题的关键.19.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0列不等式组求解【详解】由题意得解得x≥2且x≠3故答案为x≥2且x≠3【点睛】本题主要考查自变量的取值范解析:x≥2且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式组求解.【详解】由题意,得20 {30xx-≥-≠,解得x≥2且x≠3.故答案为x≥2且x≠3.【点睛】本题主要考查自变量的取值范围.用到的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.20.3【解析】【分析】根据在直角三角形中斜边上的中线等于斜边的一半得到BM=DM=5根据等腰三角形的性质得到BN=4根据勾股定理得到答案【详解】解:连接BMDM∵∠ABC=∠ADC=90°M是AC的中点解析:3【解析】【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到BM=DM=5,根据等腰三角形的性质得到BN=4,根据勾股定理得到答案.【详解】解:连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=12AC=5,∵N是BD的中点,∴MN⊥BD,∴BN=12BD=4,由勾股定理得:MN=22BM BN-=2254-=3,故答案为:3.【点睛】此题主要考查矩形性质、等腰三角形的性质及勾股定理的应用,解题的关键是熟知直角三角形中,斜边上的中线等于斜边的一半.三、解答题21.(1)4533y x =+;(2)52. 【解析】【分析】(1)利用待定系数法即可求出一次函数解析式;(2)求出点D 坐标,根据ABC AOD BOD SS S =+即可求解.【详解】(1)把A (-2,-1),B (1,3)代入y =kx +b 得 213k b k b -+=-⎧⎨+=⎩, 解得 4353k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以一次函数解析式为4533y x =+; (2)把x =0代入4533y x =+得y =53, ∴D 点坐标为(0,53), ∴15155=21=23232ABC AOD BOD S S S =+⨯⨯+⨯⨯. 【点睛】(1)待定系数法是求函数解析式的一种常用方法,要深刻领会,其实质是根据题意设出函数关系式,把点的坐标代入解析式构造方程,求解,回代,最后确定解析式; (2)平面直角坐标系中如果图形的面积不易直接求,则一般采用割补法求解.22.(1)见解析;(2) ∠EFB=30°或120°.【解析】【分析】(1)直接利用全等三角形的判定方法得出△DCE ≌△BCE (SAS ),即可得出答案; (2)利用正方形的性质结合等腰三角形的性质得出:①当F 在AB 延长线上时;②当F 在线段AB 上时;分别求出即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴CD=AB,∠ACD=∠ACB,在△DCE和△BCE中,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE,∵CD∥AB,∴∠CDE=∠AFD,∴∠EBC=∠AFD.(2)分两种情况,①如图1,当F在AB延长线上时,∵∠EBF为钝角,∴只能是BE=BF,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°.②如图2,当F在线段AB上时,∵∠EFB为钝角,∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠EFB=30°或120°.【点睛】此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.23.(1)①2;②证明见解析;(2)作图见解析,a的值分别是:a1=4,a2=52,a3=53,a4=43.【解析】【分析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;(2)利用3阶准菱形的定义,即可得出答案;根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.【详解】解:(1)①邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②如图2,由BE是四边形ABFE的对称轴,即知∠ABE=∠FBE,且AB=BF,EA=EF,又因为AE∥BF,所以∠AEB=∠FBE,从而有∠AEB=∠ABE,因此AB=AE,据此可知AB=AE=EF=BF,故四边形ABFE为菱形;(2)如图,必为a>3,且a=4;如图,必为2<a<3,且a=2.5;如图,必为32<a<2,且a-1+1(1)12a-=,解得a=53;如图,必为1<a<32,且3(a-1)=1,解得a=43综上所述,a的值分别是:a1=4,a2=52,a3=53,a4=43.【点睛】本题考查图形的剪拼,平行四边形的性质,菱形的性质,作图---应用与作图设计.24510 12【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式12351010 23412⎛=+-=⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.2522【解析】【分析】直接利用无理数的混合运算法则计算得出答案.【详解】原式(30215)2215==【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。